1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// The GenXVectorDecomposer class is called by by the GenXPostLegalization pass
// to perform vector decomposition. See comment in GenXVectorDecomposer.h.
//
//===----------------------------------------------------------------------===//
#include "GenXVectorDecomposer.h"
#include "GenX.h"
#include "GenXBaling.h"
#include "GenXUtil.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"
#define DEBUG_TYPE "GENX_POST_LEGALIZATION"
using namespace llvm;
using namespace genx;
using namespace GenXIntrinsic::GenXRegion;
using namespace vc;
static cl::opt<unsigned>
LimitGenXVectorDecomposer("limit-genx-vector-decomposer",
cl::init(UINT_MAX), cl::Hidden,
cl::desc("Limit GenX vector decomposer."));
static cl::opt<unsigned> GenXReportVectorDecomposerFailureThreshold(
"genx-report-vector-decomposer-failure-threshold", cl::init(UINT_MAX),
cl::Hidden,
cl::desc("Byte size threshold for reporting failure of GenX vector "
"decomposer."));
static cl::opt<unsigned> GenXDefaultSelectPredicateWidth(
"genx-sel-width", cl::init(32), cl::Hidden,
cl::desc("The default width for select predicate splitting."));
namespace {
class DiagnosticVectorDecomposition : public DiagnosticInfo {
private:
const Twine &Description;
Instruction *Inst;
static const int KindID;
static int getKindID() { return KindID; }
public:
DiagnosticVectorDecomposition(Instruction *I, const Twine &Desc,
DiagnosticSeverity Severity = DS_Error)
: DiagnosticInfo(getKindID(), Severity), Description(Desc), Inst(I) {}
void print(DiagnosticPrinter &P) const override {
std::string Str;
raw_string_ostream OS(Str);
auto DL = Inst->getDebugLoc();
DL.print(OS);
OS << ' ' << Description;
OS << '\n';
OS.flush();
P << Str;
}
static bool classof(const DiagnosticInfo *DI) {
return DI->getKind() == getKindID();
}
};
const int DiagnosticVectorDecomposition::KindID =
llvm::getNextAvailablePluginDiagnosticKind();
} // end anonymous namespace
/***********************************************************************
* VectorDecomposer::run : run the vector decomposer on the start wrregion
* instructions added with addStartWrRegion()
*
* Return: true if code modified
*/
bool VectorDecomposer::run(const DataLayout &ArgDL) {
DL = &ArgDL;
bool Modified = false;
// Process each start wrregion added with addStartWrRegion().
for (auto swi = StartWrRegions.begin(), swe = StartWrRegions.end();
swi != swe; ++swi) {
Instruction *Inst = *swi;
Modified |= processStartWrRegion(Inst);
clearOne();
}
for (auto i = ToDelete.begin(), e = ToDelete.end(); i != e; ++i)
(*i)->deleteValue();
clear();
return Modified;
}
/***********************************************************************
* VectorDecomposer::processStartWrRegion : process one start wrregion
*
* Enter: Inst = the start wrregion. Note that this might have already
* been erased if it was part of an already processed web,
* so the first thing we have to do is check that.
*
* This processes one start wrregion (a wrregion with constant input). If it has
* not already been seen as part of another web, this processes the web
* containing the start wrregion.
*
* Return: true if code modified
*/
bool VectorDecomposer::processStartWrRegion(Instruction *Inst) {
// Determine the web of vectors related by wrregion, phi nodes, bitcast,
// and determine the decomposition that we can do to the web.
if (!determineDecomposition(Inst))
return false;
if (++DecomposedCount > LimitGenXVectorDecomposer)
return false;
if (LimitGenXVectorDecomposer != UINT_MAX)
dbgs() << "genx vector decomposer " << DecomposedCount << "\n";
decompose();
clearOne();
return true;
}
/***********************************************************************
* VectorDecomposer::determineDecomposition : determine the web of vectors
* related by wrregion, phi nodes, bitcast, and determine the decomposition
* that we can do to the web
*
* Enter: Inst = the start wrregion. Note that this might have already
* been erased if it was part of an already processed web,
* so the first thing we have to do is check that.
*
* Return: true if decomposition possible; Decomposition and Offsets set up
* as described in the comment near the end of this function
*/
bool VectorDecomposer::determineDecomposition(Instruction *Inst) {
if (Seen.find(Inst) != Seen.end())
return false; // This start wrregion already processed in some other web
// (and may have been erased).
NotDecomposingReportInst = Inst;
Web.clear();
Decomposition.clear();
unsigned NumGrfs = alignTo<256>(DL->getTypeSizeInBits(Inst->getType())) / 256;
if (NumGrfs == 1)
return false; // Ignore single GRF vector.
LLVM_DEBUG(dbgs() << "VectorDecomposer::determineDecomposition(" << *Inst
<< ")\n");
NotDecomposing = false;
for (unsigned i = 0; i != NumGrfs; ++i)
Decomposition.push_back(i);
addToWeb(Inst);
for (unsigned Idx = 0; Idx != Web.size(); ++Idx) {
Inst = Web[Idx];
// Look at the def of this value.
if (GenXIntrinsic::isWrRegion(Inst)) {
// wrregion. If the "old value of vector" input is not constant, include
// it in the web.
auto *NewVal = dyn_cast<Instruction>(
Inst->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
if (NewVal && GenXIntrinsic::isRdRegion(NewVal))
if (GenXIntrinsic::isReadPredefReg(NewVal->getOperand(
GenXIntrinsic::GenXRegion::OldValueOperandNum)))
setNotDecomposing(Inst, "read predefined reg");
// we still want to have this value in Seen,
// even we won't decompose this web
addToWeb(Inst->getOperand(0), Inst);
} else if (auto Phi = dyn_cast<PHINode>(Inst)) {
// Phi node. Add all incomings to the web.
