1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXVectorCombiner
/// ------------
// This pass checks whether we use whole vector in operation,
// but this operation is splitted for parts of vector,
// and if we can combine them together, we do this
///
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <llvm/ADT/Statistic.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstIterator.h>
#include "llvmWrapper/Support/TypeSize.h"
#include "GenX.h"
#include "GenXIntrinsics.h"
#include "GenXModule.h"
#include "vc/Utils/GenX/Region.h"
#include "vc/Utils/General/InstRebuilder.h"
#include "IGC/common/debug/DebugMacros.hpp"
using namespace llvm;
using namespace genx;
#define DEBUG_TYPE "GENX_VECTOR_COMBINER"
STATISTIC(NumOfWidenInsructions,
"Number of combined to wider variant instructions");
static cl::opt<bool>
EnableGenXVectorCombiner("enable-Vector-Combiner-pass", cl::init(true),
cl::Hidden,
cl::desc("Enable Vector Combiner pass"));
namespace {
// GenXVectorCombiner : vectorize already vector instructions
// Currently pass work with
// add
// fadd
// bitcast
// trunc
// llvm.genx.absi
// llvm.genx.absf
// llvm.genx.bf.cvt
class GenXVectorCombiner final : public FunctionPass {
struct InstructionPack {
Instruction *RdRegion;
Instruction *Operation;
Instruction *WrRegion;
explicit InstructionPack(Instruction *Rd, Instruction *Oper,
Instruction *Wr)
: RdRegion{Rd}, Operation{Oper}, WrRegion{Wr} {
IGC_ASSERT_MESSAGE(Rd && Oper && Wr, "Error: get nullptr");
}
};
using ListOfPacks = SmallVector<InstructionPack, 4>;
std::unordered_map<Value *, ListOfPacks> WorkList;
public:
static char ID;
explicit GenXVectorCombiner() : FunctionPass(ID) {}
StringRef getPassName() const override { return "GenXVectorCombiner"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {}
bool runOnFunction(Function &F) override;
private:
void dumpWorkList() const;
void collectWorkList(Function &F);
void filterWorkList();
bool processWorkList();
bool checkWrRegions(const SmallVectorImpl<InstructionPack> &List);
bool checkRdRegions(const SmallVectorImpl<InstructionPack> &List);
bool checkSameInst(const SmallVectorImpl<InstructionPack> &List);
void createNewInstruction(Instruction *UnsteadOf, Instruction *Operation,
const SmallVectorImpl<Value *> &Vals);
bool isSupportedInst(const Instruction *Inst);
bool isSupportedGenXIntrinsic(GenXIntrinsic::ID OpCode);
bool isSupportedOpcode(unsigned OpCode);
bool isSuitableRdRegion(Instruction &RdRegionInst);
};
} // end namespace
char GenXVectorCombiner::ID = 0;
namespace llvm {
void initializeGenXVectorCombinerPass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(GenXVectorCombiner, "GenXVectorCombiner",
"GenXVectorCombiner", false, false)
INITIALIZE_PASS_END(GenXVectorCombiner, "GenXVectorCombiner",
"GenXVectorCombiner", false, false)
namespace llvm {
FunctionPass *createGenXVectorCombinerPass() {
initializeGenXVectorCombinerPass(*PassRegistry::getPassRegistry());
return new GenXVectorCombiner;
}
} // namespace llvm
// Checks whether this instruction can be optimized by this pass.
bool GenXVectorCombiner::isSupportedOpcode(unsigned OpCode) {
switch (OpCode) {
default:
return false;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::BitCast:
case Instruction::Trunc:
return true;
}
IGC_ASSERT_MESSAGE(false, "unreachable");
return false;
}
// Checks whether this GenXIntrinsic can be optimized by this pass.
