1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
//
/// CMImpParam
/// ----------
///
/// As well as explicit kernel args declared in the CM kernel function, certain
/// implicit args are also passed. These fall into 3 categories:
///
/// 1. fields set up in r0 by the hardware, depending on which dispatch method
/// is being used (e.g. media walker);
///
/// 2. implicit args set up along with the explicit args in CURBE by the CM
/// runtime.
///
/// 3. implicit OCL/L0 args set up, e.g. private base, byval arg linearization.
///
/// The r0 implicit args are represented in LLVM IR by special intrinsics, and the
/// GenX backend generates these to special reserved vISA registers.
///
/// For the CM runtime implicit args in (2) above, in vISA 3.2 and earlier, these were also
/// represented by LLVM special intrinsics and vISA special reserved vISA registers.
/// Because they are specific to the CM runtime, and not any other user of vISA,
/// vISA 3.3 has removed them, and instead they are handled much like other kernel
/// args in the input table.
///
/// The *kind* byte in the input table has two fields:
///
/// * the *category* field, saying whether the input is general/surface/etc;
///
/// * the *provenance* field, saying whether the input is an explicit one from
/// the CM source, or an implicit one generated by this pass. This is a
/// protocol agreed between the CM compiler (in fact this pass) and the CM
/// runtime.
///
/// Within the CM compiler, the vISA input table for a kernel is represented by an
/// array of kind bytes, each one corresponding to an argument of the kernel function.
///
/// Clang codegen still generates special intrinsics for these CM runtime implicit
/// args. It is the job of this CMImpParam pass to transform those intrinsics:
///
/// * where the intrinsic for a CM runtime implicit arg is used somewhere:
///
/// - a global variable is created for it;
///
/// - for any kernel that uses the implicit arg (or can reach a subroutine that
/// uses it), the implicit arg is added to the input table in the kernel
/// metadata and as an extra arg to the definition of the kernel itself,
/// and its value is stored into the global variable;
///
/// - for any fixed signature function (implicit args cannot be passed as an
/// additional function parameter) the implicit arg is loaded from implicit
/// args buffer (it is always available during the execution) and then
/// stored into the corresponding global variable;
///
/// - kernels that require implicit args buffer being allocated are marked;
///
/// * each use of the intrinsic for a CM runtime implicit arg is transformed into
/// a load of the corresponding global variable.
///
/// Like any other global variable, the subsequent CMABI pass turns the global
/// variable for an implicit arg into local variable(s) passed into subroutines
/// if necessary.
///
/// This pass also linearizes kernel byval arguments.
/// If a kernel has an input pointer argument with byval attribute, it means
/// that it will be passed as a value with the argument's size = sizeof(the
/// type), not sizeof(the type *). To support such kinds of arguments, VC (as
/// well as scalar IGC) makes implicit linearization, e.g.
///
/// %struct.s1 = type { [2 x i32], i8 } ===> i32, i32, i8
///
/// This implicit linearization is added as kernel arguments and mapped via
/// metadata to the original explicit byval argument.
///
/// %struct.s1 = type { [2 x i32], i8 }
///
/// declare i32 @foo(%struct.s1* byval(%struct.s1) "VCArgumentDesc"="svmptr_t"
/// "VCArgumentIOKind"="0" "VCArgumentKind"="0" %arg, i64
/// %arg1);
///
/// Will be transformed into (byval args uses will be changed in
/// CMKernelArgOffset)
///
/// declare i32 @foo(%struct.s1* byval(%struct.s1) "VCArgumentDesc"="svmptr_t"
/// "VCArgumentIOKind"="0" "VCArgumentKind"="0" %arg, i64
/// %arg1, i32 %__arg_lin__arg_0, i32 %__arg_lin__arg_1, i8
/// %__arg_lin__arg_2);
///
/// Additionally, information about these implicit linearization will be written
/// to kernel metadata as internal::KernelMDOp::LinearizationArgs. It stores
/// mapping between explicit byval argument and its linearization.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "cmimpparam"
#include "vc/GenXOpts/GenXOpts.h"
#include "vc/Utils/GenX/KernelInfo.h"
#include "vc/InternalIntrinsics/InternalIntrinsics.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/IRBuilder.h"
#include "vc/Utils/GenX/ImplicitArgsBuffer.h"
#include "vc/Utils/GenX/PredefinedVariable.h"
#include "vc/Utils/General/DebugInfo.h"
#include "vc/Utils/General/FunctionAttrs.h"
#include "vc/Utils/General/IRBuilder.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <map>
#include <numeric>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "Probe/Assertion.h"
#include "llvmWrapper/Analysis/CallGraph.h"
#include "llvmWrapper/IR/Attributes.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Function.h"
#include "llvmWrapper/Support/Alignment.h"
using namespace llvm;
static cl::opt<bool>
CMRTOpt("cmimpparam-cmrt", cl::init(true), cl::Hidden,
cl::desc("Should be used only in llvm opt to switch RT"));
static cl::opt<bool>
PayloadInMemoryOpt("cmimpparam-payload-in-memory", cl::init(true),
cl::Hidden,
cl::desc("Whether the target has payload in memory"));
// Sometimes full list of elements cannot be defined, e.g. list of called
// functions when indirect call instructions are present.
// In this type set vector means that the full list can be defined and the
// vector represents it. When the vector is not set, the full list cannot be
// defined but it is not empty. Empty vector means that the full set can be
// defined but it is just empty.
template <typename T> using MaybeUndefSeq = Optional<std::vector<T>>;
using MaybeUndefFuncSeq = MaybeUndefSeq<Function *>;
using FunctionRef = std::reference_wrapper<Function>;
// Checks whether the provided vector \p has unique elements.
template <typename T> static bool isUnique(const std::vector<T> &V) {
std::unordered_set<T> TestUnique{V.begin(), V.end()};
return TestUnique.size() == V.size();
}
namespace {
// Helper struct to store temporary information for implicit arguments
// linearization.
struct LinearizationElt {
Type *Ty;
unsigned Offset;
};
using LinearizedTy = std::vector<LinearizationElt>;
using ArgLinearization = std::unordered_map<Argument *, LinearizedTy>;
using ImplArgIntrSeq = std::vector<CallInst *>;
using IntrIDSet = std::set<unsigned>;
using IntrIDMap = std::unordered_map<Function *, IntrIDSet>;
// Implicit args in this pass are denoted by the corresponding intrinsic ID.