for (unsigned j = 0, je = Phi->getNumIncomingValues(); j != je; ++j)
addToWeb(Phi->getIncomingValue(j), Phi);
} else if (isa<BitCastInst>(Inst)) {
// Bitcast. Add the input to the web. But a bitcast with non-instruction
// input confuses this algorithm, so in that case disable it. We're not
// really expecting a bitcast with constant input anyway, although we
// might get one with arg input.
if (isa<Instruction>(Inst->getOperand(0)))
addToWeb(Inst->getOperand(0), Inst);
else
setNotDecomposing(Inst, "use of function argument or constant");
} else {
// Any other def. This stops decomposition.
if ((isa<CallInst>(Inst) &&
!GenXIntrinsic::isAnyNonTrivialIntrinsic(Inst)) ||
isa<ExtractValueInst>(Inst))
setNotDecomposing(Inst, "return value from call");
else
setNotDecomposing(Inst, "other non-decomposable definition");
}
// Look at the uses of this value.
for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue; ++ui) {
auto user = cast<Instruction>(ui->getUser());
if (auto Phi = dyn_cast<PHINode>(user)) {
// Use in a phi node. Add the result of the phi node and all the other
// incomings to the web.
addToWeb(Phi);
for (unsigned j = 0, je = Phi->getNumIncomingValues(); j != je; ++j) {
auto Incoming = dyn_cast<Instruction>(Phi->getIncomingValue(j));
if (Incoming && Incoming != Inst)
addToWeb(Incoming, Phi);
}
continue;
}
if ((GenXIntrinsic::isWrRegion(user) && !ui->getOperandNo()) ||
isa<BitCastInst>(user)) {
// Use as the "old value of vector" operand of a wrregion, or in a
// bitcast. Add the result of the wrregion to the web.
addToWeb(user);
continue;
}
if (GenXIntrinsic::isRdRegion(user) && !ui->getOperandNo()) {
// Use as the vector value in rdregion. Adjust decomposition.
adjustDecomposition(user);
continue;
}
// We have some other use that stops us decomposing this web. (We
// continue gathering the web anyway so that all values in it get put
// in the Seen set.)
if (isa<InsertValueInst>(user) || isa<ReturnInst>(user))
setNotDecomposing(user, "use as return value");
else if (isa<CallInst>(user) &&
!GenXIntrinsic::isAnyNonTrivialIntrinsic(user))
setNotDecomposing(user, "use as call argument");
else
setNotDecomposing(user, "other non-decomposable use");
}
}
if (NotDecomposing)
return false;
// Now we have Decomposition[] set to reflect how we can decompose the GRFs
// of the vector. A range of Decomposition[i] with the same value need to
// be kept together in the same vector. Further, for the start of such a
// range, Decomposition[i] == i. So for example the array might be set to
// { 0, 0, 2, 2, 4, 4, 4, 4, 8, 8 }.
//
// Change Decomposition[] so the indices used are contiguous, changing the
// example above to { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3 }, and create the Offsets[]
// array to translate a value from Decomposition[] into the GRF offset, so
// for this example { 0, 2, 4, 8 }.
Offsets.clear();
for (unsigned Last = UINT_MAX, i = 0, e = Decomposition.size(); i != e; ++i) {
if (Decomposition[i] != Last) {
Offsets.push_back(Decomposition[i]);
Last = Decomposition[i];
}
Decomposition[i] = Offsets.size() - 1;
}
LLVM_DEBUG({
dbgs() << "decompose to";
for (unsigned i = 0; i != Decomposition.size(); ++i)
dbgs() << " " << Decomposition[i];
dbgs() << ":";
for (unsigned i = 0; i != Offsets.size(); ++i)
dbgs() << " " << Offsets[i];
dbgs() << ":";
for (unsigned i = 0; i != Web.size(); ++i)
dbgs() << " " << Web[i]->getName();
dbgs() << "\n";
});
if (Offsets.size() == 1) {
setNotDecomposing(0, "reads and writes in overlapping regions");
LLVM_DEBUG(dbgs() << "no decomposition\n");
return false;
}
return true;
}
/***********************************************************************
* addToWeb : add value to current vector web, adjusting decompose size
* if it is a wrregion
*
* Enter: V = value to add (if it is an instruction)
* User = instruction V is used in, for reporting failure to
* decompose if V is an Argument
*/
void VectorDecomposer::addToWeb(Value *V, Instruction *User) {
if (isa<Constant>(V))
return;
auto Inst = dyn_cast<Instruction>(V);
if (!Inst) {
// Cannot decompose with an arg in the web.
setNotDecomposing(User, "use of function argument");
return;
}
if (Seen.find(Inst) != Seen.end())
return; // already in the web
// Add to the web.
LLVM_DEBUG(dbgs() << " addToWeb(" << V->getName() << ")\n");
Seen.insert(Inst);
Web.push_back(Inst);
if (!GenXIntrinsic::isWrRegion(Inst))
return;
// It is a wrregion. Adjust decomposition.
adjustDecomposition(Inst);
}
/***********************************************************************
* adjustDecomposition : adjust web decomposition for region
*
* Enter: Inst = rdregion or wrregion instruction
*
* The vector will be decomposed into contiguous blocks of GRFs. This
* detects if the region accesses multiple GRFs currently slated to be in
* different decomposed vectors, and if so marks them as needing to be
* in the same decomposed vector.
