1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
//
/// CMABI
/// -----
///
/// This pass fixes ABI issues for the genx backend. Currently, it
///
/// - transforms pass by pointer argument into copy-in and copy-out;
///
/// - localizes global scalar or vector variables into copy-in and copy-out;
///
/// - passes bool arguments as i8 (matches cm-icl's hehavior).
///
//===----------------------------------------------------------------------===//
#include "llvmWrapper/Analysis/CallGraph.h"
#include "llvmWrapper/IR/Attributes.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvmWrapper/Support/Alignment.h"
#include "Probe/Assertion.h"
#include "vc/GenXOpts/GenXOpts.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/BreakConst.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "vc/Utils/GenX/KernelInfo.h"
#include "vc/Utils/GenX/Printf.h"
#include "vc/Utils/GenX/TransformArgCopy.h"
#include "vc/Utils/GenX/TypeSize.h"
#include "vc/Utils/General/DebugInfo.h"
#include "vc/Utils/General/FunctionAttrs.h"
#include "vc/Utils/General/InstRebuilder.h"
#include "vc/Utils/General/STLExtras.h"
#include "vc/Utils/General/Types.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/GenXIntrinsics/GenXMetadata.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <functional>
#include <numeric>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#define DEBUG_TYPE "cmabi"
using namespace llvm;
static cl::opt<unsigned>
MaxCMABIByvalSize("vc-max-cmabi-byval-size", cl::init(128), cl::Hidden,
cl::desc("Maximum struct size to be passed by value for "
"internal functions in bytes."));
STATISTIC(NumArgumentsTransformed, "Number of pointer arguments transformed");
namespace llvm {
void initializeCMABIAnalysisPass(PassRegistry &);
void initializeCMABIPass(PassRegistry &);
void initializeCMLowerVLoadVStorePass(PassRegistry &);
}
/// Localizing global variables
/// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
///
/// General idea of localizing global variables into locals. Globals used in
/// different kernels get a seperate copy and they are always invisiable to
/// other kernels and we can safely localize all globals used (including
/// indirectly) in a kernel. For example,
///
/// .. code-block:: text
///
/// @gv1 = global <8 x float> zeroinitializer, align 32
/// @gv2 = global <8 x float> zeroinitializer, align 32
/// @gv3 = global <8 x float> zeroinitializer, align 32
///
/// define dllexport void @f0() {
/// call @f1()
/// call @f2()
/// call @f3()
/// }
///
/// define internal void @f1() {
/// ; ...
/// store <8 x float> %splat1, <8 x float>* @gv1, align 32
/// }
///
/// define internal void @f2() {
/// ; ...
/// store <8 x float> %splat2, <8 x float>* @gv2, align 32
/// }
///
/// define internal void @f3() {
/// %1 = <8 x float>* @gv1, align 32
/// %2 = <8 x float>* @gv2, align 32
/// %3 = fadd <8 x float> %1, <8 x float> %2
/// store <8 x float> %3, <8 x float>* @gv3, align 32
/// }
///
/// will be transformed into
///
/// .. code-block:: text
///
/// define dllexport void @f0() {
/// %v1 = alloca <8 x float>, align 32
/// %v2 = alloca <8 x float>, align 32
/// %v3 = alloca <8 x float>, align 32
///
/// %0 = load <8 x float> * %v1, align 32
/// %1 = { <8 x float> } call @f1_transformed(<8 x float> %0)
/// %2 = extractvalue { <8 x float> } %1, 0
/// store <8 x float> %2, <8 x float>* %v1, align 32
///
/// %3 = load <8 x float> * %v2, align 32
/// %4 = { <8 x float> } call @f2_transformed(<8 x float> %3)
/// %5 = extractvalue { <8 x float> } %4, 0
/// store <8 x float> %5, <8 x float>* %v1, align 32
///
/// %6 = load <8 x float> * %v1, align 32
/// %7 = load <8 x float> * %v2, align 32
/// %8 = load <8 x float> * %v3, align 32
///
/// %9 = { <8 x float>, <8 x float>, <8 x float> }
/// call @f3_transformed(<8 x float> %6, <8 x float> %7, <8 x float> %8)
///
/// %10 = extractvalue { <8 x float>, <8 x float>, <8 x float> } %9, 0
/// store <8 x float> %10, <8 x float>* %v1, align 32
/// %11 = extractvalue { <8 x float>, <8 x float>, <8 x float> } %9, 1
/// store <8 x float> %11, <8 x float>* %v2, align 32
/// %12 = extractvalue { <8 x float>, <8 x float>, <8 x float> } %9, 2
/// store <8 x float> %12, <8 x float>* %v3, align 32
/// }
///
/// All callees will be updated accordingly, E.g. f1_transformed becomes
///
/// .. code-block:: text
///
/// define internal { <8 x float> } @f1_transformed(<8 x float> %v1) {
/// %0 = alloca <8 x float>, align 32
/// store <8 x float> %v1, <8 x float>* %0, align 32
/// ; ...
/// store <8 x float> %splat1, <8 x float>* @0, align 32
/// ; ...
/// %1 = load <8 x float>* %0, align 32
/// %2 = insertvalue { <8 x float> } undef, <8 x float> %1, 0
/// ret { <8 x float> } %2
/// }
///
namespace {
// \brief Collect necessary information for global variable localization.
class LocalizationInfo {
public:
typedef SetVector<GlobalVariable *> GlobalSetTy;
explicit LocalizationInfo(Function *F) : Fn(F) {}
LocalizationInfo() : Fn(0) {}
Function *getFunction() const { return Fn; }
bool empty() const { return Globals.empty(); }
GlobalSetTy &getGlobals() { return Globals; }
// \brief Add a global.
void addGlobal(GlobalVariable *GV) {
Globals.insert(GV);
}
// \brief Add all globals from callee.
void addGlobals(LocalizationInfo &LI) {
Globals.insert(LI.getGlobals().begin(), LI.getGlobals().end());
}
private:
// \brief The function being analyzed.
Function *Fn;
// \brief Global variables that are used directly or indirectly.
GlobalSetTy Globals;
};
class CMABIAnalysis : public ModulePass {
// This map captures all global variables to be localized.
std::vector<LocalizationInfo *> LocalizationInfoObjs;
public:
static char ID;
// Kernels in the module being processed.