// But not all implicit args have a corresponding intrinsic. So for those args
// pseudo intrinsic IDs are provided. Pseudo ID values are guaranteed to not
// overlap with real instrinsic IDs.
namespace PseudoIntrinsic {
enum Enum : unsigned {
First = vc::InternalIntrinsic::not_any_intrinsic,
PrivateBase = First,
ImplicitArgsBuffer,
Last
};
} // namespace PseudoIntrinsic
struct CMImpParam : public ModulePass {
static char ID;
bool IsCmRT = false;
// Defines whether payload is in memory or on registers. It depends on target
// architecture.
bool HasPayloadInMemory = false;
const DataLayout *DL = nullptr;
CMImpParam(bool IsCmRTIn, bool HasPayloadInMemoryIn)
: ModulePass{ID}, IsCmRT{IsCmRTIn}, HasPayloadInMemory{
HasPayloadInMemoryIn} {
initializeCMImpParamPass(*PassRegistry::getPassRegistry());
}
CMImpParam()
: ModulePass{ID}, IsCmRT{CMRTOpt}, HasPayloadInMemory{
PayloadInMemoryOpt} {
initializeCMImpParamPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<CallGraphWrapperPass>();
}
StringRef getPassName() const override { return "CM Implicit Params"; }
bool runOnModule(Module &M) override;
private:
void replaceWithGlobal(CallInst *CI);
void replaceImplicitArgIntrinsics(const ImplArgIntrSeq &Workload);
void WriteArgsLinearizationInfo(Module &M);
LinearizedTy LinearizeAggregateType(Type *AggrTy);
ArgLinearization GenerateArgsLinearizationInfo(Function &F);
void
processKernels(const std::vector<FunctionRef> &Kernels,
const IntrIDMap &UsedIntrInfo,
const std::unordered_set<Function *> &RequireImplArgsBuffer);
CallGraphNode *processKernelParameters(Function *F,
const IntrIDSet &UsedImplicits);
std::pair<IntrIDMap, std::unordered_set<Function *>>
analyzeFixedSignatureFunctions(Module &M, const IntrIDMap &UsedIntrInfo);
void processFixedSignatureFunction(Function &F,
const IntrIDSet &UsedIntrInfo);
void storeImplArgInFixedSignatureFunction(unsigned IID,
Value &ImplArgsBufferPtr,
IRBuilder<> &IRB);
vc::ThreadPayloadKind getThreadPayloadKind() const {
if (HasPayloadInMemory)
return vc::ThreadPayloadKind::InMemory;
return vc::ThreadPayloadKind::OnRegister;
}
static Value *getValue(Metadata *M) {
if (auto VM = dyn_cast<ValueAsMetadata>(M))
return VM->getValue();
return nullptr;
}
// Convert to implicit thread payload related intrinsics.
void ConvertToOCLPayload(Module &M);
uint32_t MapToKind(unsigned IID) {
using namespace vc;
switch (IID) {
default:
return KernelMetadata::AK_NORMAL;
case GenXIntrinsic::genx_print_buffer:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_OCL_PRINTF_BUFFER;
case GenXIntrinsic::genx_local_size:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_LOCAL_SIZE;
case GenXIntrinsic::genx_local_id:
case GenXIntrinsic::genx_local_id16:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_LOCAL_ID;
case GenXIntrinsic::genx_group_count:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_GROUP_COUNT;
case GenXIntrinsic::genx_get_scoreboard_deltas:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_SB_DELTAS;
case GenXIntrinsic::genx_get_scoreboard_bti:
return KernelMetadata::AK_SURFACE | KernelMetadata::IMP_SB_BTI;
case GenXIntrinsic::genx_get_scoreboard_depcnt:
return KernelMetadata::AK_SURFACE | KernelMetadata::IMP_SB_DEPCNT;
case PseudoIntrinsic::PrivateBase:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_OCL_PRIVATE_BASE;
case PseudoIntrinsic::ImplicitArgsBuffer:
return KernelMetadata::AK_NORMAL | KernelMetadata::IMP_IMPL_ARGS_BUFFER;
}
return KernelMetadata::AK_NORMAL;
}
GlobalVariable *getOrCreateGlobalForIID(Function *F, unsigned IID) {
if (GlobalsMap.count(IID))
return GlobalsMap[IID];
Type * Ty = getIntrinRetType(F->getContext(), IID);
IGC_ASSERT(Ty);
auto IntrinsicName = GenXIntrinsic::getAnyName(IID, None);
GlobalVariable *NewVar = new GlobalVariable(
*F->getParent(), Ty, false, GlobalVariable::InternalLinkage,
UndefValue::get(Ty), "__imparg_" + IntrinsicName);
GlobalsMap[IID] = NewVar;
addDebugInfoForImplicitGlobal(*NewVar, IntrinsicName);
return NewVar;
}
static void addDebugInfoForImplicitGlobal(GlobalVariable &Var,
StringRef Name) {
auto &M = *Var.getParent();
if (!vc::DIBuilder::checkIfModuleHasDebugInfo(M))
return;
std::string DiName = (Twine("__") + Name).str();
std::replace(DiName.begin(), DiName.end(), '.', '_');
vc::DIBuilder DBuilder(M);
auto *DGVType = DBuilder.translateTypeToDIType(*Var.getValueType());
if (!DGVType) {
LLVM_DEBUG(dbgs() << "ERROR: could not create debug info for implict var:"
<< Var << "\n");
return;
}
auto *GVE = DBuilder.createGlobalVariableExpression(DiName, DiName, DGVType);
Var.addDebugInfo(GVE);
}
static Type *getIntrinRetType(LLVMContext &Context, unsigned IID) {
switch (IID) {
case GenXIntrinsic::genx_print_buffer:
case PseudoIntrinsic::PrivateBase:
case PseudoIntrinsic::ImplicitArgsBuffer:
return llvm::Type::getInt64Ty(Context);
case GenXIntrinsic::genx_local_id:
case GenXIntrinsic::genx_local_size:
case GenXIntrinsic::genx_group_count:
return IGCLLVM::FixedVectorType::get(llvm::Type::getInt32Ty(Context),
3);
case GenXIntrinsic::genx_local_id16:
return IGCLLVM::FixedVectorType::get(llvm::Type::getInt16Ty(Context),
3);
default:
// Should be able to extract the type from the intrinsic
// directly as no overloading is required (if it is then
// you need to define specific type in a case statement above)
FunctionType *FTy = dyn_cast_or_null<FunctionType>(
GenXIntrinsic::getAnyType(Context, IID));
if (FTy)
return FTy->getReturnType();
}
return nullptr;
}
// GlobalVariables that have been created for an intrinsic
SmallDenseMap<unsigned, GlobalVariable *> GlobalsMap;
};
// A helper class to recursively traverse call graph and collect all the
// required implicit args.