*/
void VectorDecomposer::adjustDecomposition(Instruction *Inst) {
if (Decomposition.empty())
return; // Decomposition[] not set up yet
vc::Region R = makeRegionFromBaleInfo(Inst, BaleInfo());
if (R.Indirect) {
setNotDecomposing(Inst, "indirect region");
return; // cannot decompose if indirect
}
if (NotDecomposing)
return; // decomposition of this vector already disabled
// Compute byte offset of last byte accessed in the region. (This is after
// legalization so we can assume that strides are non-negative.)
unsigned Last = 0;
if (R.Width != R.NumElements)
Last = (R.NumElements / R.Width - 1) * R.VStride;
Last += (R.Width - 1) * R.Stride;
Last = R.Offset + Last * R.ElementBytes;
// Compute the GRF number of the first and last byte of the region.
unsigned First = R.Offset / 32U;
Last /= 32U;
if ((First >= Decomposition.size()) || (Last >= Decomposition.size())) {
setNotDecomposing(Inst, "out-of-bounds");
return; // don't attempt to decompose out-of-bounds accesses
}
if (First != Last) {
// This region spans more than one GRF. Ensure they are all in the same
// decomposed vector.
for (unsigned i = Last + 1;
i != Decomposition.size() && Decomposition[i] == Decomposition[Last];
++i)
Decomposition[i] = Decomposition[First];
for (unsigned i = First + 1; i != Last + 1; ++i)
Decomposition[i] = Decomposition[First];
}
}
/***********************************************************************
* reportLocation : report location of a DebugLoc, with nested inline funcs
*/
static void reportLocation(const LLVMContext &Ctx, const DebugLoc &DL,
raw_ostream &OS) {
if (auto InlinedAt = DL.getInlinedAt()) {
reportLocation(Ctx, DebugLoc(InlinedAt), OS);
OS << ": in function inlined here:\n";
}
StringRef Filename = "<unknown>";
unsigned Line = 0;
unsigned Col = 0;
if (!DL) {
Filename = DL->getFilename();
Line = DL.getLine();
Col = DL.getCol();
}
OS << Filename;
if (Line) {
OS << ":" << Line;
if (Col)
OS << ":" << Col;
}
}
static DILocalVariable *getVariable(IntrinsicInst *II) {
do {
Value *V = II->getOperand(0);
Metadata *M = ValueAsMetadata::get(V);
if (auto DbgNode = MetadataAsValue::getIfExists(V->getContext(), M))
for (auto *U : DbgNode->users())
if (auto DVI = dyn_cast<DbgValueInst>(U))
return DVI->getVariable();
if (!GenXIntrinsic::isWrRegion(V))
break;
II = cast<IntrinsicInst>(V);
} while (1);
return nullptr;
}
/***********************************************************************
* setNotDecomposing : set NotDecomposing flag and report to user
*
* Enter: Inst = instruction to report at (0 to use same location as
* NotDecomposingReportInst, the "first write" to the web)
* Text = message
*/
void VectorDecomposer::setNotDecomposing(Instruction *Inst, const char *Text) {
NotDecomposing = true;
if (NotDecomposingReportInst) {
unsigned Bytes =
NotDecomposingReportInst->getType()->getPrimitiveSizeInBits() / 8U;
if (Bytes < GenXReportVectorDecomposerFailureThreshold)
return;
reportLocation(Inst->getContext(), NotDecomposingReportInst->getDebugLoc(),
dbgs());
dbgs() << ": in decomposition candidate (" << Bytes
<< " byte vector/matrix) written to here:\n";
NotDecomposingReportInst = nullptr;
}
if (!Inst)
Inst = NotDecomposingReportInst;
IGC_ASSERT(Inst);
if (Inst->getDebugLoc())
Inst = Inst->getParent()->getFirstNonPHI();
reportLocation(Inst->getContext(), Inst->getDebugLoc(), dbgs());
dbgs() << ": vector decomposition failed because: " << Text << "\n";
}
/***********************************************************************
* VectorDecomposer::decompose : decompose web of vectors in Web based on
* Decomposition[] and Offsets[]
*/
void VectorDecomposer::decompose() {
// For each phi node in the web, create a phi node for each decomposed
// part, with all incomings set to the decomposed part of the original
// incoming if it was constant, otherwise undef.
for (auto wi = Web.begin(), we = Web.end(); wi != we; ++wi) {
auto Phi = dyn_cast<PHINode>(*wi);
if (!Phi)
continue;
auto PhiPartsEntry = &PhiParts[Phi];
auto Undef = UndefValue::get(Phi->getType());
unsigned NumIncomings = Phi->getNumIncomingValues();
for (unsigned PartIndex = 0; PartIndex != Offsets.size(); ++PartIndex) {
auto PartTy = getPartType(Phi->getType(), PartIndex);
auto NewPhi =
PHINode::Create(PartTy, NumIncomings,
Phi->getName() + ".decomp." + Twine(PartIndex), Phi);
for (unsigned ii = 0; ii != NumIncomings; ++ii) {
auto Incoming = dyn_cast<Constant>(Phi->getIncomingValue(ii));
if (!Incoming)
Incoming = Undef;
Incoming = getConstantPart(Incoming, PartIndex);
NewPhi->addIncoming(Incoming, Phi->getIncomingBlock(ii));
}
NewInsts.push_back(NewPhi);
PhiPartsEntry->push_back(NewPhi);
}
}
// Shorten the list of instructions in Web so it only includes phi nodes
// and start wrregions (ones with constant input). We need to do this first
// because other instructions in the web may become erased so checking them
// in the "decompose each tree of values" loop is invalid.
