1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
//
/// CMKernelArgOffset
/// -----------------
///
/// This pass determines the offset of each CM kernel argument, and adds it to
/// the kernel metadata.
///
/// This pass also changes the linkage type for kernels, functions, and globals.
/// assuming that functions and globals has no external exposure, therefore
/// if not use, can be deleted by later GlobalDCE pass.
///
/// A CM kernel has metadata containing, amongst other things, an array of
/// *kind* bytes, one byte per kernel argument, that will be output in the vISA
/// kernel input table. This pass calculates the offset of each kernel argument,
/// and adds an array to the kernel metadata containing the calculated offsets.
///
/// Argument offsets start at 32, as r0 is reserved by the various thread
/// dispatch mechanisms.
///
/// The pass attempts to calculate the kernel argument offsets in a way that
/// minimizes space wasted by holes.
///
/// The arguments are processed in three sets, with each (non-empty) set
/// starting in a new GRF:
///
/// 1. explicit kernel arguments (i.e. ones that appeared in the CM source);
///
/// 2. implicit kernel (non-thread) arguments;
///
/// 3. implicit thread arguments.
///
/// These three sets need to be allocated as three separate chunks of whole GRF
/// registers in that order by the CM runtime. In theory, the CM runtime can
/// cope with the compiler creating a different ordering, but to do so it needs
/// to create its own ordering and insert mov instructions at the start of the
/// kernel, which is suboptimal. However, I am not clear whether that mechanism
/// works, and it has not been tested.
///
/// There is a compiler option that can be used to disable argument re-ordering.
/// This is for developers who are using the output asm files directly and want
/// to control the argument order explicitly. The option is
/// -enable-kernel-arg-reordering but is typically invoked as -mllvm
/// -enable-kernel-arg-reordering=false (the default is true)
///
/// Along with kernel argument offset calculation, it sets kernel argument
/// indexes and implicit linearization offsets in the original explicit byval
/// argument (OffsetsInArg). Argument index may differ from argument number in
/// function. For instance, all the implicit linearization arguments have the
/// index equal to the explicit argument index, because they must be mapped to
/// it in OCL/L0 runtime argument annotation.
///
/// %struct.s1 = type { [2 x i32], i8 }
/// declare i32 @foo(%struct.s1* byval(%struct.s1) "VCArgumentDesc"="svmptr_t"
/// "VCArgumentIOKind"="0" "VCArgumentKind"="0" %_arg_, i64
/// %_arg_1, i32 %__arg_lin__arg_0, i32 %__arg_lin__arg_1,
/// i8 %__arg_lin__arg_2);
///
/// Argument | Index | OffsetsInArg |
/// %_arg_ | 0 | 0 | explicit byval arg
/// %_arg_1 | 1 | 0 | explicit arg
/// %__arg_lin__arg_0.0 | 0 | 0 | linearization of %_arg_
/// %__arg_lin__arg_0.4 | 0 | 4 | linearization of %_arg_
/// %__arg_lin__arg_0.8 | 0 | 8 | linearization of %_arg_
///
/// This example shows that implicit linearization arguments
/// (%__arg_lin__arg_0.0, %__arg_lin__arg_0.4 and %__arg_lin__arg_0.8) of the
/// explicit byval %_arg_ must be mapped at argument with index = 0 (= %_arg_)
/// and their offsets in this argument are 0, 4, 8 bytes. %_arg_ has %struct.s1
/// type, consequently, %__arg_lin__arg_0.0 is the first element of the array in
/// %struct.s1 type, %__arg_lin__arg_0.4 is the second element of the array, and
/// %__arg_lin__arg_0.8 is the last i8 field. Additionally, at this point, all
/// the uses of explicit byval arguments are changed to the appropriate
/// linearization.