// Only temporary objects should be constructed. Usage:
// CallGraphTraverser{CG, UsedIntr}.collectIndirectlyUsedImplArgs(F);
class CallGraphTraverser {
const CallGraph &CG;
const IntrIDMap &UsedIntr;
std::unordered_set<Function *> Visited;
IntrIDSet CollectedIID;
MaybeUndefFuncSeq CalledFixedSignFuncs{MaybeUndefFuncSeq::value_type{}};
public:
CallGraphTraverser(const CallGraph &CGIn, const IntrIDMap &UsedIntrIn)
: CG{CGIn}, UsedIntr{UsedIntrIn} {}
// Returns a pair of indirectly used implicit args and called fixed signature
// functions. Indirectly used implicit args are those implicit args that are
// used in the provided function \p F and its recursively called (called from
// \p F, called from those that called from \p, called from those that called
// from those that...) non-fixed signature functions. Fixed signature
// functions or indirect call stop the traversal, their indirectly used
// implicit args aren't collected. The 2nd return value describes whether
// some fixed signature functions were called and if so what functions were
// called if this set can be defined (case when some were but the distinct
// set cannot be defined is considered).
std::pair<IntrIDSet, MaybeUndefFuncSeq>
collectIndirectlyUsedImplArgs(Function &F) && {
IGC_ASSERT_MESSAGE(
vc::isFixedSignatureDefinition(F) | vc::isKernel(&F),
"entry point must be a fixed signature function or a kernel");
visitFunction</*IsEntry =*/true>(F);
if (CalledFixedSignFuncs.hasValue()) {
IGC_ASSERT_MESSAGE(isUnique(CalledFixedSignFuncs.getValue()),
"values in CalledFixedSignFuncs must be unique");
}
return {CollectedIID, CalledFixedSignFuncs};
}
private:
template <bool IsEntry = false> void visitFunction(Function &F);
};
} // namespace
static ImplArgIntrSeq collectImplicitArgIntrinsics(Module &M, bool IsCMRT);
static IntrIDMap fillUsedIntrMap(const ImplArgIntrSeq &Workload);
static bool isPseudoIntrinsic(unsigned IID) {
return IID >= PseudoIntrinsic::First && IID < PseudoIntrinsic::Last;
}
// Checks whether kernel calls some function with a fixed signature that uses
// implicit args or may call such function (in case of some externally defined
// function, or indirect call). In this case kernel should have access to
// implicit arg buffer.
bool kernelRequiresImplArgBuffer(
const MaybeUndefFuncSeq &CalledFixedSignFuncs,
const std::unordered_set<Function *> &RequireImplArgsBuffer) {
if (!CalledFixedSignFuncs.hasValue())
// Set of called functions cannot be defined. Presume that the buffer is
// required.
return true;
return llvm::any_of(CalledFixedSignFuncs.getValue(),
[&RequireImplArgsBuffer](Function *F) {
return RequireImplArgsBuffer.count(F);
});
}
// Creates predefined vISA variables that are required to work with implicit
// arguments in extern and indirect functions for architectures with payload on
// registers.
// The required predefined variables must not be created before calling this
// function. If you not sure whether they are created or not, use
// \p getOrCreatePredefVars.
static std::pair<GlobalVariable *, GlobalVariable *>
createPredefVars(Module &M) {
return {&vc::PredefVar::createImplicitArgsBuffer(M),
&vc::PredefVar::createLocalIDBuffer(M)};
}
// Returns implicit args buffer related predefined variables. Returns existing
// ones or creates new ones.
static std::pair<GlobalVariable *, GlobalVariable *>
getOrCreatePredefVars(Module &M) {
auto *ImplArgBuffer = M.getNamedGlobal(vc::PredefVar::ImplicitArgsBufferName);
if (ImplArgBuffer) {
auto *LocalIDBuffer = M.getNamedGlobal(vc::PredefVar::LocalIDBufferName);
IGC_ASSERT_MESSAGE(
LocalIDBuffer,
"If implict args buffer predefined variable is created, local ID "
"buffer predefined variable must be created too");
return {ImplArgBuffer, LocalIDBuffer};
}
return createPredefVars(M);
}
// Inserts code that initializes local ID buffer predefined variable
// \p LocalIDBufferVar with local ID buffer pointer.
// Local ID buffer is allocated on \p Kernel stack and initialized with the
// value of local ID implicit argument (the argument must have already be added
// to the kernel arguments).
static void initializeLocalIDBufferVariable(Function &Kernel,
GlobalVariable &LocalIDBufferVar,
IRBuilder<> &IRB) {
using namespace vc::ImplicitArgs;
IGC_ASSERT_MESSAGE(vc::isKernel(Kernel),
"wrong argument: a kernel must be provided");
Argument &LocalIDArg =
vc::getImplicitArg(Kernel, vc::KernelMetadata::IMP_LOCAL_ID);
auto *LocalIDBufferPtr =
IRB.CreateAlloca(&LocalID::getType(*LocalIDBufferVar.getParent()),
vc::AddrSpace::Private, nullptr, "loc.id.buffer");
std::array<LocalID::Indices::Enum, 3> Indices = {
LocalID::Indices::X, LocalID::Indices::Y, LocalID::Indices::Z};
for (auto Index : Indices) {
auto *Element =
IRB.CreateExtractElement(&LocalIDArg, Index, "loc.id." + Twine{Index});
auto *Pointer = IRB.CreateGEP(
LocalIDBufferPtr->getAllocatedType(), LocalIDBufferPtr,
{IRB.getInt32(0), IRB.getInt32(Index)}, "loc.id.ptr." + Twine{Index});
IRB.CreateStore(Element, Pointer);
}
auto *LocalIDBufferIntPtr = IRB.CreatePtrToInt(
LocalIDBufferPtr, IRB.getInt64Ty(), "loc.id.buf.int.ptr");
vc::createWriteVariableRegion(LocalIDBufferVar, *LocalIDBufferIntPtr, IRB);
}
// Special prologue must be added to kernel for architectures with payload on
// registers. Implicit argument buffer implicit argument and local ids buffer
// pointer must be copied into the corresponding predefined variables. This
// function inserts the corresponding code in the \p Kernel prologue.
static void addKernelPrologue(Function &Kernel) {
using namespace vc::ImplicitArgs;
IGC_ASSERT_MESSAGE(vc::isKernel(Kernel),
"wrong argument: a kernel must be provided");
IRBuilder<> IRB{&*Kernel.getEntryBlock().getFirstInsertionPt()};
auto [ImplArgsBufferVar, LocalIDBufferVar] =
getOrCreatePredefVars(*Kernel.getParent());
// Initializing implicit args buffer predefined variable.