unsigned NewLen = 0;
for (unsigned wi = 0, we = Web.size(); wi != we; ++wi) {
Instruction *Inst = Web[wi];
if (isa<PHINode>(Inst) ||
(GenXIntrinsic::isWrRegion(Inst) && isa<Constant>(Inst->getOperand(0))))
Web[NewLen++] = Inst;
}
Web.resize(NewLen);
// Decompose each tree of values in the web rooted at a start wrregion (one
// with constant input) or at each use of a phi node. Each tree can be
// done independently, as we have already put the phi nodes in place to link
// them together.
for (auto wi = Web.begin(), we = Web.end(); wi != we; ++wi) {
Instruction *Inst = *wi;
if (auto Phi = dyn_cast<PHINode>(Inst)) {
auto Parts = &PhiParts[Phi];
// decomposeTree removes the use, so we repeatedly process the first use
// until they have all gone.
while (!Phi->use_empty())
decomposeTree(&*Phi->use_begin(), Parts);
} else {
IGC_ASSERT(GenXIntrinsic::isWrRegion(Inst) &&
isa<Constant>(Inst->getOperand(0)));
decomposeTree(&Inst->getOperandUse(0), nullptr);
}
}
// Erase original phi nodes. (The other original instructions in the web have
// been erased already.)
for (auto pi = PhiParts.begin(), pe = PhiParts.end(); pi != pe; ++pi)
eraseInst(pi->first);
// Do an aggressive dead code removal pass on instructions that we have added.
removeDeadCode();
}
/***********************************************************************
* VectorDecomposer::decomposeTree : decompose vectors in a tree
*
* Enter: U = use at the root of the tree, one of:
* - the "old value" operand of wrregion (might be constant)
* - the "old value" operand of rdregion
* - the input of bitcast
* - a phi incoming
* PartsIn = decomposed parts of input (not modifiable)
* (0 if *U is constant)
*
* This is a tree of wrregion and bitcast instructions, with phi node uses
* and rdregions at the leaves.
*
* This function traverses the tree using self recursion.
*/
void VectorDecomposer::decomposeTree(Use *U,
const SmallVectorImpl<Value *> *PartsIn) {
auto Inst = cast<Instruction>(U->getUser());
if (auto Phi = dyn_cast<PHINode>(Inst)) {
decomposePhiIncoming(Phi, U->getOperandNo(), PartsIn);
return;
}
IGC_ASSERT(!U->getOperandNo());
if (GenXIntrinsic::isRdRegion(Inst)) {
decomposeRdRegion(Inst, PartsIn);
return;
}
// Set up the decomposed parts of the incoming value.
SmallVector<Value *, 8> Parts;
if (PartsIn)
for (unsigned i = 0, e = PartsIn->size(); i != e; ++i)
Parts.push_back((*PartsIn)[i]);
else
for (unsigned i = 0, e = Offsets.size(); i != e; ++i)
Parts.push_back(getConstantPart(cast<Constant>(*U), i));
// Handle bitcast.
if (isa<BitCastInst>(Inst)) {
decomposeBitCast(Inst, &Parts);
return;
}
// Handle wrregion.
IGC_ASSERT(GenXIntrinsic::isWrRegion(Inst));
decomposeWrRegion(Inst, &Parts);
}
/***********************************************************************
* VectorDecomposer::decomposePhiIncoming : decompose a use in a phi node
*
* Enter: Phi = the phi node
* OperandNum = operand number in the phi node
* PartsIn = decomposed parts of input (not modifiable)
*/
void VectorDecomposer::decomposePhiIncoming(
PHINode *Phi, unsigned OperandNum,
const SmallVectorImpl<Value *> *PartsIn) {
// For each part, find the decomposed phi node and set its
// corresponding incoming.
auto PhiPartsEntry = &PhiParts[Phi];
for (unsigned PartIndex = 0, NumParts = PartsIn->size();
PartIndex != NumParts; ++PartIndex) {
auto PhiPart = cast<PHINode>((*PhiPartsEntry)[PartIndex]);
PhiPart->setIncomingValue(OperandNum, (*PartsIn)[PartIndex]);
}
// Set the incoming in the original phi node to undef, to remove the use.
Phi->setIncomingValue(OperandNum, UndefValue::get(Phi->getType()));
}
/***********************************************************************
* VectorDecomposer::decomposeRdRegion : decompose a rdregion
*
* Enter: RdRegion = the rdregion instruction
* PartsIn = decomposed parts of input (not modifiable)
*/
void VectorDecomposer::decomposeRdRegion(
Instruction *RdRegion, const SmallVectorImpl<Value *> *PartsIn) {
vc::Region RdR = makeRegionFromBaleInfo(RdRegion, BaleInfo());
unsigned PartIndex = getPartIndex(&RdR);
Value *Part = (*PartsIn)[PartIndex];
if (isa<UndefValue>(Part)) {
// Check if this region read is used as a two addr operand.
auto isUsedInTwoAddr = [](Value *V) {
for (auto ui = V->use_begin(), ue = V->use_end(); ui != ue; ++ui) {
auto user = cast<Instruction>(ui->getUser());
if (auto CI = dyn_cast<CallInst>(user)) {
if (auto OpndNum = getTwoAddressOperandNum(CI);
OpndNum && *OpndNum == ui->getOperandNo())
return true;
}
}
return false;
};
// Do not emit a warning if this undef is being used as old value
// in a two-addr instruction.
if (!isUsedInTwoAddr(RdRegion)) {
if (auto N = getVariable(cast<IntrinsicInst>(RdRegion))) {
emitWarning(RdRegion, "undefined value from '" + N->getName() +
"' is referenced after decomposition");
} else
emitWarning(RdRegion,
"undefined value is referenced after decomposition");
}
}
if (RdRegion->getType() == Part->getType() && RdR.isContiguous() &&
isa<VectorType>(RdRegion->getType())) {
// The rdregion reads the whole of the decomposed part of the vector (and
// has a vector result even if single element).