bool GenXVectorCombiner::isSupportedGenXIntrinsic(GenXIntrinsic::ID IdCode) {
IGC_ASSERT(IdCode != GenXIntrinsic::not_genx_intrinsic);
switch (IdCode) {
default:
return false;
case GenXIntrinsic::genx_bf_cvt:
case GenXIntrinsic::genx_absf:
case GenXIntrinsic::genx_absi:
return true;
}
IGC_ASSERT(0);
return false;
}
bool GenXVectorCombiner::isSupportedInst(const Instruction *Inst) {
IGC_ASSERT_MESSAGE(Inst, "Error: nullptr");
if (isSupportedOpcode(Inst->getOpcode()))
return true;
if (GenXIntrinsic::isGenXIntrinsic(Inst) &&
isSupportedGenXIntrinsic(GenXIntrinsic::getGenXIntrinsicID(Inst)))
return true;
return false;
}
bool GenXVectorCombiner::isSuitableRdRegion(Instruction &RdRegionInst) {
if (!GenXIntrinsic::isRdRegion(&RdRegionInst))
return false;
if (!RdRegionInst.getType()->isVectorTy())
return false;
if (!RdRegionInst.hasOneUse())
return false;
Value *Original = RdRegionInst.getOperand(0);
Instruction *Inst = dyn_cast<Instruction>(*RdRegionInst.user_begin());
if (!Inst)
return false;
if (!Inst->hasOneUse())
return false;
if (!isSupportedInst(Inst))
return false;
Instruction *WrRegionInst = dyn_cast<Instruction>(*Inst->user_begin());
if (!WrRegionInst)
return false;
if (!GenXIntrinsic::isWrRegion(WrRegionInst))
return false;
// we must check that wr region and rdregion use the same part of vector, and
// splat is equal to one
vc::CMRegion RdRegion{&RdRegionInst};
vc::CMRegion WrRegion{WrRegionInst};
unsigned OriginalElementCount =
cast<IGCLLVM::FixedVectorType>(Original->getType())->getNumElements();
unsigned WrRegionElementCount =
cast<IGCLLVM::FixedVectorType>(WrRegionInst->getType())->getNumElements();
if (OriginalElementCount != WrRegionElementCount)
return false;
if (RdRegion.Width != WrRegion.Width)
return false;
if (RdRegion.Stride != 1 || RdRegion.VStride != 0)
return false;
if (RdRegion.Stride != WrRegion.Stride)
return false;
if (RdRegion.VStride != WrRegion.VStride)
return false;
// for trunc offset is different, but number of elements the same
unsigned RdRegionElementTySize = RdRegion.ElementTy->getScalarSizeInBits();
unsigned WrRegionElementTySize = WrRegion.ElementTy->getScalarSizeInBits();
IGC_ASSERT_MESSAGE(RdRegionElementTySize != 0, "Error: get ScalarSizeInBits");
IGC_ASSERT_MESSAGE(WrRegionElementTySize != 0, "Error: get ScalarSizeInBits");
return RdRegion.Offset / RdRegionElementTySize ==
WrRegion.Offset / WrRegionElementTySize;
}
// Checks that wrregions are in right order:
// 1) element in list should be connected with next one
// 2) RdRegions and WrRegions have the same arguments for offset and width, so do not check them twice
bool GenXVectorCombiner::checkWrRegions(
const SmallVectorImpl<InstructionPack> &List) {
if (!List.front().WrRegion->hasOneUse())
return false;
auto ResIterator =
std::adjacent_find(List.begin(), List.end(),
[](const auto &CurrentPack, const auto &NextPack) {
Instruction *CurrentWrRegion = CurrentPack.WrRegion;
Instruction *NextWrRegion = NextPack.WrRegion;
if (NextWrRegion->getOperand(0) != CurrentWrRegion)
return true;
return !NextWrRegion->hasOneUse();
});
return ResIterator == List.end();
}
// Checks that rdregions are in right order and "fill" all original vector.