Argument &ImplArgsBufferArg =
vc::getImplicitArg(Kernel, vc::KernelMetadata::IMP_IMPL_ARGS_BUFFER);
vc::createWriteVariableRegion(*ImplArgsBufferVar, ImplArgsBufferArg, IRB);
initializeLocalIDBufferVariable(Kernel, *LocalIDBufferVar, IRB);
}
bool CMImpParam::runOnModule(Module &M) {
DL = &M.getDataLayout();
// Apply necessary changes if kernels are compiled for OpenCL runtime.
ConvertToOCLPayload(M);
// Analyze functions for implicit use intrinsic invocation
ImplArgIntrSeq Workload = collectImplicitArgIntrinsics(M, IsCmRT);
std::vector<FunctionRef> Kernels{vc::kernel_begin(M), vc::kernel_end(M)};
IntrIDMap UsedIntrInfo = fillUsedIntrMap(Workload);
auto [FixedSignFuncInfo, RequireImplArgsBuffer] =
analyzeFixedSignatureFunctions(M, UsedIntrInfo);
if (Workload.empty() && Kernels.empty() && FixedSignFuncInfo.empty())
// If ConvertToOCLPayload changed code, workload wouldn't be empty (there
// would be at least local_id16 intrinsics). So returning false here is
// correct.
return false;
if (!RequireImplArgsBuffer.empty() && IsCmRT)
vc::fatal(M.getContext(), "GenXImplicitParameters",
"Implicit arguments buffer is required but it is not "
"supported for CM RT");
replaceImplicitArgIntrinsics(Workload);
// Predefined variables are required when fixed signature functions with
// implicit args are present. The variables are required to access implicit
// args. This approach is used only for architectures with payload on
// registers.
if (!FixedSignFuncInfo.empty() && !HasPayloadInMemory)
createPredefVars(M);
for (auto [F, RequiredImplArgs] : FixedSignFuncInfo)
processFixedSignatureFunction(*F, RequiredImplArgs);
// Kernel transformation should go last since it invalidates the collected
// data: kernel functions are changed.
processKernels(Kernels, UsedIntrInfo, RequireImplArgsBuffer);
return true;
}
void CMImpParam::processKernels(
const std::vector<FunctionRef> &Kernels, const IntrIDMap &UsedIntrInfo,
const std::unordered_set<Function *> &RequireImplArgsBuffer) {
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
for (Function &Kernel : Kernels) {
// Traverse the call graph to determine what the total implicit uses are for
// the top level kernels.
auto [RequiredImplArgs, CalledFixedSignFuncs] =
CallGraphTraverser{CG, UsedIntrInfo}.collectIndirectlyUsedImplArgs(
Kernel);
bool KernelRequiresImplArgBuffer = kernelRequiresImplArgBuffer(
CalledFixedSignFuncs, RequireImplArgsBuffer);
// For kernels that require implicit args buffer and architectures that
// have payload on registers a prologue must be inserted. In this prologue
// implicit args buffer implicit arg is copied into the corresponding
// predefined variable.
bool KernelRequiresPrologueInsertion =
KernelRequiresImplArgBuffer && !HasPayloadInMemory;
if (KernelRequiresImplArgBuffer)
Kernel.addFnAttr(vc::ImplicitArgs::KernelAttr);
if (KernelRequiresPrologueInsertion) {
RequiredImplArgs.emplace(PseudoIntrinsic::ImplicitArgsBuffer);
RequiredImplArgs.emplace(GenXIntrinsic::genx_local_id16);
}
// For OCL/L0 RT we should unconditionally add implicit PRIVATE_BASE
// argument which is not supported on CM RT.
if (!IsCmRT)
RequiredImplArgs.emplace(PseudoIntrinsic::PrivateBase);
vc::internal::createInternalMD(Kernel);
if (!RequiredImplArgs.empty()) {
CallGraphNode *NewKernelNode =
processKernelParameters(&Kernel, RequiredImplArgs);
if (KernelRequiresPrologueInsertion)
addKernelPrologue(*NewKernelNode->getFunction());
}
}
}
// Returns:
// 0: Map from a fixed signature function to the set of implicit args used in
// the function and its subroutines. Implicit args are defined by IIDs.
// 1: Set of functions which require kernel that calls them to have implicit
// args buffer. This set is wider than set of functions in the 0 return
// value since implicit args may be used not only in the function and
// subroutines but also in some called fixed signature function which
// doesn't require loading implicit args in the considered function but
// does require implicit args buffer to be present to be able to load
// implicit args on their side.
// Note: by subroutines above were meant functions which signatures will be
// changed and implicit args in which will be passed as additional parameters.