// Just replace uses and erase.
RdRegion->replaceAllUsesWith(Part);
eraseInst(RdRegion);
return;
}
// The rdregion reads only some of the decomposed part of the vector.
// Create a new rdregion to replace the old one, taking its name.
RdR.Offset -= getPartOffset(PartIndex);
auto NewRdRegion =
RdR.createRdRegion(Part, "", RdRegion, RdRegion->getDebugLoc(),
/*AllowScalar=*/!isa<VectorType>(RdRegion->getType()));
NewRdRegion->takeName(RdRegion);
RdRegion->replaceAllUsesWith(NewRdRegion);
IGC_ASSERT(Seen.find(RdRegion) == Seen.end());
eraseInst(RdRegion);
}
/***********************************************************************
* VectorDecomposer::decomposeWrRegion : decompose a wrregion
*
* Enter: WrRegion = the wrregion instruction
* Parts = decomposed parts of input (modifiable)
*/
void VectorDecomposer::decomposeWrRegion(Instruction *WrRegion,
SmallVectorImpl<Value *> *Parts) {
vc::Region WrR = makeRegionFromBaleInfo(WrRegion, BaleInfo());
unsigned PartIndex = getPartIndex(&WrR);
Value *Part = (*Parts)[PartIndex];
if (WrRegion->getOperand(NewValueOperandNum)->getType() == Part->getType() &&
!WrR.Mask) {
// The wrregion writes the whole of the decomposed part of the vector.
// We can just directly replace the part.
(*Parts)[PartIndex] = WrRegion->getOperand(NewValueOperandNum);
} else {
// The wrregion writes only some of the decomposed part of the vector.
// Create a new wrregion.
WrR.Offset -= getPartOffset(PartIndex);
auto NewInst =
WrR.createWrRegion(Part, WrRegion->getOperand(NewValueOperandNum),
WrRegion->getName() + ".decomp." + Twine(PartIndex),
WrRegion, WrRegion->getDebugLoc());
(*Parts)[PartIndex] = NewInst;
NewInsts.push_back(NewInst);
}
// Decompose its uses. decomposeTree removes the use, so we repeatedly process
// the first use until they have all gone.
while (!WrRegion->use_empty())
decomposeTree(&*WrRegion->use_begin(), Parts);
// Now the original wrregion has no uses, and we can remove it.
eraseInst(WrRegion);
}
/***********************************************************************
* VectorDecomposer::decomposeBitCast : decompose a bitcast
*
* Enter: Inst = the bitcast instruction
* Parts = decomposed parts of input (modifiable)
*/
void VectorDecomposer::decomposeBitCast(Instruction *Inst,
SmallVectorImpl<Value *> *Parts) {
// Create a new bitcast for each decomposed part, other than when the part
// is undef. (We handle the undef case as it is common, when only some of the
// vector has been set up. Other constant cases we leave to the EarlyCSE pass
// that comes after this pass.)
for (unsigned PartIndex = 0, NumParts = Parts->size(); PartIndex != NumParts;
++PartIndex) {
Type *NewTy = getPartType(Inst->getType(), PartIndex);
if (isa<UndefValue>((*Parts)[PartIndex]))
(*Parts)[PartIndex] = UndefValue::get(NewTy);
else {
auto NewInst = CastInst::Create(
Instruction::BitCast, (*Parts)[PartIndex], NewTy,
Inst->getName() + ".decomp." + Twine(PartIndex), Inst);
NewInst->setDebugLoc(Inst->getDebugLoc());
NewInsts.push_back(NewInst);
(*Parts)[PartIndex] = NewInst;
}
}
// Decompose its uses. decomposeTree removes the use, so we repeatedly process
// the first use until they have all gone.
while (!Inst->use_empty())
decomposeTree(&*Inst->use_begin(), Parts);
// Now the original wrregion has no uses, and we can remove it.
eraseInst(Inst);
}
/***********************************************************************
* VectorDecomposer::getPartIndex : get the part index for the region
*/
unsigned VectorDecomposer::getPartIndex(vc::Region *R) {
return Decomposition[R->Offset / 32U];
}
/***********************************************************************
* VectorDecomposer::getPartOffset : get the byte offset of a part
*/
unsigned VectorDecomposer::getPartOffset(unsigned PartIndex) {
// Offsets[] has the index in GRFs.
return Offsets[PartIndex] * 32;
}
/***********************************************************************
* VectorDecomposer::getPartNumBytes : get the size of a part in bytes
*/
unsigned VectorDecomposer::getPartNumBytes(Type *WholeTy, unsigned PartIndex) {
if (PartIndex + 1 != Offsets.size()) {
// Not the last part. We can use the offset (in GRFs) difference.
return 32 * (Offsets[PartIndex + 1] - Offsets[PartIndex]);
}
// For the last part, we need to get the total size from WholeTy.