SmallPtrSet<Function *, 8> Kernels;
// Map from function to the index of its LI in LI storage
SmallDenseMap<Function *, LocalizationInfo *> GlobalInfo;
CMABIAnalysis() : ModulePass{ID} {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<CallGraphWrapperPass>();
AU.setPreservesAll();
}
StringRef getPassName() const override { return "GenX CMABI analysis"; }
bool runOnModule(Module &M) override;
void releaseMemory() override {
for (auto *LI : LocalizationInfoObjs)
delete LI;
LocalizationInfoObjs.clear();
Kernels.clear();
GlobalInfo.clear();
}
// \brief Returns the localization info associated to a function.
LocalizationInfo &getLocalizationInfo(Function *F) {
if (GlobalInfo.count(F))
return *GlobalInfo[F];
LocalizationInfo *LI = new LocalizationInfo{F};
LocalizationInfoObjs.push_back(LI);
GlobalInfo[F] = LI;
return *LI;
}
private:
bool runOnCallGraph(CallGraph &CG);
void analyzeGlobals(CallGraph &CG);
void addDirectGlobal(Function *F, GlobalVariable *GV) {
getLocalizationInfo(F).addGlobal(GV);
}
// \brief Add all globals from callee to caller.
void addIndirectGlobal(Function *F, Function *Callee) {
getLocalizationInfo(F).addGlobals(getLocalizationInfo(Callee));
}
void defineGVDirectUsers(GlobalVariable &GV);
};
struct CMABI : public CallGraphSCCPass {
static char ID;
CMABI() : CallGraphSCCPass(ID) {
initializeCMABIPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
CallGraphSCCPass::getAnalysisUsage(AU);
AU.addRequired<CMABIAnalysis>();
}
bool runOnSCC(CallGraphSCC &SCC) override;
private:
CallGraphNode *ProcessNode(CallGraphNode *CGN);
// Fix argument passing for kernels.
CallGraphNode *TransformKernel(Function *F);
// Major work is done in this method.
CallGraphNode *TransformNode(Function &F,
SmallPtrSet<Argument *, 8> &ArgsToTransform,
LocalizationInfo &LI);
// \brief Create allocas for globals and replace their uses.
void LocalizeGlobals(LocalizationInfo &LI);
// \brief Diagnose illegal overlapping by-ref args.
void diagnoseOverlappingArgs(CallInst *CI);
// Already visited functions.
SmallPtrSet<Function *, 8> AlreadyVisited;
CMABIAnalysis *Info;
};
} // namespace
char CMABIAnalysis::ID = 0;
INITIALIZE_PASS_BEGIN(CMABIAnalysis, "cmabi-analysis",
"helper analysis pass to get info for CMABI", false, true)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(CMABIAnalysis, "cmabi-analysis",
"Fix ABI issues for the genx backend", false, true)
bool CMABIAnalysis::runOnModule(Module &M) {
runOnCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph());
return false;
}
bool CMABIAnalysis::runOnCallGraph(CallGraph &CG) {
// Analyze global variable usages and for each function attaches global
// variables to be copy-in and copy-out.
analyzeGlobals(CG);
auto getValue = [](Metadata *M) -> Value * {
if (auto VM = dyn_cast<ValueAsMetadata>(M))
return VM->getValue();
return nullptr;
};
// Collect all CM kernels from named metadata.
if (NamedMDNode *Named =
CG.getModule().getNamedMetadata(genx::FunctionMD::GenXKernels)) {
IGC_ASSERT(Named);
for (unsigned I = 0, E = Named->getNumOperands(); I != E; ++I) {
MDNode *Node = Named->getOperand(I);
if (Function *F =
dyn_cast_or_null<Function>(getValue(Node->getOperand(0))))
Kernels.insert(F);
}
}
// no change.
return false;
}
bool CMABI::runOnSCC(CallGraphSCC &SCC) {
Info = &getAnalysis<CMABIAnalysis>();
bool Changed = false;
bool LocalChange;
// Diagnose overlapping by-ref args.
for (auto i = SCC.begin(), e = SCC.end(); i != e; ++i) {
Function *F = (*i)->getFunction();
if (!F || F->empty())
continue;
for (auto ui = F->use_begin(), ue = F->use_end(); ui != ue; ++ui) {
auto CI = dyn_cast<CallInst>(ui->getUser());
if (CI && IGCLLVM::getNumArgOperands(CI) == ui->getOperandNo())
diagnoseOverlappingArgs(CI);
}
}
// Iterate until we stop transforming from this SCC.
do {
LocalChange = false;
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
if (CallGraphNode *CGN = ProcessNode(*I)) {
LocalChange = true;
SCC.ReplaceNode(*I, CGN);
}
}
Changed |= LocalChange;
} while (LocalChange);
return Changed;
}
// \brief Create allocas for globals directly used in this kernel and
// replace all uses.
//
// FIXME: it is not always posible to localize globals with addrspace different
// from private. In some cases type info link is lost - casts, stores of
// pointers.
void CMABI::LocalizeGlobals(LocalizationInfo &LI) {
const LocalizationInfo::GlobalSetTy &Globals = LI.getGlobals();
typedef LocalizationInfo::GlobalSetTy::const_iterator IteratorTy;
SmallDenseMap<Value *, Value *> GlobalsToReplace;
Function *Fn = LI.getFunction();
for (IteratorTy I = Globals.begin(), E = Globals.end(); I != E; ++I) {
GlobalVariable *GV = (*I);
LLVM_DEBUG(dbgs() << "Localizing global: " << *GV << "\n ");
Instruction &FirstI = *Fn->getEntryBlock().begin();
Type *ElemTy = GV->getType()->getPointerElementType();
IGCLLVM::Align GVAlign = IGCLLVM::getCorrectAlign(GV->getAlignment());
AllocaInst *Alloca = new AllocaInst(ElemTy, vc::AddrSpace::Private,
/*ArraySize=*/nullptr, GVAlign,
GV->getName() + ".local", &FirstI);
if (!isa<UndefValue>(GV->getInitializer()))
new StoreInst(GV->getInitializer(), Alloca, /*isVolatile=*/false,
GVAlign, &FirstI);
vc::DIBuilder::createDbgDeclareForLocalizedGlobal(*Alloca, *GV, FirstI);
GlobalsToReplace.insert(std::make_pair(GV, Alloca));
}
// Replaces all globals uses within this function.
vc::replaceUsesWithinFunction(GlobalsToReplace, Fn);
}
CallGraphNode *CMABI::ProcessNode(CallGraphNode *CGN) {
Function *F = CGN->getFunction();
// Nothing to do for declarations or already visited functions.
if (!F || F->isDeclaration() || AlreadyVisited.count(F))
return 0;
vc::breakConstantExprs(F, vc::LegalizationStage::NotLegalized);
// Variables to be localized.