// This also may be an internal stack call.
std::pair<IntrIDMap, std::unordered_set<Function *>>
CMImpParam::analyzeFixedSignatureFunctions(Module &M,
const IntrIDMap &UsedIntrInfo) {
IntrIDMap FixedSignFuncInfo;
std::unordered_set<Function *> RequireImplArgsBuffer;
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
auto FixedSignatureDefinitions = make_filter_range(
M, [](const Function &F) { return vc::isFixedSignatureDefinition(F); });
for (Function &F : FixedSignatureDefinitions) {
auto [RequiredImplArgs, CalledFixedSignFuncs] =
CallGraphTraverser{CG, UsedIntrInfo}.collectIndirectlyUsedImplArgs(F);
// Function should be marked if it uses implicit args or it calls some
// function that may use it via implicit args buffer.
if (!RequiredImplArgs.empty() || !CalledFixedSignFuncs.hasValue() ||
!CalledFixedSignFuncs.getValue().empty())
RequireImplArgsBuffer.emplace(&F);
if (!RequiredImplArgs.empty())
FixedSignFuncInfo.emplace(&F, std::move(RequiredImplArgs));
}
return {FixedSignFuncInfo, RequireImplArgsBuffer};
}
// Accesses all the required implicit args and stores them into implicit arg
// global variables. The set of requred implicit args must be provided in
// \p UsedIntrInfo.
void CMImpParam::processFixedSignatureFunction(Function &F,
const IntrIDSet &UsedIntrInfo) {
IRBuilder<> IRB{&*F.getEntryBlock().getFirstInsertionPt()};
auto &ImplArgsBufferPtr =
vc::ImplicitArgs::Buffer::getPointer(IRB, getThreadPayloadKind());
for (unsigned IID : UsedIntrInfo)
storeImplArgInFixedSignatureFunction(IID, ImplArgsBufferPtr, IRB);
}
// Returns an array of indices of implicit args buffer structure fields that
// should be loaded to obtain the value of an implicit arg defined by the
// corresponding intrinsic ID.
template <unsigned IID>
std::array<vc::ImplicitArgs::Buffer::Indices::Enum, 3>
getIABufferIndicesForIID();
template <>
std::array<vc::ImplicitArgs::Buffer::Indices::Enum, 3>
getIABufferIndicesForIID<GenXIntrinsic::genx_local_size>() {
return {vc::ImplicitArgs::Buffer::Indices::LocalSizeX,
vc::ImplicitArgs::Buffer::Indices::LocalSizeY,
vc::ImplicitArgs::Buffer::Indices::LocalSizeZ};
}
template <>
std::array<vc::ImplicitArgs::Buffer::Indices::Enum, 3>
getIABufferIndicesForIID<GenXIntrinsic::genx_group_count>() {
return {vc::ImplicitArgs::Buffer::Indices::GroupCountX,
vc::ImplicitArgs::Buffer::Indices::GroupCountY,
vc::ImplicitArgs::Buffer::Indices::GroupCountZ};
}
// Inserts a code that loads 3-component implicit argument from the buffer.
// An implicit argument is defined via the corresponding intrinsic ID.
// Arguments:
// \p ImplArgsBufferPtr - a pointer to implicit args buffer structure;
// \p IRB - IR builder used to insert the code.
template <unsigned IID>
Value &loadVec3ArgFromIABuffer(Value &ImplArgsBufferPtr, IRBuilder<> &IRB) {
auto Indices = getIABufferIndicesForIID<IID>();
std::array<Value *, 3> VectorElements;
std::transform(
Indices.begin(), Indices.end(), VectorElements.begin(),
[&ImplArgsBufferPtr, &IRB](vc::ImplicitArgs::Buffer::Indices::Enum Idx) {
return &vc::ImplicitArgs::Buffer::loadField(ImplArgsBufferPtr, Idx, IRB,
"impl.arg.vec.elem");
});
return *vc::accumulateVector(VectorElements, VectorElements.size(), IRB,
"impl.arg.vec");
}
// Inserts a code that loads local IDs from the buffer and represents them as
// a 3-component vector.
// Arguments:
// \p ImplArgsBufferPtr - a pointer to implicit args buffer structure;
// \p IRB - IR builder used to insert the code.
static Value &loadLocalIDFromIABuffer(Value &ImplArgsBufferPtr,
IRBuilder<> &IRB,
vc::ThreadPayloadKind PayloadKind) {
using namespace vc::ImplicitArgs;
std::array<LocalID::Indices::Enum, 3> Indices = {
LocalID::Indices::X, LocalID::Indices::Y, LocalID::Indices::Z};
auto &LIDStructPtr = LocalID::getPointer(ImplArgsBufferPtr, IRB, PayloadKind);
std::array<Value *, 3> VectorElements;
std::transform(Indices.begin(), Indices.end(), VectorElements.begin(),
[&LIDStructPtr, &IRB](LocalID::Indices::Enum Idx) {
return &LocalID::loadField(LIDStructPtr, Idx, IRB,
"ia.local.id.elem");
});
return *vc::accumulateVector(VectorElements, VectorElements.size(), IRB,
"impl.arg.vec");
}
// Inserts a code that loads implicit argument from the buffer.
// Arguments:
// \p IID - the ID of intrinsic that corresponds to the required implicit
// arg;
// \p ImplArgsBufferPtr - a pointer to implicit args buffer structure;
// \p IRB - IR builder used to insert the code.
static Value &loadArgFromIABuffer(unsigned IID, Value &ImplArgsBufferPtr,
IRBuilder<> &IRB,
vc::ThreadPayloadKind PayloadKind) {
switch (IID) {
default:
IGC_ASSERT_MESSAGE(0, "unexpected intrinsic id");
return ImplArgsBufferPtr;
case GenXIntrinsic::genx_local_id16:
return loadLocalIDFromIABuffer(ImplArgsBufferPtr, IRB, PayloadKind);
case GenXIntrinsic::genx_local_id:
IGC_ASSERT_MESSAGE(0, "IA buffer is supported only for OCL/L0 so local.id "
"must have been already transformed into local.id16");
case GenXIntrinsic::genx_get_scoreboard_deltas:
case GenXIntrinsic::genx_get_scoreboard_bti:
case GenXIntrinsic::genx_get_scoreboard_depcnt:
// It is an assertion since the diagnostic must have been happen before.
IGC_ASSERT_MESSAGE(0, "IA buffer is supported only for OCL/L0, scoreboard "
"builtins should not appear for those runtimes");
case GenXIntrinsic::genx_local_size:
return loadVec3ArgFromIABuffer<GenXIntrinsic::genx_local_size>(
ImplArgsBufferPtr, IRB);
case GenXIntrinsic::genx_group_count:
return loadVec3ArgFromIABuffer<GenXIntrinsic::genx_group_count>(
ImplArgsBufferPtr, IRB);
case GenXIntrinsic::genx_print_buffer:
return vc::ImplicitArgs::Buffer::loadField(
ImplArgsBufferPtr, vc::ImplicitArgs::Buffer::Indices::PrintfBufferPtr,
IRB, "printf.buffer.ptr");
}
}
// Accesses the required implicit arg and stores it into the corresponding
// implicit arg global variable.