return DL->getTypeSizeInBits(WholeTy) / 8U - 32 * Offsets[PartIndex];
}
/***********************************************************************
* VectorDecomposer::getPartNumElements : get the size of a part in elements
*/
unsigned VectorDecomposer::getPartNumElements(Type *WholeTy,
unsigned PartIndex) {
Type *ElementTy = WholeTy->getScalarType();
return getPartNumBytes(WholeTy, PartIndex) /
(DL->getTypeSizeInBits(ElementTy) >> 3);
}
/***********************************************************************
* VectorDecomposer::getPartType : get the type of a part
*/
VectorType *VectorDecomposer::getPartType(Type *WholeTy, unsigned PartIndex) {
Type *ElementTy = WholeTy->getScalarType();
return IGCLLVM::FixedVectorType::get(ElementTy,
getPartNumElements(WholeTy, PartIndex));
}
/***********************************************************************
* VectorDecomposer::getConstantPart : get the decomposed part of a constant
*/
Constant *VectorDecomposer::getConstantPart(Constant *Whole,
unsigned PartIndex) {
vc::Region R(Whole, DL);
R.Offset = getPartOffset(PartIndex);
R.NumElements = R.Width = getPartNumElements(Whole->getType(), PartIndex);
return R.evaluateConstantRdRegion(Whole, /*AllowScalar=*/false);
}
/***********************************************************************
* VectorDecomposer::removeDeadCode : aggressive dead code removal on
* instructions added by the vector decomposer
*
* NewInsts contains the instructions added.
*/
void VectorDecomposer::removeDeadCode() {
SmallVector<Instruction *, 8> Stack; // the "to be processed" stack
std::set<Instruction *> Unused;
// Put all newly added instructions into the Unused set.
for (auto i = NewInsts.begin(), e = NewInsts.end(); i != e; ++i)
Unused.insert(*i);
// Look at each newly added instruction. If it is used in anything other than
// one of our newly added instructions, add it to the "to be processed" stack
// and remove it from the Unused set. (It also counts as used an instruction
// that is used in another of our newly added instructions that happens to
// have already been seen as used. It doesn't matter either way that this
// happens.)
for (auto i = NewInsts.begin(), e = NewInsts.end(); i != e; ++i) {
Instruction *Inst = *i;
bool IsUsed = false;
for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue; ++ui) {
auto user = cast<Instruction>(ui->getUser());
if (Unused.find(user) == Unused.end())
IsUsed = true;
}
if (IsUsed) {
Stack.push_back(Inst);
Unused.erase(Inst);
}
}
// Process each entry on the stack.
while (!Stack.empty()) {
Instruction *Inst = Stack.back();
Stack.pop_back();
// Inst is used, perhaps indirectly, by something outside the web.
// Mark instructions it uses as used. For wrregion and bitcast, this
// is just operand 0. For a phi node, it is all incomings.
if (auto Phi = dyn_cast<PHINode>(Inst)) {
for (unsigned ii = 0, ie = Phi->getNumIncomingValues(); ii != ie; ++ii) {
auto Incoming = dyn_cast<Instruction>(Phi->getIncomingValue(ii));
auto it = Unused.find(Incoming);
if (it == Unused.end())
continue;
// Incoming is an instruction currently in the unused set. Remove it
// from the set, and add it to the "to be processed" stack.
Unused.erase(it);
Stack.push_back(Incoming);
}
} else {
auto Operand = dyn_cast<Instruction>(Inst->getOperand(0));
auto it = Unused.find(Operand);
if (it != Unused.end()) {
// Operand is an instruction currently in the unused set. Remove it
// from the set, and add it to the "to be processed" stack.
Unused.erase(it);
Stack.push_back(Operand);
}
}
}
// Anything left in Unused is really unused, except for uses by other
// instructions in Unused (possibly circularly in the case of phi nodes).
// Erase them all forcibly, by changing all uses to undef first.
for (auto uui = Unused.begin(), uue = Unused.end(); uui != uue; ++uui) {
Instruction *Inst = *uui;
while (!Inst->use_empty())
*Inst->use_begin() = UndefValue::get((*Inst->use_begin())->getType());
eraseInst(Inst);
}
}
/***********************************************************************
* VectorDecomposer::eraseInst : erase an instruction
*
* This is used in the case that the instruction might be in the Seen
* set. So we delay actually deleting it until the end of processing the
* function.
*/
void VectorDecomposer::eraseInst(Instruction *Inst) {
Inst->removeFromParent();
ToDelete.push_back(Inst);
// Remove all non-constant operands.
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
Value *Opnd = Inst->getOperand(i);
if (isa<Constant>(Opnd))
continue;
Inst->setOperand(i, UndefValue::get(Opnd->getType()));
}
}
void VectorDecomposer::emitWarning(Instruction *Inst, const Twine &Msg) {
DiagnosticVectorDecomposition Warn(Inst, Msg, DS_Warning);
Inst->getContext().diagnose(Warn);
}
// Decompose
//
// %33 = fcmp une <24 x float> %25, zeroinitializer
// %34 = fcmp oeq <24 x float> %24, zeroinitializer
// %35 = and <24 x i1> %33, %34
// %36 = select <24 x i1> %35, <24 x float> <float 0x4071E7A300000000, >
//
// into
//
// %25.0 = rrd(%25, 16, 16, 1)
// %25.1 = rrd(%25, 8, 8, 1)
// %24.0 = rrd(%24, 16, 16, 1)
// %24.1 = rrd(%24, 8, 8, 1)
// %33.0 = fcmp une <16 x float> %25.0, zeroinitializer
// %33.1 = fcmp une <8 x float> %25.1, zeroinitializer
// %34.0 = fcmp oeq <16 x float> %24.0, zeroinitializer
// %34.1 = fcmp oeq <8 x float> %24.1, zeroinitializer
// %35.0 = and <16 x i1> %33.0, %34.0
// %35.1 = and <8 x i1> %33.1, %34.1
// $36.0 = select <16 x i1> %35.0, <16 x float> <float 0x4071E7A300000000, >
// %36.1 = select <8 x i1> %35.1, <8 x float> <float 0x4071E7A300000000, >
// %36.new.0 = wrr(<24 x float> undef, <16 x float> %36.0, 0)
// %36.new.1 = wwr(<24 x float> %36.new.0, <8 x float> %36.1, 16)
//
// This allows register pressure reducer to better reorder the above sequence.