LocalizationInfo &LI = Info->getLocalizationInfo(F);
// This is a kernel.
if (Info->Kernels.count(F)) {
// Localize globals for kernels.
if (!LI.getGlobals().empty())
LocalizeGlobals(LI);
// Check whether there are i1 or vxi1 kernel arguments.
for (auto AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI)
if (AI->getType()->getScalarType()->isIntegerTy(1))
return TransformKernel(F);
// No changes to this kernel's prototype.
return 0;
}
// Have to localize implicit arg globals in functions with fixed signature.
// FIXME: There's no verification that globals are for implicit args. General
// private globals may be localized here, but it is not possible to
// use them in such functions at all. A nice place for diagnostics.
if (vc::isFixedSignatureFunc(*F)) {
if (!LI.getGlobals().empty())
LocalizeGlobals(LI);
return nullptr;
}
// Check transformable arguments.
vc::TypeSizeWrapper MaxStructSize = vc::ByteSize * MaxCMABIByvalSize;
SmallPtrSet<Argument *, 8> ArgsToTransform =
vc::collectArgsToTransform(*F, MaxStructSize);
if (ArgsToTransform.empty() && LI.empty())
return 0;
return TransformNode(*F, ArgsToTransform, LI);
}
// \brief Fix argument passing for kernels: i1 -> i8.
CallGraphNode *CMABI::TransformKernel(Function *F) {
IGC_ASSERT(F->getReturnType()->isVoidTy());
LLVMContext &Context = F->getContext();
AttributeList AttrVec;
const AttributeList &PAL = F->getAttributes();
// First, determine the new argument list
SmallVector<Type *, 8> ArgTys;
unsigned ArgIndex = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgIndex) {
Type *ArgTy = I->getType();
// Change i1 to i8 and vxi1 to vxi8
if (ArgTy->getScalarType()->isIntegerTy(1)) {
Type *Ty = IntegerType::get(F->getContext(), 8);
if (ArgTy->isVectorTy())
ArgTys.push_back(IGCLLVM::FixedVectorType::get(
Ty, dyn_cast<IGCLLVM::FixedVectorType>(ArgTy)->getNumElements()));
else
ArgTys.push_back(Ty);
} else {
// Unchanged argument
AttributeSet attrs = IGCLLVM::getParamAttrs(PAL, ArgIndex);
if (attrs.hasAttributes()) {
IGCLLVM::AttrBuilder B{ Context, attrs };
AttrVec = AttrVec.addParamAttributes(Context, ArgTys.size(), B);
}
ArgTys.push_back(I->getType());
}
}
FunctionType *NFTy = FunctionType::get(F->getReturnType(), ArgTys, false);
IGC_ASSERT_MESSAGE((NFTy != F->getFunctionType()),
"type out of sync, expect bool arguments");
// Add any function attributes.
AttributeSet FnAttrs = IGCLLVM::getFnAttrs(PAL);
if (FnAttrs.hasAttributes()) {
IGCLLVM::AttrBuilder B(Context, FnAttrs);
AttrVec = IGCLLVM::addAttributesAtIndex(AttrVec, Context, AttributeList::FunctionIndex, B);
}
// Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
LLVM_DEBUG(dbgs() << "\nCMABI: Transforming From:" << *F);
vc::transferNameAndCCWithNewAttr(AttrVec, *F, *NF);
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
vc::transferDISubprogram(*F, *NF);
LLVM_DEBUG(dbgs() << " --> To: " << *NF << "\n");
// Since we have now created the new function, splice the body of the old
// function right into the new function.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well.
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin();
I != E; ++I, ++I2) {
// For an unmodified argument, move the name and users over.
if (!I->getType()->getScalarType()->isIntegerTy(1)) {
I->replaceAllUsesWith(I2);
I2->takeName(I);
} else {
Instruction *InsertPt = &*(NF->begin()->begin());
Instruction *Conv = new TruncInst(I2, I->getType(), "tobool", InsertPt);
I->replaceAllUsesWith(Conv);
I2->takeName(I);
}
}
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
// Update the metadata entry.
if (F->hasDLLExportStorageClass())
NF->setDLLStorageClass(F->getDLLStorageClass());
vc::replaceFunctionRefMD(*F, *NF);
// Now that the old function is dead, delete it. If there is a dangling
// reference to the CallgraphNode, just leave the dead function around.
NF_CGN->stealCalledFunctionsFrom(CG[F]);
CallGraphNode *CGN = CG[F];
if (CGN->getNumReferences() == 0)
delete CG.removeFunctionFromModule(CGN);
else
F->setLinkage(Function::ExternalLinkage);
return NF_CGN;
}
// \brief Actually performs the transformation of the specified arguments, and
// returns the new function.
//
// Note this transformation does change the semantics as a C function, due to
// possible pointer aliasing. But it is allowed as a CM function.
//
// The pass-by-reference scheme is useful to copy-out values from the
// subprogram back to the caller. It also may be useful to convey large inputs
// to subprograms, as the amount of parameter conveying code will be reduced.
// There is a restriction imposed on arguments passed by reference in order to
// allow for an efficient CM implementation. Specifically the restriction is
// that for a subprogram that uses pass-by-reference, the behavior must be the
// same as if we use a copy-in/copy-out semantic to convey the
// pass-by-reference argument; otherwise the CM program is said to be erroneous
// and may produce incorrect results. Such errors are not caught by the
// compiler and it is up to the user to guarantee safety.