// Arguments:
// \p IID - the ID of intrinsic that corresponds to the required implicit
// arg;
// \p ImplArgsBufferPtr - a pointer to implicit args buffer structure;
// \p IRB - IR builder used to insert the code.
void CMImpParam::storeImplArgInFixedSignatureFunction(unsigned IID,
Value &ImplArgsBufferPtr,
IRBuilder<> &IRB) {
auto &ImplicitArg =
loadArgFromIABuffer(IID, ImplArgsBufferPtr, IRB, getThreadPayloadKind());
IGC_ASSERT_MESSAGE(GlobalsMap.count(IID),
"must have a corresponding global since the arg use was "
"already replaced with a load from the global");
IRB.CreateStore(&ImplicitArg, GlobalsMap[IID]);
}
// Replace the given instruction with a load from a global
// The method erases the original call instruction.
void CMImpParam::replaceWithGlobal(CallInst *CI) {
IGC_ASSERT_MESSAGE(GenXIntrinsic::isGenXIntrinsic(CI),
"genx intrinsic is expected");
auto IID = GenXIntrinsic::getGenXIntrinsicID(CI->getCalledFunction());
GlobalVariable *GV =
getOrCreateGlobalForIID(CI->getParent()->getParent(), IID);
LoadInst *Load = new LoadInst(GV->getType()->getPointerElementType(), GV, "",
/* isVolatile */ false,
IGCLLVM::getCorrectAlign(GV->getAlignment()), CI);
Load->takeName(CI);
Load->setDebugLoc(CI->getDebugLoc());
CI->replaceAllUsesWith(Load);
CI->eraseFromParent();
}
static bool isSupportedAggregateArgument(Argument &Arg) {
if (!Arg.getType()->isPointerTy())
return false;
if (!Arg.hasByValAttr())
return false;
Type *Ty = Arg.getType()->getPointerElementType();
auto *STy = cast<StructType>(Ty);
IGC_ASSERT(!STy->isOpaque());
return true;
}
// A helper structure to store current state of the aggregate traversal.
struct PendingTypeInfo {
Type *Ty; // Type to decompose
unsigned NextElt; // Subelement number to decompose next
unsigned Offset; // Offset for the trivial type in Ty
};
// Byval aggregate arguments must be linearized. This function decomposes the
// aggregate type into primitive types recursively.
// Example:
// struct s1 {
// struct s2 {
// int a;
// };
// char b;
// };
//
// Pending(stack) | LinTy(output)
// Start:
// s1, 0, 0 | -
// Iteration 0:
// s1, 1, 4 | -
// s2, 0, 0 |
// Comment: two elements in stack. s1, 1, 4 means subtype number 1 in the
// s1 must be decomposed. The first trivial type in the 1 subtype of s1 will
// have offset = 4. Note that this subtype may be also an aggregate type. In
// this case, offset = 4 will be propagated to the first nested trivial type.
// It is a recursive function, rewritten to use stack, so as not to have
// recursion problems.
// Iteration 1:
// s1, 1, 4 | -
// int,0, 0 | -
// Iteration 2:
// s1, 1, 4 | int, 0
// Iteration 3:
// char, 0, 4 | int, 0
// Iteration 4:
// - | int, 0
// | char, 4
//
LinearizedTy CMImpParam::LinearizeAggregateType(Type *AggrTy) {
LinearizedTy LinTy;
std::stack<PendingTypeInfo> Pending;
Pending.push({AggrTy, 0, 0});
while (!Pending.empty()) {
PendingTypeInfo Info = Pending.top();
Pending.pop();
Type *CurTy = Info.Ty;
unsigned CurElt = Info.NextElt;
unsigned NextElt = CurElt + 1;
if (auto *STy = dyn_cast<StructType>(CurTy)) {
unsigned NumElts = STy->getStructNumElements();
const StructLayout *Layout = DL->getStructLayout(STy);
IGC_ASSERT(CurElt < NumElts);
Type *EltType = STy->getElementType(CurElt);
if (NumElts > NextElt) {
unsigned CurOffset = Layout->getElementOffset(CurElt);
unsigned EltOffset = Layout->getElementOffset(NextElt) - CurOffset;
Pending.push({CurTy, NextElt, Info.Offset + EltOffset});
}
Pending.push({EltType, 0, Info.Offset});
} else if (auto *ATy = dyn_cast<ArrayType>(CurTy)) {
unsigned NumElts = ATy->getNumElements();
Type *EltTy = CurTy->getContainedType(0);
unsigned EltSize = DL->getTypeStoreSize(EltTy);
if (NumElts > NextElt)
Pending.push({Info.Ty, NextElt, Info.Offset + EltSize});
Pending.push({EltTy, 0, Info.Offset});
} else
LinTy.push_back({CurTy, Info.Offset});
}
return LinTy;
}
// For each byval aggregate calculate types of implicit args and their offsets
// in this aggregate.
ArgLinearization CMImpParam::GenerateArgsLinearizationInfo(Function &F) {
ArgLinearization Lin;
for (auto &Arg : F.args()) {
if (!isSupportedAggregateArgument(Arg))
continue;
Type *ArgTy = Arg.getType();
IGC_ASSERT(isa<PointerType>(ArgTy));
auto *STy = cast<StructType>(ArgTy->getPointerElementType());
Lin[&Arg] = LinearizeAggregateType(STy);
}
return Lin;
}
static bool isImplicitArgIntrinsic(const Function &F, bool IsCMRT) {
auto IID = GenXIntrinsic::getGenXIntrinsicID(&F);
switch (IID) {
case GenXIntrinsic::genx_local_size:
case GenXIntrinsic::genx_local_id:
case GenXIntrinsic::genx_local_id16:
case GenXIntrinsic::genx_group_count:
case GenXIntrinsic::genx_print_buffer:
return true;
case GenXIntrinsic::genx_get_scoreboard_deltas:
case GenXIntrinsic::genx_get_scoreboard_bti:
case GenXIntrinsic::genx_get_scoreboard_depcnt:
if (!IsCMRT)
vc::diagnose(F.getContext(), "GenXImplicitParameters",
"scoreboarding intrinsics are supported only for CM RT", &F);
return true;
default:
return false;
}
}
// For each function, see if it uses an intrinsic that in turn requires an
// implicit kernel argument
// (such as llvm.genx.local.size)
static ImplArgIntrSeq collectImplicitArgIntrinsics(Module &M, bool IsCMRT) {
ImplArgIntrSeq Workload;
auto &&ImplArgIntrinsics = make_filter_range(M, [IsCMRT](const Function &F) {
return isImplicitArgIntrinsic(F, IsCMRT);
});
for (Function &Intr : ImplArgIntrinsics)
llvm::transform(Intr.users(), std::back_inserter(Workload),
[](User *U) { return cast<CallInst>(U); });
return Workload;
}
static IntrIDMap fillUsedIntrMap(const ImplArgIntrSeq &Workload) {
IntrIDMap UsedIntrInfo;
for (CallInst *CI : Workload) {
auto IID = GenXIntrinsic::getGenXIntrinsicID(CI->getCalledFunction());
UsedIntrInfo[CI->getFunction()].insert(IID);
}
return UsedIntrInfo;
}
// Replace implicit arg intrinsics collected in \p Workload with a load of
// the corresponding __imparg global variable.