//
bool SelectDecomposer::run() {
bool Modified = false;
for (auto Inst : StartSelects) {
Modified |= processStartSelect(Inst);
clear();
}
return Modified;
}
bool SelectDecomposer::processStartSelect(Instruction *Inst) {
auto SI = dyn_cast<SelectInst>(Inst);
if (!SI || !determineDecomposition(Inst))
return false;
// Decompose it and its predicate computation recursively.
decompose(SI);
// Merge components, starting with undef.
SmallVectorImpl<Value *> &Parts = DMap[Inst];
Value *NewInst = UndefValue::get(Inst->getType());
for (unsigned Idx = 0, N = Decomposition.size(); Idx < N; ++Idx) {
vc::Region R(NewInst);
R.getSubregion(getPartOffset(Idx), getPartNumElements(Idx));
NewInst = R.createWrRegion(NewInst, Parts[Idx], ".join", Inst,
Inst->getDebugLoc());
}
Inst->replaceAllUsesWith(NewInst);
return true;
}
template <typename T> bool isGlobalVarOperand(const Value *V) {
const T *Inst = dyn_cast<T>(V);
return Inst &&
vc::getUnderlyingGlobalVariable(Inst->getPointerOperand()) != nullptr;
}
bool SelectDecomposer::determineDecomposition(Instruction *Inst) {
auto SI = dyn_cast<SelectInst>(Inst);
IGC_ASSERT_MESSAGE(SI, "select expected");
auto *Ty = dyn_cast<IGCLLVM::FixedVectorType>(SI->getCondition()->getType());
if (!Ty)
return false;
unsigned NumElts = Ty->getNumElements();
if (NumElts <= 16)
return false;
if (!isa<Instruction>(SI->getCondition()))
return false;
// Disable select decomposition if this select may be used in g_store bale.
// Otherwise, g_store bale cannot be created correctly due to a missing load
// of a global that will be stored(it is one of the requirements to g_store
// bales). The change fixes FRC_global and FRC_MC_global tests.
if (std::any_of(Inst->user_begin(), Inst->user_end(),
isGlobalVarOperand<StoreInst>) ||
std::any_of(Inst->value_op_begin(), Inst->value_op_end(),
isGlobalVarOperand<LoadInst>))
return false;
// Extra checks to avoid aggressive splitting.
auto BB = Inst->getParent();
auto check = [=](Instruction *I) {
if (!I->hasOneUse() || I->getParent() != BB) {
setNotDecomposing();
return false;
}
return true;
};
// This determines the width of predicate operands.
// We consider the following two factors
// - The type size of sel
// - The input operands
unsigned Width = GenXDefaultSelectPredicateWidth;
if (Width > 32)
Width = 32;
else if (Width < 16)
Width = 16;
else if (SI->getType()->getScalarSizeInBits() >= 32)
Width = 16;
// If there is a region read with a non-unit stride,
// then adjust the splitting width appropriately.
auto adjustWidth = [=, &Width](Value *V) {
// If this region read only supports up to 16, then do not split into
// simd 32. Otherwise it makes difficult to bale in this region read.
if (Width == 32 && GenXIntrinsic::isRdRegion(V)) {
CallInst *CI = cast<CallInst>(V);
vc::Region R = makeRegionFromBaleInfo(CI, BaleInfo());
IGC_ASSERT(ST);
unsigned LegalSize = getLegalRegionSizeForTarget(
*ST, R, 0 /*idx*/, true /*Allow2D*/,
cast<IGCLLVM::FixedVectorType>(CI->getOperand(0)->getType())
->getNumElements());
if (LegalSize < 32)
Width = 16;
}
};
addToWeb(SI->getCondition());
for (unsigned i = 0; i != Web.size(); ++i) {
Inst = Web[i];
if (!check(Inst))
break;
unsigned OpCode = Inst->getOpcode();
switch (OpCode) {
default:
setNotDecomposing();
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
addToWeb(Inst->getOperand(0));
addToWeb(Inst->getOperand(1));
adjustWidth(Inst->getOperand(0));
adjustWidth(Inst->getOperand(1));
break;
case Instruction::FCmp:
case Instruction::ICmp:
adjustWidth(Inst->getOperand(0));
adjustWidth(Inst->getOperand(1));
break;
}
}
if (NotDecomposing)
return false;
Offsets.clear();
unsigned Offset = 0;
unsigned Remaining = NumElts;
while (Remaining > Width) {
Decomposition.push_back(Width);
Offsets.push_back(Offset);
Remaining -= Width;
Offset += Width;
}
if (Remaining > 0) {
Decomposition.push_back(Remaining);
Offsets.push_back(Offset);
}
{
IGC_ASSERT(Width);
unsigned NumParts = 0; // it will be assigned inside assertion statament
IGC_ASSERT((NumParts = (NumElts + Width - 1) / Width, 1));
IGC_ASSERT(NumParts == Decomposition.size());
IGC_ASSERT(NumParts == Offsets.size());
(void)NumParts;
}
return true;
}
void SelectDecomposer::addToWeb(Value *V) {
if (isa<Constant>(V))
return;
auto Inst = dyn_cast<Instruction>(V);
if (!Inst) {
// Cannot decompose with an argument in the web.