//
// The implication of the above stated restriction is that no pass-by-reference
// argument that is written to in a subprogram (either directly or transitively
// by means of a nested subprogram call pass-by-reference argument) may overlap
// with another pass-by-reference parameter or a global variable that is
// referenced in the subprogram; in addition no pass-by-reference subprogram
// argument that is referenced may overlap with a global variable that is
// written to in the subprogram.
//
CallGraphNode *CMABI::TransformNode(Function &OrigFunc,
SmallPtrSet<Argument *, 8> &ArgsToTransform,
LocalizationInfo &LI) {
NumArgumentsTransformed += ArgsToTransform.size();
vc::TransformedFuncInfo NewFuncInfo{OrigFunc, ArgsToTransform};
NewFuncInfo.appendGlobals(LI.getGlobals());
// Create the new function declaration and insert it into the module.
Function *NewFunc = vc::createTransformedFuncDecl(OrigFunc, NewFuncInfo);
// Get a new callgraph node for NF.
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
CallGraphNode *NewFuncCGN = CG.getOrInsertFunction(NewFunc);
vc::FuncUsersUpdater{OrigFunc, *NewFunc, NewFuncInfo, *NewFuncCGN, CG}.run();
vc::FuncBodyTransfer{OrigFunc, *NewFunc, NewFuncInfo}.run();
// It turns out sometimes llvm will recycle function pointers which confuses
// this pass. We delete its localization info and mark this function as
// already visited.
Info->GlobalInfo.erase(&OrigFunc);
AlreadyVisited.insert(&OrigFunc);
NewFuncCGN->stealCalledFunctionsFrom(CG[&OrigFunc]);
// Now that the old function is dead, delete it. If there is a dangling
// reference to the CallgraphNode, just leave the dead function around.
CallGraphNode *CGN = CG[&OrigFunc];
if (CGN->getNumReferences() == 0)
delete CG.removeFunctionFromModule(CGN);
else
OrigFunc.setLinkage(Function::ExternalLinkage);
return NewFuncCGN;
}
static void fillStackWithUsers(std::stack<User *> &Stack, User &CurUser) {
for (User *Usr : CurUser.users())
Stack.push(Usr);
}
// Traverse in depth through GV constant users to find instruction users.
// When instruction user is found, it is clear in which function GV is used.
void CMABIAnalysis::defineGVDirectUsers(GlobalVariable &GV) {
std::stack<User *> Stack;
Stack.push(&GV);
while (!Stack.empty()) {
auto *CurUser = Stack.top();
Stack.pop();
// Continue go in depth when a constant is met.
if (isa<Constant>(CurUser)) {
fillStackWithUsers(Stack, *CurUser);
continue;
}
// We've got what we looked for.
auto *Inst = cast<Instruction>(CurUser);
addDirectGlobal(Inst->getFunction(), &GV);
}
}
// For each function, compute the list of globals that need to be passed as
// copy-in and copy-out arguments.
void CMABIAnalysis::analyzeGlobals(CallGraph &CG) {
Module &M = CG.getModule();
// No global variables.
if (M.global_empty())
return;
// FIXME: String constants must be localized too. Excluding them there
// to WA legacy printf implementation in CM FE (printf strings are
// not in constant addrspace in legacy printf).
auto ToLocalize =
make_filter_range(M.globals(), [](const GlobalVariable &GV) {
return GV.getAddressSpace() == vc::AddrSpace::Private &&
vc::isRealGlobalVariable(GV) && !vc::isConstantString(GV);
});
// Collect direct and indirect (GV is used in a called function)
// uses of globals.
for (GlobalVariable &GV : ToLocalize)
defineGVDirectUsers(GV);
for (const std::vector<CallGraphNode *> &SCCNodes :
make_range(scc_begin(&CG), scc_end(&CG)))
for (const CallGraphNode *Caller : SCCNodes)
for (const IGCLLVM::CallGraphNode::CallRecord &Callee : *Caller) {
Function *CalleeF = Callee.second->getFunction();
if (CalleeF && !vc::isFixedSignatureFunc(*CalleeF))
addIndirectGlobal(Caller->getFunction(), CalleeF);
}
}
/***********************************************************************
* diagnoseOverlappingArgs : attempt to diagnose overlapping by-ref args
*
* The CM language spec says you are not allowed a call with two by-ref args
* that overlap. This is to give the compiler the freedom to implement with
* copy-in copy-out semantics or with an address register.
*
* This function attempts to diagnose code that breaks this restriction. For
* pointer args to the call, it attempts to track how values are loaded using
* the pointer (assumed to be an alloca of the temporary used for copy-in
* copy-out semantics), and how those values then get propagated through
* wrregions and stores. If any vector element in a wrregion or store is found
* that comes from more than one pointer arg, it is reported.
*
* This ignores variable index wrregions, and only traces through instructions
* with the same debug location as the call, so does not work with -g0.
*/
void CMABI::diagnoseOverlappingArgs(CallInst *CI)
{
LLVM_DEBUG(dbgs() << "diagnoseOverlappingArgs " << *CI << "\n");
auto DL = CI->getDebugLoc();
if (!DL)
return;
std::map<Value *, SmallVector<uint8_t, 16>> ValMap;
SmallVector<Instruction *, 8> WorkList;
std::set<Instruction *> InWorkList;
std::set<std::pair<unsigned, unsigned>> Reported;
// Using ArgIndex starting at 1 so we can reserve 0 to mean "element does not
// come from any by-ref arg".
for (unsigned ArgIndex = 1, NumArgs = IGCLLVM::getNumArgOperands(CI);
ArgIndex <= NumArgs; ++ArgIndex) {
Value *Arg = CI->getOperand(ArgIndex - 1);
if (!Arg->getType()->isPointerTy())
continue;
LLVM_DEBUG(dbgs() << "arg " << ArgIndex << ": " << *Arg << "\n");
// Got a pointer arg. Find its loads (with the same debug loc).
for (auto ui = Arg->use_begin(), ue = Arg->use_end(); ui != ue; ++ui) {
auto LI = dyn_cast<LoadInst>(ui->getUser());
if (!LI || LI->getDebugLoc() != DL)
continue;
LLVM_DEBUG(dbgs() << " " << *LI << "\n");
// For a load, create a map entry that says that every vector element
// comes from this arg.