bool GenXVectorCombiner::checkRdRegions(
const SmallVectorImpl<InstructionPack> &List) {
Value* Original = List.front().RdRegion->getOperand(0);
unsigned OriginalWidth =
cast<IGCLLVM::FixedVectorType>(Original->getType())->getNumElements();
Type *RdRegionTy = List.front().RdRegion->getType();
IGC_ASSERT_MESSAGE(!RdRegionTy->isPtrOrPtrVectorTy(),
"Error: PointerType not expected");
unsigned ElementSizeInBits = RdRegionTy->getScalarSizeInBits();
IGC_ASSERT_MESSAGE(ElementSizeInBits != 0, "getScalarSizeInBits return 0");
unsigned ElementSize = ElementSizeInBits / ByteBits;
vc::CMRegion FirstRdRegion{List.front().RdRegion};
if (FirstRdRegion.Offset != 0)
return false;
auto IteratorRes = std::adjacent_find(
List.begin(), List.end(),
[ElementSize](const auto &CurrentPack, const auto &NextPack) {
vc::CMRegion RdRegionCurrent{CurrentPack.RdRegion};
vc::CMRegion RdRegionNext{NextPack.RdRegion};
IGC_ASSERT(RdRegionCurrent.Width == RdRegionCurrent.NumElements);
return RdRegionCurrent.Offset + ElementSize * RdRegionCurrent.Width !=
RdRegionNext.Offset;
});
if (IteratorRes != List.end())
return false;
vc::CMRegion LastRdRegion{List.back().RdRegion};
IGC_ASSERT(LastRdRegion.Width == LastRdRegion.NumElements);
return LastRdRegion.Offset + ElementSize * LastRdRegion.Width ==
OriginalWidth * ElementSize;
}
bool GenXVectorCombiner::checkSameInst(
const SmallVectorImpl<InstructionPack> &List) {
Instruction *Operation = List.front().Operation;
if (GenXIntrinsic::isGenXIntrinsic(Operation)) {
GenXIntrinsic::ID IdCode = GenXIntrinsic::getGenXIntrinsicID(Operation);
IGC_ASSERT(IdCode != GenXIntrinsic::not_genx_intrinsic);
// TODO: currently no support for intrinsics with two srcs
return std::all_of(
std::next(List.begin()), List.end(), [IdCode](const auto &InstPack) {
Instruction *Operation = InstPack.Operation;
return IdCode == GenXIntrinsic::getGenXIntrinsicID(Operation);
});
}
unsigned OpCode = Operation->getOpcode();
bool TwoSources = Operation->getNumOperands() == 2;
Constant *SecondSrc = nullptr;
if (TwoSources)
SecondSrc = dyn_cast<Constant>(Operation->getOperand(1));
if (TwoSources && SecondSrc == nullptr)
return false;
// check that second source is the same
return std::all_of(std::next(List.begin()), List.end(),
[TwoSources, OpCode, SecondSrc](const auto &InstPack) {
Instruction *Operation = InstPack.Operation;
if (OpCode != Operation->getOpcode())
return false;
return !(TwoSources &&
Operation->getOperand(1) != SecondSrc);
});
}
// Performs analysis for collected SmallVectors:
// 1) Checks RdRegion "read" whole original vector
// 2) The same Operation is called for all small vectors
// 3) Write order is right
void GenXVectorCombiner::filterWorkList() {
std::vector<Value *> ToEraseFromWorkList;
for (auto &MapElement : WorkList) {
if (MapElement.second.size() == 1) {
ToEraseFromWorkList.push_back(MapElement.first);
continue;
}
if (!checkRdRegions(MapElement.second)) {
ToEraseFromWorkList.push_back(MapElement.first);
continue;
}
if (!checkWrRegions(MapElement.second)) {
ToEraseFromWorkList.push_back(MapElement.first);
continue;
}
if (!checkSameInst(MapElement.second)) {
ToEraseFromWorkList.push_back(MapElement.first);
continue;
}
}
for (auto *EraseVal : ToEraseFromWorkList)
WorkList.erase(EraseVal);
}
// Places new instruction or GenX intrinsic.
void GenXVectorCombiner::createNewInstruction(
Instruction *InsteadOf, Instruction *Operation,
const SmallVectorImpl<Value *> &Vals) {
IGC_ASSERT_MESSAGE(InsteadOf && Operation, "Error: nullptr input");
if (GenXIntrinsic::isGenXIntrinsic(Operation)) {
IRBuilder<> Builder{InsteadOf};
Function *Fn = nullptr;
GenXIntrinsic::ID IdCode = GenXIntrinsic::getGenXIntrinsicID(Operation);
Module *M = Operation->getParent()->getParent()->getParent();
switch (IdCode) {
case GenXIntrinsic::genx_absf:
case GenXIntrinsic::genx_absi:
Fn = GenXIntrinsic::getAnyDeclaration(M, IdCode, {InsteadOf->getType()});
break;
case GenXIntrinsic::genx_bf_cvt:
Fn = GenXIntrinsic::getAnyDeclaration(
M, IdCode, {InsteadOf->getType(), Vals[0]->getType()});
break;
default:
IGC_ASSERT_MESSAGE(false, "unsupported intrinsic");
return;
}
IGC_ASSERT(Fn);
CallInst *CI = Builder.CreateCall(Fn, Vals, VALUE_NAME("widened"));
InsteadOf->replaceAllUsesWith(CI);
return;
}
Instruction *NewInst = vc::cloneInstWithNewOps(*Operation, Vals);
IGC_ASSERT(NewInst);
NewInst->insertBefore(InsteadOf);
NewInst->setDebugLoc(InsteadOf->getDebugLoc());
NewInst->takeName(Operation);
InsteadOf->replaceAllUsesWith(NewInst);
}
// Puts new instructions instead of every SmallVector.