///
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "cmkernelargoffset"
#include "llvmWrapper/Support/Alignment.h"
#include "vc/GenXOpts/GenXOpts.h"
#include "vc/Utils/GenX/KernelInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/GenXIntrinsics/GenXMetadata.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "Probe/Assertion.h"
using namespace llvm;
static cl::opt<bool>
CMRTOpt("cmkernelargoffset-cmrt", cl::init(true), cl::Hidden,
cl::desc("Should be used only in llvm opt to switch RT"));
namespace llvm {
unsigned getValueAlignmentInBytes(const Value &Val, const DataLayout &DL) {
// If this is a volatile global, then its pointer
// actually means nothing and pointee type should be
// used instead.
auto *GV = dyn_cast<GlobalVariable>(&Val);
if (GV && GV->hasAttribute(genx::FunctionMD::GenXVolatile)) {
return divideCeil(DL.getTypeSizeInBits(GV->getValueType()), 8);
}
Type *Ty = Val.getType();
if (Ty->isPointerTy())
return IGCLLVM::getAlignmentValue(
DL.getPointerABIAlignment(Ty->getPointerAddressSpace()));
return divideCeil(DL.getTypeSizeInBits(Ty->getScalarType()), 8);
}
} // namespace llvm
namespace {
struct GrfParamZone {
unsigned Start;
unsigned End;
GrfParamZone(unsigned s, unsigned e) : Start(s), End(e){};
};
// CMKernelArgOffset pass
class CMKernelArgOffset : public ModulePass {
vc::KernelMetadata *KM = nullptr;
// Emit code for OCL runtime.
bool OCLCodeGen = false;
public:
static char ID;
CMKernelArgOffset(unsigned GrfByteSize = 32, bool OCLCodeGen = false)
: ModulePass(ID), OCLCodeGen(OCLCodeGen || !CMRTOpt),
GrfByteSize(GrfByteSize) {
initializeCMKernelArgOffsetPass(*PassRegistry::getPassRegistry());
GrfMaxCount = 256;
GrfStartOffset = GrfByteSize;
GrfEndOffset = 128 * GrfByteSize;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {}
StringRef getPassName() const override { return "CM kernel arg offset"; }
bool runOnModule(Module &M) override;
private:
void processKernel(Function &Kernel);
void processKernelOnOCLRT(Function *F);
void resolveByValArgs(Function *F) const;
static Value *getValue(Metadata *M) {
if (auto VM = dyn_cast<ValueAsMetadata>(M))
return VM->getValue();
return nullptr;
}
// Relayout thread paylod for OpenCL runtime.
bool enableOCLCodeGen() const { return OCLCodeGen; }
unsigned GrfByteSize;
unsigned GrfMaxCount;
unsigned GrfStartOffset;
unsigned GrfEndOffset;
};
} // namespace
char CMKernelArgOffset::ID = 0;
INITIALIZE_PASS_BEGIN(CMKernelArgOffset, "cmkernelargoffset",
"CM kernel arg offset determination", false, false)
INITIALIZE_PASS_END(CMKernelArgOffset, "cmkernelargoffset",
"CM kernel arg offset determination", false, false)
Pass *llvm::createCMKernelArgOffsetPass(unsigned GrfByteSize, bool OCLCodeGen) {
return new CMKernelArgOffset(GrfByteSize, OCLCodeGen);
}
// Check whether there is an input/output argument attribute.
static bool canReorderArguments(const vc::KernelMetadata &KM) {
using ArgIOKind = vc::KernelMetadata::ArgIOKind;
return llvm::all_of(KM.getArgIOKinds(),
[](ArgIOKind K) { return K == ArgIOKind::Normal; });
}
/***********************************************************************
* runOnModule : run the CM kernel arg offset pass
*/
bool CMKernelArgOffset::runOnModule(Module &M) {
if (!vc::hasKernel(M))
return false;
// Process each kernel in the CM kernel metadata.