unsigned NumElements = 1;
if (auto VT = dyn_cast<IGCLLVM::FixedVectorType>(LI->getType()))
NumElements = VT->getNumElements();
auto Entry = &ValMap[LI];
Entry->resize(NumElements, ArgIndex);
// Add its users (with the same debug location) to the work list.
for (auto ui = LI->use_begin(), ue = LI->use_end(); ui != ue; ++ui) {
auto Inst = cast<Instruction>(ui->getUser());
if (Inst->getDebugLoc() == DL)
if (InWorkList.insert(Inst).second)
WorkList.push_back(Inst);
}
}
}
// Process the work list.
while (!WorkList.empty()) {
auto Inst = WorkList.back();
WorkList.pop_back();
InWorkList.erase(Inst);
LLVM_DEBUG(dbgs() << "From worklist: " << *Inst << "\n");
Value *Key = nullptr;
SmallVector<uint8_t, 8> TempVector;
SmallVectorImpl<uint8_t> *VectorToMerge = nullptr;
if (auto SI = dyn_cast<StoreInst>(Inst)) {
// Store: set the map entry using the store pointer as the key. It might
// be an alloca of a local variable, or a global variable.
// Strictly speaking this is not properly keeping track of what is being
// merged using load-wrregion-store for a non-SROAd local variable or a
// global variable. Instead it is just merging at the store itself, which
// is good enough for our purposes.
Key = SI->getPointerOperand();
VectorToMerge = &ValMap[SI->getValueOperand()];
} else if (auto BC = dyn_cast<BitCastInst>(Inst)) {
// Bitcast: calculate the new map entry.
Key = BC;
uint64_t OutElementSize =
BC->getType()->getScalarType()->getPrimitiveSizeInBits();
uint64_t InElementSize = BC->getOperand(0)
->getType()
->getScalarType()
->getPrimitiveSizeInBits();
int LogRatio = countTrailingZeros(OutElementSize, ZB_Undefined) -
countTrailingZeros(InElementSize, ZB_Undefined);
auto OpndEntry = &ValMap[BC->getOperand(0)];
if (!LogRatio)
VectorToMerge = OpndEntry;
else if (LogRatio > 0) {
// Result element type is bigger than input element type, so there are
// fewer result elements. Just use an arbitrarily chosen non-zero entry
// of the N input elements to set the 1 result element.
IGC_ASSERT(!(OpndEntry->size() & ((1U << LogRatio) - 1)));
for (unsigned i = 0, e = OpndEntry->size(); i != e; i += 1U << LogRatio) {
unsigned FoundArgIndex = 0;
for (unsigned j = 0; j != 1U << LogRatio; ++j)
FoundArgIndex = std::max(FoundArgIndex, (unsigned)(*OpndEntry)[i + j]);
TempVector.push_back(FoundArgIndex);
}
VectorToMerge = &TempVector;
} else {
// Result element type is smaller than input element type, so there are
// multiple result elements per input element.
for (unsigned i = 0, e = OpndEntry->size(); i != e; ++i)
for (unsigned j = 0; j != 1U << -LogRatio; ++j)
TempVector.push_back((*OpndEntry)[i]);
VectorToMerge = &TempVector;
}
} else if (auto CI = dyn_cast<CallInst>(Inst)) {
if (auto CF = CI->getCalledFunction()) {
switch (GenXIntrinsic::getGenXIntrinsicID(CF)) {
default:
break;
case GenXIntrinsic::genx_wrregionf:
case GenXIntrinsic::genx_wrregioni:
// wrregion: As long as it is constant index, propagate the argument
// indices into the appropriate elements of the result.
if (auto IdxC = dyn_cast<Constant>(CI->getOperand(
GenXIntrinsic::GenXRegion::WrIndexOperandNum))) {
unsigned Idx = 0;
if (!IdxC->isNullValue()) {
auto IdxCI = dyn_cast<ConstantInt>(IdxC);
if (!IdxCI) {
LLVM_DEBUG(dbgs() << "Ignoring variable index wrregion\n");
break;
}
Idx = IdxCI->getZExtValue();
}
Idx /= (CI->getType()->getScalarType()->getPrimitiveSizeInBits() / 8U);
// First copy the "old value" input to the map entry.
auto OpndEntry = &ValMap[CI->getOperand(
GenXIntrinsic::GenXRegion::OldValueOperandNum)];
auto Entry = &ValMap[CI];
Entry->clear();
Entry->insert(Entry->begin(), OpndEntry->begin(), OpndEntry->end());
// Then copy the "new value" elements according to the region.
TempVector.resize(
dyn_cast<IGCLLVM::FixedVectorType>(CI->getType())->getNumElements(), 0);
int VStride = cast<ConstantInt>(CI->getOperand(
GenXIntrinsic::GenXRegion::WrVStrideOperandNum))->getSExtValue();
unsigned Width = cast<ConstantInt>(CI->getOperand(
GenXIntrinsic::GenXRegion::WrWidthOperandNum))->getZExtValue();
IGC_ASSERT_MESSAGE((Width > 0), "Width of a region must be non-zero");
int Stride = cast<ConstantInt>(CI->getOperand(
GenXIntrinsic::GenXRegion::WrStrideOperandNum))->getSExtValue();
OpndEntry = &ValMap[CI->getOperand(
GenXIntrinsic::GenXRegion::NewValueOperandNum)];
unsigned NumElements = OpndEntry->size();
if (!NumElements)
break;
for (unsigned RowIdx = Idx, Row = 0, Col = 0,
NumRows = NumElements / Width;; Idx += Stride, ++Col) {
if (Col == Width) {
Col = 0;
if (++Row == NumRows)
break;
Idx = RowIdx += VStride;
}
TempVector[Idx] = (*OpndEntry)[Row * Width + Col];
}
VectorToMerge = &TempVector;
Key = CI;
}
break;
}
}
}
if (!VectorToMerge)
continue;
auto Entry = &ValMap[Key];
LLVM_DEBUG(dbgs() << "Merging :";
for (unsigned i = 0; i != VectorToMerge->size(); ++i)
dbgs() << " " << (unsigned)(*VectorToMerge)[i];
dbgs() << "\ninto " << Key->getName() << ":";
for (unsigned i = 0; i != Entry->size(); ++i)
dbgs() << " " << (unsigned)(*Entry)[i];
dbgs() << "\n");
if (Entry->empty())
Entry->insert(Entry->end(), VectorToMerge->begin(), VectorToMerge->end());
else {
IGC_ASSERT(VectorToMerge->size() == Entry->size());
for (unsigned i = 0; i != VectorToMerge->size(); ++i) {
unsigned ArgIdx1 = (*VectorToMerge)[i];
unsigned ArgIdx2 = (*Entry)[i];
if (ArgIdx1 && ArgIdx2 && ArgIdx1 != ArgIdx2) {
LLVM_DEBUG(dbgs() << "By ref args overlap: args " << ArgIdx1 << " and " << ArgIdx2 << "\n");
if (ArgIdx1 > ArgIdx2)
std::swap(ArgIdx1, ArgIdx2);
if (Reported.insert(std::pair<unsigned, unsigned>(ArgIdx1, ArgIdx2))
.second) {
// Not already reported.