// returns true if IR changed
bool GenXVectorCombiner::processWorkList() {
if (WorkList.empty())
return false;
for (auto &MapElement : WorkList) {
Value *OriginalSrc = MapElement.first;
InstructionPack &RefAnyInstPack = MapElement.second.back();
// last wrregion from sequence
Instruction *InsteadOf = MapElement.second.back().WrRegion;
SmallVector<Value *, 2> Vals;
Vals.push_back(OriginalSrc);
// two src - second should be const
bool IsGenXIntrinsic =
GenXIntrinsic::isGenXIntrinsic(RefAnyInstPack.Operation);
if (!IsGenXIntrinsic && RefAnyInstPack.Operation->getNumOperands() == 2) {
Constant *ScalarSecondOperand =
cast<Constant>(RefAnyInstPack.Operation->getOperand(1))
->getSplatValue();
unsigned NumericWidth = cast<IGCLLVM::FixedVectorType>(OriginalSrc->getType())
->getNumElements();
auto Width = IGCLLVM::getElementCount(NumericWidth);
Constant *WideConstant =
ConstantVector::getSplat(Width, ScalarSecondOperand);
Vals.push_back(WideConstant);
}
createNewInstruction(InsteadOf, RefAnyInstPack.Operation, Vals);
++NumOfWidenInsructions;
}
for (auto &MapElement : WorkList) {
// wrregions are connected with each other, so last wrregion first
std::for_each(MapElement.second.rbegin(), MapElement.second.rend(),
[](InstructionPack &Pack) {
Pack.WrRegion->eraseFromParent();
Pack.Operation->eraseFromParent();
Pack.RdRegion->eraseFromParent();
});
}
WorkList.clear();
return true;
}
// Collects and checks some available on that level restrictions:
// * pattern: RdRegion -> Operation -> WrRegion
void GenXVectorCombiner::collectWorkList(Function &F) {
for (auto &Inst : instructions(F)) {
if (!isSuitableRdRegion(Inst))
continue;
Value *SrcV = Inst.getOperand(0);
Instruction *RdRegion = &Inst;
Instruction *Operation = cast<Instruction>(*RdRegion->user_begin());
Instruction *WrRegion = cast<Instruction>(*Operation->user_begin());
IGC_ASSERT_MESSAGE(
cast<IGCLLVM::FixedVectorType>(SrcV->getType())->getNumElements() ==
cast<IGCLLVM::FixedVectorType>(WrRegion->getType())
->getNumElements(),
"Error: mismatch in element count unexpected");
WorkList[SrcV].emplace_back(RdRegion, Operation, WrRegion);
}
}
// Algorithm :
// 1) find all available combinations of RdRegion, Operation and WrRegion,
// put it in SmallVector in history order
// 2) Analyze collected SmallVectors and check if we can combine them into wider
// one
// 3) Perform transformation
bool GenXVectorCombiner::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "GenXVectorCombiner started\n");
if (!EnableGenXVectorCombiner)
return false;
collectWorkList(F);
filterWorkList();
return processWorkList();
}
void GenXVectorCombiner::dumpWorkList() const {
for (auto &List : WorkList) {
dbgs() << "Original: ";
List.first->dump();
for (auto &InstPack : List.second) {
Instruction *RdRegion = InstPack.RdRegion;
Instruction *WrRegion = InstPack.WrRegion;
Instruction *Operation = InstPack.Operation;
RdRegion->dump();
dbgs() << "\t";
Operation->dump();
dbgs() << "\t\t";
WrRegion->dump();
}
}
}
|