for (Function &Kernel : vc::kernels(M))
processKernel(Kernel);
return true;
}
/***********************************************************************
* processKernel : process one kernel
*
* Enter: Kernel = reference for a kernel function
*
* See GenXMetadata.h for complete list of kernel metadata
*/
void CMKernelArgOffset::processKernel(Function &Kernel) {
// change the linkage attribute for the kernel
Kernel.setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
vc::KernelMetadata KM{&Kernel};
this->KM = &KM;
// Layout kernel arguments differently if to run on OpenCL runtime.
if (enableOCLCodeGen()) {
resolveByValArgs(&Kernel);
return processKernelOnOCLRT(&Kernel);
}
auto getTypeSizeInBytes = [&Kernel](Type *Ty) {
const DataLayout &DL = Kernel.getParent()->getDataLayout();
if (auto PT = dyn_cast<PointerType>(Ty))
return DL.getPointerTypeSize(Ty);
return static_cast<unsigned>(Ty->getPrimitiveSizeInBits() / 8);
};
// setup kernel inputs, optionally reordering the assigned offsets for
// improved packing where appropriate. The reordering algorithm replicates
// that used in the legacy Cm compiler, as certain media walker applications
// seem sensitive to the way the kernel inputs are laid out.
SmallDenseMap<const Argument *, unsigned> PlacedArgs;
unsigned Offset = 0;
if (canReorderArguments(KM)) {
// Reorder kernel input arguments. Arguments are placed in size order,
// largest first (then in natural argument order where arguments are the
// same size). Each argument is placed at the lowest unused suitably
// aligned offset. So, in general big arguments are placed first with the
// smaller arguments being fit opportunistically into the gaps left
// between arguments placed earlier.
//
// Arguments that are at least one GRF in size must be aligned to a GRF
// boundary. Arguments smaller than a GRF must not cross a GRF boundary.
//
// FreeZones describes unallocated portions of the kernel input space,
// and is list of non-overlapping start-end pairs, ordered lowest first.
// Initially it consists of a single pair that describes the whole space
SmallVector<GrfParamZone, 16> FreeZones;
FreeZones.push_back(GrfParamZone(GrfStartOffset, GrfEndOffset));
// Repeatedly iterate over the arguments list, each time looking for the
// largest one that hasn't been processed yet.
// But ignore implicit args for now as they want to go after all the others.
do {
Argument *BestArg = nullptr;
unsigned BestSize;
unsigned BestElemSize;
auto ArgKinds = KM.getArgKinds();
auto Kind = ArgKinds.begin();
for (Function::arg_iterator i = Kernel.arg_begin(), e = Kernel.arg_end();
i != e; ++i, ++Kind) {
Argument *Arg = &*i;
if (*Kind & 0xf8)
continue; // implicit arg
if (PlacedArgs.find(Arg) != PlacedArgs.end())
// Already done this one.
continue;
Type *Ty = Arg->getType();
unsigned Bytes = getTypeSizeInBytes(Ty);
if (BestArg == nullptr || BestSize < Bytes) {
BestArg = Arg;
BestSize = Bytes;
BestElemSize = getTypeSizeInBytes(Ty->getScalarType());
}
}
if (BestArg == nullptr)
// All done.
break;
// The best argument in this cycle has been found. Search FreeZones for
// a suitably sized and aligned gap.
unsigned Align;
if (BestSize > GrfByteSize)
Align = GrfByteSize;
else
Align = BestElemSize;
auto zi = FreeZones.begin();
auto ze = FreeZones.end();
unsigned Start = 0, End = 0;
for (; zi != ze; ++zi) {
GrfParamZone &Zone = *zi;
Start = alignTo(Zone.Start, Align);
End = Start + BestSize;
if ((Start % GrfByteSize) != 0 &&
(Start / GrfByteSize) != (End - 1) / GrfByteSize) {
Start = alignTo(Zone.Start, GrfByteSize);
End = Start + BestSize;
}
if (End <= Zone.End)
// Found one. This should never fail unless we have too many
// parameters to start with.
break;
}
IGC_ASSERT_MESSAGE(zi != ze,
"unable to allocate argument offset (too many arguments?)");
// Exclude the found block from the free zones list. This may require
// that the found zone be split in two if the start of the block is
// not suitably aligned.