vc::fatal(Inst->getContext(), "CMABI",
"by reference arguments " + Twine(ArgIdx1) + " and " +
Twine(ArgIdx2) + " overlap",
CI);
}
}
(*Entry)[i] = std::max((*Entry)[i], (*VectorToMerge)[i]);
}
}
LLVM_DEBUG(dbgs() << "giving:";
for (unsigned i = 0; i != Entry->size(); ++i)
dbgs() << " " << (unsigned)(*Entry)[i];
dbgs() << "\n");
if (Key == Inst) {
// Not the case that we have a store and we are using the pointer as
// the key. In ther other cases that do a merge (bitcast and wrregion),
// add users to the work list as long as they have the same debug loc.
for (auto ui = Inst->use_begin(), ue = Inst->use_end(); ui != ue; ++ui) {
auto User = cast<Instruction>(ui->getUser());
if (User->getDebugLoc() == DL)
if (InWorkList.insert(Inst).second)
WorkList.push_back(User);
}
}
}
}
char CMABI::ID = 0;
INITIALIZE_PASS_BEGIN(CMABI, "cmabi", "Fix ABI issues for the genx backend", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CMABIAnalysis)
INITIALIZE_PASS_END(CMABI, "cmabi", "Fix ABI issues for the genx backend", false, false)
Pass *llvm::createCMABIPass() { return new CMABI(); }
namespace {
// A well-formed passing argument by reference pattern.
//
// (Alloca)
// %argref1 = alloca <8 x float>, align 32
//
// (CopyInRegion/CopyInStore)
// %rdr = tail call <8 x float> @llvm.genx.rdregionf(<960 x float> %m, i32 0, i32 8, i32 1, i16 0, i32 undef)
// call void @llvm.genx.vstore(<8 x float> %rdr, <8 x float>* %argref)
//
// (CopyOutRegion/CopyOutLoad)
// %ld = call <8 x float> @llvm.genx.vload(<8 x float>* %argref)
// %wr = call <960 x float> @llvm.genx.wrregionf(<960 x float> %m, <8 x float> %ld, i32 0, i32 8, i32 1, i16 0, i32 undef, i1 true)
//
struct ArgRefPattern {
// Alloca of this reference argument.
AllocaInst *Alloca;
// The input value
CallInst *CopyInRegion;
CallInst *CopyInStore;
// The output value
CallInst *CopyOutLoad;
CallInst *CopyOutRegion;
// Load and store instructions on arg alloca.
SmallVector<CallInst *, 8> VLoads;
SmallVector<CallInst *, 8> VStores;
explicit ArgRefPattern(AllocaInst *AI)
: Alloca(AI), CopyInRegion(nullptr), CopyInStore(nullptr),
CopyOutLoad(nullptr), CopyOutRegion(nullptr) {}
// Match a copy-in and copy-out pattern. Return true on success.
bool match(DominatorTree &DT, PostDominatorTree &PDT);
void process(DominatorTree &DT);
};
struct CMLowerVLoadVStore : public FunctionPass {
static char ID;
CMLowerVLoadVStore() : FunctionPass(ID) {
initializeCMLowerVLoadVStorePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
bool runOnFunction(Function &F) override;
private:
bool promoteAllocas(Function &F);
bool lowerLoadStore(Function &F);
};
} // namespace
char CMLowerVLoadVStore::ID = 0;
INITIALIZE_PASS_BEGIN(CMLowerVLoadVStore, "CMLowerVLoadVStore",
"Lower CM reference vector loads and stores", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(CMLowerVLoadVStore, "CMLowerVLoadVStore",
"Lower CM reference vector loads and stores", false, false)
bool CMLowerVLoadVStore::runOnFunction(Function &F) {
bool Changed = false;
Changed |= promoteAllocas(F);
Changed |= lowerLoadStore(F);
return Changed;
}
// Lower remaining vector load/store intrinsic calls into normal load/store
// instructions.
bool CMLowerVLoadVStore::lowerLoadStore(Function &F) {
auto M = F.getParent();
DenseMap<AllocaInst*, GlobalVariable*> AllocaMap;
// collect all the allocas that store the address of genx-volatile variable
for (auto& G : M->getGlobalList()) {
if (!G.hasAttribute("genx_volatile"))
continue;
std::vector<User*> WL;
for (auto UI = G.user_begin(); UI != G.user_end();) {
auto U = *UI++;
WL.push_back(U);
}
while (!WL.empty()) {
auto Inst = WL.back();
WL.pop_back();
if (auto CE = dyn_cast<ConstantExpr>(Inst)) {
for (auto UI = CE->user_begin(); UI != CE->user_end();) {
auto U = *UI++;
WL.push_back(U);
}
}
else if (auto CI = dyn_cast<CastInst>(Inst)) {
for (auto UI = CI->user_begin(); UI != CI->user_end();) {
auto U = *UI++;
WL.push_back(U);
}
}
else if (auto SI = dyn_cast<StoreInst>(Inst)) {
auto Ptr = SI->getPointerOperand()->stripPointerCasts();
if (auto PI = dyn_cast<AllocaInst>(Ptr)) {
AllocaMap[PI] = &G;
}
}
}
}
// lower all vload/vstore into normal load/store.