// Fill implicit args usage data.
void CMImpParam::replaceImplicitArgIntrinsics(const ImplArgIntrSeq &Workload) {
for (CallInst *Intr : Workload)
replaceWithGlobal(Intr);
}
// Convert to implicit thread payload related intrinsics.
void CMImpParam::ConvertToOCLPayload(Module &M) {
// Check if this kernel is compiled for OpenCL runtime.
bool DoConversion = false;
if (NamedMDNode *Named = M.getNamedMetadata(genx::FunctionMD::GenXKernels)) {
for (unsigned I = 0, E = Named->getNumOperands(); I != E; ++I) {
MDNode *Node = Named->getOperand(I);
auto F = dyn_cast_or_null<Function>(
getValue(Node->getOperand(genx::KernelMDOp::FunctionRef)));
if (F && (F->hasFnAttribute(genx::FunctionMD::OCLRuntime) || !IsCmRT)) {
DoConversion = true;
break;
}
}
}
if (!DoConversion)
return;
auto getFn = [=, &M](unsigned ID, Type *Ty) {
return M.getFunction(GenXIntrinsic::getAnyName(ID, Ty));
};
// Convert genx_local_id -> zext(genx_local_id16)
Type *Ty32 =
IGCLLVM::FixedVectorType::get(Type::getInt32Ty(M.getContext()), 3);
Type *Ty16 =
IGCLLVM::FixedVectorType::get(Type::getInt16Ty(M.getContext()), 3);
if (auto LIDFn = getFn(GenXIntrinsic::genx_local_id, Ty32)) {
Function *LID16 = GenXIntrinsic::getGenXDeclaration(
&M, GenXIntrinsic::genx_local_id16, Ty16);
for (auto UI = LIDFn->user_begin(); UI != LIDFn->user_end();) {
auto UInst = dyn_cast<Instruction>(*UI++);
if (UInst) {
IRBuilder<> Builder(UInst);
Value *Val = Builder.CreateCall(LID16, None, UInst->getName() + ".i16");
Val = Builder.CreateZExt(Val, Ty32);
Val->takeName(UInst);
UInst->replaceAllUsesWith(Val);
UInst->eraseFromParent();
}
}
}
}
// Recursively visits \p F and its children in call graph that are not fixed
// signature functions. Collects the required info through the traversal.
// \p IsEntry indicates that the provided \p F is the start of traversal and
// the method is not called from itself (we're not inside recursion yet).
template <bool IsEntry> void CallGraphTraverser::visitFunction(Function &F) {
// If this node has already been processed then return immediately
if (Visited.count(&F))
return;
// Add this node to the already visited list
Visited.insert(&F);
// Have to stop on functions which signatures cannot be changed (won't be
// able to pass an implicit argument as an additional argument there).
// Entry is an external function by definition, don't stop on entry.
if constexpr (!IsEntry) {
IGC_ASSERT_MESSAGE(!vc::isKernel(&F), "kernel call is unexpected");
if (vc::isFixedSignatureFunc(F)) {
IGC_ASSERT_MESSAGE(!F.isDeclaration(),
"declarations are unexpected: call graph edge cannot "
"lead to a declaration");
if (CalledFixedSignFuncs.hasValue())
// Adding only if undef calling endge haven't been met.
CalledFixedSignFuncs.getValue().push_back(&F);
return;
}
}
// Handle current node: add its used implicit intrinisic IDs if present.
if (UsedIntr.count(&F))
CollectedIID.insert(UsedIntr.at(&F).begin(), UsedIntr.at(&F).end());
// Start the traversal
const CallGraphNode *N = CG[&F];
// Inspect all children (recursive)
for (IGCLLVM::CallRecord CallEdge : *N) {
// Skipping reference edges.
if (!CallEdge.first)
continue;
Value *CI = CallEdge.first.getValue();
// Skipping inline asm.
if (isa<CallInst>(CI) && cast<CallInst>(CI)->isInlineAsm())
continue;
// Returns nullptr in case of indirect call or inline asm which was already
// considered.
auto *Child = CallEdge.second->getFunction();
if (!Child)
IGC_ASSERT_MESSAGE(
isa<CallInst>(CI) && cast<CallInst>(CI)->isIndirectCall(),
"only indirect call is exprected for a null call graph node");
if (Child && !Child->isDeclaration())
visitFunction(*Child);
else
// Cannot define the set of called functions.