GrfParamZone &Zone = *zi;
if (Zone.Start == Start)
Zone.Start = End;
else {
unsigned NewEnd = Zone.End;
Zone.End = Start;
++zi;
FreeZones.insert(zi, GrfParamZone(End, NewEnd));
}
PlacedArgs[BestArg] = Start;
} while (true);
// Now process the implicit args. First get the offset at the start of the
// last free zone. Process the implicit kernel args first, then the
// implicit thread args.
Offset = FreeZones.back().Start;
for (int WantThreadImplicit = 0; WantThreadImplicit != 2;
++WantThreadImplicit) {
bool FirstThreadImplicit = WantThreadImplicit;
auto ArgKinds = KM.getArgKinds();
auto Kind = ArgKinds.begin();
for (Function::arg_iterator i = Kernel.arg_begin(), e = Kernel.arg_end();
i != e; ++i, ++Kind) {
Argument *Arg = &*i;
if (!(*Kind & 0xf8))
continue; // not implicit arg
int IsThreadImplicit = (*Kind >> 3) == 3; // local_id
if (WantThreadImplicit != IsThreadImplicit)
continue;
Type *Ty = Arg->getType();
unsigned Bytes = Ty->getPrimitiveSizeInBits() / 8U;
unsigned Align = Ty->getScalarSizeInBits() / 8U;
// If this is the first thread implicit arg, put it in a new GRF.
if (FirstThreadImplicit)
Align = GrfByteSize;
FirstThreadImplicit = false;
Offset = alignTo(Offset, Align);
if ((Offset & (GrfByteSize - 1)) + Bytes > GrfByteSize) {
// GRF align if arg would cross GRF boundary
Offset = alignTo(Offset, GrfByteSize);
}
PlacedArgs[Arg] = Offset;
Offset += Bytes;
}
}
} else {
// No argument reordering. Arguments are placed at increasing offsets
// in their natural order, aligned according to their type.
//
// Again, arguments that are at least one GRF in size must be aligned to
// a GRF boundary. Arguments smaller than a GRF must not cross a GRF
// boundary.
// kernel input start offset
auto &DL = Kernel.getParent()->getDataLayout();
Offset = GrfStartOffset;
// Place an argument and update offset.
// Arguments larger than a GRF must be at least GRF-aligned. Arguments
// smaller than a GRF may not cross GRF boundaries. This means that
// arguments cross a GRF boundary must be GRF aligned.
auto placeArg = [&](Argument *Arg, unsigned ByteSize, unsigned Align) {
Offset = alignTo(Offset, Align);
unsigned StartGRF = Offset / GrfByteSize;
unsigned EndGRF = (Offset + ByteSize - 1) / GrfByteSize;
if (StartGRF != EndGRF)
Offset = alignTo(Offset, GrfByteSize);
PlacedArgs[Arg] = Offset;
Offset += ByteSize;
};
for (auto &Arg : Kernel.args()) {
unsigned Alignment = getValueAlignmentInBytes(Arg, DL);
Type *Ty = Arg.getType();
unsigned Bytes = DL.getTypeSizeInBits(Ty) / 8;
placeArg(&Arg, Bytes, Alignment);
}
}
SmallVector<unsigned, 8> ArgOffsets;
std::transform(
Kernel.arg_begin(), Kernel.arg_end(), std::back_inserter(ArgOffsets),
[&PlacedArgs](const Argument &Arg) { return PlacedArgs[&Arg]; });
KM.updateArgOffsetsMD(std::move(ArgOffsets));
SmallVector<unsigned, 8> OffsetInArgs(Kernel.arg_size(), 0);
KM.updateOffsetInArgsMD(std::move(OffsetInArgs));
SmallVector<unsigned, 8> Indexes;
std::transform(Kernel.arg_begin(), Kernel.arg_end(),
std::back_inserter(Indexes),
[](const Argument &Arg) { return Arg.getArgNo(); });
KM.updateArgIndexesMD(std::move(Indexes));
this->KM = nullptr;
}
// CMImpParam generated byval aggregate arguments linearization metadata and
// appended implicit linearization to function arguments. Now it's time to
// change the use of the explicit byval aggregate argument to its implicit
// linearization.