setNotDecomposing();
return;
}
if (Seen.find(Inst) != Seen.end())
return;
Seen.insert(Inst);
Web.push_back(Inst);
}
void SelectDecomposer::decompose(Instruction *Inst) {
if (isa<SelectInst>(Inst))
decomposeSelect(Inst);
else if (isa<CmpInst>(Inst))
decomposeCmp(Inst);
else {
IGC_ASSERT(Inst->getOpcode() == Instruction::And ||
Inst->getOpcode() == Instruction::Or ||
Inst->getOpcode() == Instruction::Xor);
decomposeBinOp(Inst);
}
}
void SelectDecomposer::decomposeSelect(Instruction *Inst) {
SelectInst *SI = cast<SelectInst>(Inst);
if (auto I = dyn_cast<Instruction>(SI->getCondition()))
decompose(I);
unsigned N = Decomposition.size();
SmallVector<Value *, 8> Parts(N);
IRBuilder<> B(Inst);
Value *OpC = SI->getCondition();
Value *OpT = SI->getTrueValue();
Value *OpF = SI->getFalseValue();
for (unsigned Idx = 0; Idx < N; ++Idx) {
Value *OpC_I = getPart(OpC, Idx, Inst);
Value *OpT_I = getPart(OpT, Idx, Inst);
Value *OpF_I = getPart(OpF, Idx, Inst);
Value *NewInst = B.CreateSelect(OpC_I, OpT_I, OpF_I, Inst->getName());
if (auto I = dyn_cast<Instruction>(NewInst))
I->setDebugLoc(Inst->getDebugLoc());
Parts[Idx] = NewInst;
}
DMap[Inst].swap(Parts);
}
void SelectDecomposer::decomposeBinOp(Instruction *Inst) {
Value *Op0 = Inst->getOperand(0);
Value *Op1 = Inst->getOperand(1);
if (auto I = dyn_cast<Instruction>(Op0))
decompose(I);
if (auto I = dyn_cast<Instruction>(Op1))
decompose(I);
unsigned N = Decomposition.size();
SmallVector<Value *, 8> Parts(N);
IRBuilder<> B(Inst);
for (unsigned Idx = 0; Idx < N; ++Idx) {
Value *Op0_I = getPart(Op0, Idx, Inst);
Value *Op1_I = getPart(Op1, Idx, Inst);
Value *NewInst = B.CreateBinOp(Instruction::BinaryOps(Inst->getOpcode()),
Op0_I, Op1_I, Inst->getName());
if (auto I = dyn_cast<Instruction>(NewInst))
I->setDebugLoc(Inst->getDebugLoc());
Parts[Idx] = NewInst;
}
DMap[Inst].swap(Parts);
}
void SelectDecomposer::decomposeCmp(Instruction *Inst) {
Value *Op0 = Inst->getOperand(0);
Value *Op1 = Inst->getOperand(1);
unsigned N = Decomposition.size();
SmallVector<Value *, 8> Parts(N);
IRBuilder<> B(Inst);
CmpInst *CI = cast<CmpInst>(Inst);
for (unsigned Idx = 0; Idx < N; ++Idx) {
Value *Op0_I = getPart(Op0, Idx, Inst);
Value *Op1_I = getPart(Op1, Idx, Inst);
Value *NewInst = nullptr;
if (isa<ICmpInst>(CI))
NewInst = B.CreateICmp(CI->getPredicate(), Op0_I, Op1_I, Inst->getName());
else
NewInst = B.CreateFCmp(CI->getPredicate(), Op0_I, Op1_I, Inst->getName());
if (auto I = dyn_cast<Instruction>(NewInst))
I->setDebugLoc(Inst->getDebugLoc());
Parts[Idx] = NewInst;
}
DMap[Inst].swap(Parts);
}
Value *SelectDecomposer::getPart(Value *Whole, unsigned PartIndex,
Instruction *Inst) const {
auto I = DMap.find(Whole);
if (I != DMap.end()) {
IGC_ASSERT(I->second.size() > PartIndex);
return I->second[PartIndex];
}
unsigned Offset = getPartOffset(PartIndex);
unsigned NumElts = getPartNumElements(PartIndex);
if (Whole->getType()->getScalarType()->isIntegerTy(1)) {
auto C = dyn_cast<Constant>(Whole);
IGC_ASSERT_MESSAGE(C, "constant expected");
if (Constant *V = C->getSplatValue())
return ConstantVector::getSplat(IGCLLVM::getElementCount(NumElts), V);
SmallVector<Constant *, 8> Values;
for (unsigned Idx = Offset; Idx < Offset + NumElts; ++Idx)
Values.push_back(C->getAggregateElement(Idx));
return ConstantVector::get(Values);
}
const DataLayout &DL = Inst->getModule()->getDataLayout();
vc::Region R(Whole, &DL);
R.Offset = Offset * R.ElementBytes;
R.NumElements = R.Width = NumElts;
if (auto C = dyn_cast<Constant>(Whole))
return R.evaluateConstantRdRegion(C, /*AllowScalar=*/false);
return R.createRdRegion(Whole, ".in", Inst, Inst->getDebugLoc());
}
|