CalledFixedSignFuncs.reset();
}
}
static std::string getImplicitArgName(unsigned IID) {
if (!isPseudoIntrinsic(IID))
return "impl.arg." + GenXIntrinsic::getAnyName(IID, None);
switch (IID) {
case PseudoIntrinsic::ImplicitArgsBuffer:
return "impl.arg.impl.args.buffer";
default:
IGC_ASSERT_MESSAGE(IID == PseudoIntrinsic::PrivateBase,
"there's only private base pseudo intrinsic for now");
return "impl.arg.private.base";
}
}
// Process a kernel - loads from a global (and the globals) have already been
// added if required elsewhere (in doInitialization)
// We've already determined that this is a kernel and that it requires some
// implicit arguments adding
CallGraphNode *
CMImpParam::processKernelParameters(Function *F,
const IntrIDSet &UsedImplicits) {
LLVMContext &Context = F->getContext();
IGC_ASSERT_MESSAGE(
vc::isKernel(F),
"processKernelParameters invoked on non-kernel CallGraphNode");
AttributeList AttrVec;
const AttributeList &PAL = F->getAttributes();
ArgLinearization ArgsLin = GenerateArgsLinearizationInfo(*F);
// Determine the new argument list
SmallVector<Type *, 8> ArgTys;
// First transfer all the explicit arguments from the old kernel
unsigned ArgIndex = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgIndex) {
ArgTys.push_back(I->getType());
AttributeSet attrs = IGCLLVM::getParamAttrs(PAL, ArgIndex);
if (attrs.hasAttributes()) {
IGCLLVM::AttrBuilder B(Context, attrs);
AttrVec = AttrVec.addParamAttributes(Context, ArgIndex, B);
}
}
// Now add all the implicit arguments
for (unsigned IID : UsedImplicits) {
ArgTys.push_back(getIntrinRetType(Context, IID));
// TODO: Might need to also add any attributes from the intrinsic at some
// point
}
if (!IsCmRT) {
// Add types of implicit aggregates linearization
for (const auto &ArgLin : ArgsLin) {
for (const auto &LinTy : ArgLin.second)
ArgTys.push_back(LinTy.Ty);
}
}
FunctionType *NFTy = FunctionType::get(F->getReturnType(), ArgTys, false);
IGC_ASSERT_MESSAGE((NFTy != F->getFunctionType()),
"type out of sync, expect bool arguments)");
// Add any function attributes
AttributeSet FnAttrs = IGCLLVM::getFnAttrs(PAL);
if (FnAttrs.hasAttributes()) {
IGCLLVM::AttrBuilder B(Context, FnAttrs);
AttrVec = IGCLLVM::addAttributesAtIndex(AttrVec, Context, AttributeList::FunctionIndex, B);
}
// Create new function body and insert into the module
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
LLVM_DEBUG(dbgs() << "CMImpParam: Transforming From:" << *F);
vc::transferNameAndCCWithNewAttr(AttrVec, *F, *NF);
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
vc::transferDISubprogram(*F, *NF);
LLVM_DEBUG(dbgs() << " --> To: " << *NF << "\n");
// Now to splice the body of the old function into the new function
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transferring uses of the old arguments to the
// new arguments, also tranferring over the names as well
std::unordered_map<const Argument *, Argument *> OldToNewArg;
Function::arg_iterator I2 = NF->arg_begin();
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++I2) {
I->replaceAllUsesWith(I2);
I2->takeName(I);
OldToNewArg[&*I] = &*I2;
}
// Get the insertion point ready for stores to globals
Instruction &FirstI = *NF->getEntryBlock().begin();
llvm::SmallVector<uint32_t, 8> ImpKinds;
for (unsigned IID : UsedImplicits) {
// We known that for each IID implicit we've already added an arg
// Rename the arg to something more meaningful here
IGC_ASSERT_MESSAGE(I2 != NF->arg_end(),
"fewer parameters for new function than expected");
I2->setName(getImplicitArgName(IID));
auto GlobalsMapIt = GlobalsMap.find(IID);
if (GlobalsMapIt != GlobalsMap.end()) {
GlobalVariable *GV = GlobalsMapIt->second;
// Also insert a new store at the start of the function to the global
// variable used for this implicit argument intrinsic if such global is
// present. There are no global for pseudo intrinsics and sometimes for
// local ID when it is used only for kernel prologue.
new StoreInst(I2, GV, /*isVolatile=*/false,
IGCLLVM::getCorrectAlign(GV->getAlignment()), &FirstI);
}
// Prepare the kinds that will go into the metadata
ImpKinds.push_back(MapToKind(IID));
++I2;
}
// Collect arguments linearization to store as metadata.
vc::ArgToImplicitLinearization LinearizedArgs;
if (!IsCmRT) {
for (const auto &ArgLin : ArgsLin) {
Argument *ExplicitArg = OldToNewArg[ArgLin.first];
vc::LinearizedArgInfo &LinearizedArg = LinearizedArgs[ExplicitArg];
for (const auto &LinTy : ArgLin.second) {
I2->setName("__arg_lin_" + ExplicitArg->getName() + "." +
std::to_string(LinTy.Offset));
ImpKinds.push_back(vc::KernelMetadata::AK_NORMAL |
vc::KernelMetadata::IMP_OCL_LINEARIZATION);
auto &Ctx = F->getContext();
auto *I32Ty = Type::getInt32Ty(Ctx);
ConstantInt *Offset = ConstantInt::get(I32Ty, LinTy.Offset);
LinearizedArg.push_back({&*I2, Offset});
++I2;
}
}
}
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
if (F->hasDLLExportStorageClass())
NF->setDLLStorageClass(F->getDLLStorageClass());
vc::replaceFunctionRefMD(*F, *NF);
SmallVector<unsigned, 8> ArgKinds;
vc::KernelMetadata KM{NF};
// Update arg kinds for the NF.
for (unsigned i = 0; i < KM.getNumArgs(); ++i) {
if (LinearizedArgs.count(IGCLLVM::getArg(*NF, i)))
ArgKinds.push_back(vc::KernelMetadata::AK_NORMAL |
vc::KernelMetadata::IMP_OCL_BYVALSVM);
else
ArgKinds.push_back(KM.getArgKind(i));
}
std::copy(ImpKinds.begin(), ImpKinds.end(), std::back_inserter(ArgKinds));
KM.updateArgKindsMD(std::move(ArgKinds));
KM.updateLinearizationMD(std::move(LinearizedArgs));
// Now that the old function is dead, delete it. If there is a dangling
// reference to the CallGraphNode, just leave the dead function around
NF_CGN->stealCalledFunctionsFrom(CG[F]);
CallGraphNode *CGN = CG[F];
if (CGN->getNumReferences() == 0)
delete CG.removeFunctionFromModule(CGN);
else
F->setLinkage(Function::ExternalLinkage);
return NF_CGN;
}
char CMImpParam::ID = 0;
INITIALIZE_PASS_BEGIN(CMImpParam, "cmimpparam",
"Transformations required to support implicit arguments",
false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(CMImpParam, "cmimpparam",
"Transformations required to support implicit arguments",
false, false)
Pass *llvm::createCMImpParamPass(bool IsCMRT, bool HasPayloadInMemory) {
return new CMImpParam{IsCMRT, HasPayloadInMemory};
}
|