std::vector<Instruction *> ToErase;
for (Instruction &Inst : instructions(F)) {
if (GenXIntrinsic::isVLoadStore(&Inst)) {
auto *Ptr = Inst.getOperand(0);
if (GenXIntrinsic::isVStore(&Inst))
Ptr = Inst.getOperand(1);
auto AS0 = cast<PointerType>(Ptr->getType())->getAddressSpace();
Ptr = Ptr->stripPointerCasts();
auto GV = dyn_cast<GlobalVariable>(Ptr);
if (GV) {
if (!GV->hasAttribute("genx_volatile"))
GV = nullptr;
}
else if (auto LI = dyn_cast<LoadInst>(Ptr)) {
auto PV = LI->getPointerOperand()->stripPointerCasts();
if (auto PI = dyn_cast<AllocaInst>(PV)) {
if (AllocaMap.find(PI) != AllocaMap.end()) {
GV = AllocaMap[PI];
}
}
}
if (GV == nullptr) {
// change to load/store
IRBuilder<> Builder(&Inst);
if (GenXIntrinsic::isVStore(&Inst))
Builder.CreateStore(Inst.getOperand(0), Inst.getOperand(1));
else {
Value *Op0 = Inst.getOperand(0);
auto LI = Builder.CreateLoad(Op0->getType()->getPointerElementType(),
Op0, Inst.getName());
LI->setDebugLoc(Inst.getDebugLoc());
Inst.replaceAllUsesWith(LI);
}
ToErase.push_back(&Inst);
}
else {
// change to vload/vstore that has the same address space as
// the global-var in order to clean up unnecessary addr-cast.
auto AS1 = GV->getType()->getAddressSpace();
if (AS0 != AS1) {
IRBuilder<> Builder(&Inst);
if (GenXIntrinsic::isVStore(&Inst)) {
auto PtrTy = cast<PointerType>(Inst.getOperand(1)->getType());
PtrTy = PointerType::get(PtrTy->getPointerElementType(), AS1);
auto PtrCast = Builder.CreateAddrSpaceCast(Inst.getOperand(1), PtrTy);
Type* Tys[] = { Inst.getOperand(0)->getType(),
PtrCast->getType() };
Value* Args[] = { Inst.getOperand(0), PtrCast };
Function* Fn = GenXIntrinsic::getGenXDeclaration(
F.getParent(), GenXIntrinsic::genx_vstore, Tys);
Builder.CreateCall(Fn, Args, Inst.getName());
}
else {
auto PtrTy = cast<PointerType>(Inst.getOperand(0)->getType());
PtrTy = PointerType::get(PtrTy->getPointerElementType(), AS1);
auto PtrCast = Builder.CreateAddrSpaceCast(Inst.getOperand(0), PtrTy);
Type* Tys[] = { Inst.getType(), PtrCast->getType() };
Function* Fn = GenXIntrinsic::getGenXDeclaration(
F.getParent(), GenXIntrinsic::genx_vload, Tys);
Value* VLoad = Builder.CreateCall(Fn, PtrCast, Inst.getName());
Inst.replaceAllUsesWith(VLoad);
}
ToErase.push_back(&Inst);
}
}
}
}
for (auto Inst : ToErase) {
Inst->eraseFromParent();
}
return !ToErase.empty();
}
static bool isBitCastForLifetimeMarker(Value *V) {
if (!V || !isa<BitCastInst>(V))
return false;
for (auto U : V->users()) {
unsigned IntrinsicID = GenXIntrinsic::getAnyIntrinsicID(U);
if (IntrinsicID != Intrinsic::lifetime_start &&
IntrinsicID != Intrinsic::lifetime_end)
return false;
}
return true;
}
// Check whether two values are bitwise identical.
static bool isBitwiseIdentical(Value *V1, Value *V2) {
IGC_ASSERT_MESSAGE(V1, "null value");
IGC_ASSERT_MESSAGE(V2, "null value");
if (V1 == V2)
return true;
if (BitCastInst *BI = dyn_cast<BitCastInst>(V1))
V1 = BI->getOperand(0);
if (BitCastInst *BI = dyn_cast<BitCastInst>(V2))
V2 = BI->getOperand(0);
// Special case arises from vload/vstore.
if (GenXIntrinsic::isVLoad(V1) && GenXIntrinsic::isVLoad(V2)) {
auto L1 = cast<CallInst>(V1);
auto L2 = cast<CallInst>(V2);
// Check if loading from the same location.
if (L1->getOperand(0) != L2->getOperand(0))
return false;
// Check if this pointer is local and only used in vload/vstore.
Value *Addr = L1->getOperand(0);
if (!isa<AllocaInst>(Addr))
return false;
for (auto UI : Addr->users()) {
if (isa<BitCastInst>(UI)) {
for (auto U : UI->users()) {
unsigned IntrinsicID = GenXIntrinsic::getAnyIntrinsicID(U);
if (IntrinsicID != Intrinsic::lifetime_start &&
IntrinsicID != Intrinsic::lifetime_end)
return false;
}
} else {
if (!GenXIntrinsic::isVLoadStore(UI))
return false;
}
}
// Check if there is no store to the same location in between.
if (L1->getParent() != L2->getParent())
return false;
BasicBlock::iterator I = L1->getParent()->begin();
for (; &*I != L1 && &*I != L2; ++I)
/*empty*/;
IGC_ASSERT(&*I == L1 || &*I == L2);
auto IEnd = (&*I == L1) ? L2->getIterator() : L1->getIterator();
for (; I != IEnd; ++I) {
Instruction *Inst = &*I;
if (GenXIntrinsic::isVStore(Inst) && Inst->getOperand(1) == Addr)
return false;
}
// OK.
return true;
}
// Cannot prove.
return false;
}
bool ArgRefPattern::match(DominatorTree &DT, PostDominatorTree &PDT) {
IGC_ASSERT(Alloca);
if (Alloca->use_empty())
return false;
// check if all users are load/store.
SmallVector<CallInst *, 8> Loads;
SmallVector<CallInst *, 8> Stores;
for (auto U : Alloca->users())
if (GenXIntrinsic::isVLoad(U))
Loads.push_back(cast<CallInst>(U));
else if (GenXIntrinsic::isVStore(U))
Stores.push_back(cast<CallInst>(U));
else if (isBitCastForLifetimeMarker(U))
continue;
else
return false;
if (Loads.empty() || Stores.empty())
return false;
// find a unique store that dominates all other users if exists.
auto Cmp = [&](CallInst *L, CallInst *R) { return DT.dominates(L, R); };
CopyInStore = *std::min_element(Stores.begin(), Stores.end(), Cmp);
CopyInRegion = dyn_cast<CallInst>(CopyInStore->getArgOperand(0));
if (!CopyInRegion || !CopyInRegion->hasOneUse() || !GenXIntrinsic::isRdRegion(CopyInRegion))
return false;
for (auto SI : Stores)
if (SI != CopyInStore && !Cmp(CopyInStore, SI))
return false;
for (auto LI : Loads)
if (LI != CopyInStore && !Cmp(CopyInStore, LI))
return false;
// find a unique load that post-dominates all other users if exists.
auto PostCmp = [&](CallInst *L, CallInst *R) {
BasicBlock *LBB = L->getParent();
BasicBlock *RBB = R->getParent();
if (LBB != RBB)
return PDT.dominates(LBB, RBB);
// Loop through the basic block until we find L or R.
BasicBlock::const_iterator I = LBB->begin();
for (; &*I != L && &*I != R; ++I)
/*empty*/;
return &*I == R;
};
CopyOutLoad = *std::min_element(Loads.begin(), Loads.end(), PostCmp);
// Expect copy-out load has one or zero use. It is possible there
// is no use as the region becomes dead after this subroutine call.
//
if (!CopyOutLoad->use_empty()) {
if (!CopyOutLoad->hasOneUse())
return false;
CopyOutRegion = dyn_cast<CallInst>(CopyOutLoad->user_back());
if (!GenXIntrinsic::isWrRegion(CopyOutRegion))
return false;
}
for (auto SI : Stores)
if (SI != CopyOutLoad && !PostCmp(CopyOutLoad, SI))
return false;
for (auto LI : Loads)
if (LI != CopyOutLoad && !PostCmp(CopyOutLoad, LI))
return false;
// Ensure read-in and write-out to the same region. It is possible that region
// collasping does not simplify region accesses completely.
// Probably we should use an assertion statement on region descriptors.
if (CopyOutRegion &&
!isBitwiseIdentical(CopyInRegion->getOperand(0),
CopyOutRegion->getOperand(0)))
return false;
// It should be OK to rewrite all loads and stores into the argref.
VLoads.swap(Loads);
VStores.swap(Stores);
return true;
}
void ArgRefPattern::process(DominatorTree &DT) {
// 'Spill' the base region into memory during rewriting.
IRBuilder<> Builder(Alloca);
Function *RdFn = CopyInRegion->getCalledFunction();
IGC_ASSERT(RdFn);
Type *BaseAllocaTy = RdFn->getFunctionType()->getParamType(0);
AllocaInst *BaseAlloca = Builder.CreateAlloca(BaseAllocaTy, nullptr,
Alloca->getName() + ".refprom");
Builder.SetInsertPoint(CopyInRegion);
Builder.CreateStore(CopyInRegion->getArgOperand(0), BaseAlloca);
if (CopyOutRegion) {
Builder.SetInsertPoint(CopyOutRegion);
CopyOutRegion->setArgOperand(
0, Builder.CreateLoad(BaseAlloca->getType()->getPointerElementType(),
BaseAlloca));
}
// Rewrite all stores.
for (auto ST : VStores) {
Builder.SetInsertPoint(ST);
Value *OldVal = Builder.CreateLoad(
BaseAlloca->getType()->getPointerElementType(), BaseAlloca);
// Always use copy-in region arguments as copy-out region
// arguments do not dominate this store.
auto M = ST->getParent()->getParent()->getParent();
Value *Args[] = {OldVal,
ST->getArgOperand(0),
CopyInRegion->getArgOperand(1), // vstride
CopyInRegion->getArgOperand(2), // width
CopyInRegion->getArgOperand(3), // hstride
CopyInRegion->getArgOperand(4), // offset
CopyInRegion->getArgOperand(5), // parent width
ConstantInt::getTrue(Type::getInt1Ty(M->getContext()))};
auto ID = OldVal->getType()->isFPOrFPVectorTy() ? GenXIntrinsic::genx_wrregionf
: GenXIntrinsic::genx_wrregioni;
Type *Tys[] = {Args[0]->getType(), Args[1]->getType(), Args[5]->getType(),
Args[7]->getType()};
auto WrFn = GenXIntrinsic::getGenXDeclaration(M, ID, Tys);
Value *NewVal = Builder.CreateCall(WrFn, Args);
Builder.CreateStore(NewVal, BaseAlloca);
ST->eraseFromParent();
}
// Rewrite all loads
for (auto LI : VLoads) {
if (LI->use_empty())
continue;
Builder.SetInsertPoint(LI);
Value *SrcVal = Builder.CreateLoad(
BaseAlloca->getType()->getPointerElementType(), BaseAlloca);
SmallVector<Value *, 8> Args(IGCLLVM::args(CopyInRegion));
Args[0] = SrcVal;
Value *Val = Builder.CreateCall(RdFn, Args);
LI->replaceAllUsesWith(Val);
LI->eraseFromParent();
}
// BaseAlloca created manually, w/o RAUW, need fix debug-info for it
llvm::replaceAllDbgUsesWith(*Alloca, *BaseAlloca, *BaseAlloca, DT);
}
// Allocas that are used in reference argument passing may be promoted into the
// base region.
bool CMLowerVLoadVStore::promoteAllocas(Function &F) {
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
bool Modified = false;
SmallVector<AllocaInst *, 8> Allocas;
for (auto &Inst : F.front().getInstList()) {
if (auto AI = dyn_cast<AllocaInst>(&Inst))
Allocas.push_back(AI);
}
for (auto AI : Allocas) {
ArgRefPattern ArgRef(AI);
if (ArgRef.match(DT, PDT)) {
ArgRef.process(DT);
Modified = true;
}
}
return Modified;
}
Pass *llvm::createCMLowerVLoadVStorePass() { return new CMLowerVLoadVStore; }
|