void CMKernelArgOffset::resolveByValArgs(Function *F) const {
IGC_ASSERT(KM);
IRBuilder<> Builder(&*F->getEntryBlock().getFirstInsertionPt());
for (auto &Arg : F->args()) {
if (!KM->hasArgLinearization(&Arg))
continue;
auto *Base =
Builder.CreateAlloca(Arg.getType()->getPointerElementType(), nullptr,
Arg.getName() + ".linearization");
Value *BaseAsI8Ptr = Builder.CreateBitCast(Base, Builder.getInt8PtrTy(),
Base->getName() + ".i8");
for (const auto &Info : KM->arg_lin(&Arg)) {
Type *Ty = cast<PointerType>(BaseAsI8Ptr->getType()->getScalarType())
->getPointerElementType();
Value *StoreAddrUntyped = Builder.CreateGEP(Ty, BaseAsI8Ptr, Info.Offset);
Value *StoreAddrTyped = Builder.CreateBitCast(
StoreAddrUntyped, Info.Arg->getType()->getPointerTo());
Builder.CreateStore(Info.Arg, StoreAddrTyped);
}
Arg.replaceNonMetadataUsesWith(Base);
}
}
// Add entries to a container(map). A key is an implicit linearization argument
// and value is an offset for this implicit linearization argument.
// Arg = explicit argument which has the implicit linearization
// ArgOffset = offset of Arg
template <typename OutIterT>
void setImplicitLinearizationOffset(Argument &Arg, unsigned ArgOffset,
const vc::KernelMetadata &KM,
OutIterT OutIt) {
IGC_ASSERT(KM.hasArgLinearization(&Arg));
std::transform(KM.arg_lin_begin(&Arg), KM.arg_lin_end(&Arg), OutIt,
[ArgOffset](const vc::ImplicitLinearizationInfo &Lin) {
return std::make_pair(Lin.Arg, Lin.Offset->getZExtValue() +
ArgOffset);
});
}
void CMKernelArgOffset::processKernelOnOCLRT(Function *F) {
IGC_ASSERT(KM);
SmallDenseMap<const Argument *, unsigned> PlacedArgs;
{
// OpenCL SIMD8 thread payloads are organized as follows:
//
// 0 1 2 3 4 5 6 7
// R0: GX GY GZ
// R1: LIDx LIDy LIDz
//
unsigned Offset = GrfStartOffset;
unsigned ThreadPayloads[] = {
Offset // R1, local_id_x, local_id_y, local_id_z
};
auto getImpOffset = [&](uint32_t ArgKind) -> int {
if (vc::isLocalIDKind(ArgKind))
return ThreadPayloads[0];
return -1;
};
// Starting offsets for non-implicit arguments.
Offset += 1 * GrfByteSize;
// A map from implicit linearization argument to it's offset. The offset for
// this type of arguments is an offset of the explicit argument (which was
// linearized) + offset in the explicit argument.
std::unordered_map<Argument *, unsigned> ImplicitLinearizationArgToOffset;
// Place an argument and update offset.
// Arguments larger than a GRF must be at least GRF-aligned. Arguments
// smaller than a GRF may not cross GRF boundaries. This means that
// arguments cross a GRF boundary must be GRF aligned.
auto placeArg = [&](Argument *Arg, unsigned ByteSize, unsigned Align) {
Offset = alignTo(Offset, Align);
unsigned StartGRF = Offset / GrfByteSize;
unsigned EndGRF = (Offset + ByteSize - 1) / GrfByteSize;
if (StartGRF != EndGRF)
Offset = alignTo(Offset, GrfByteSize);
if (Arg->hasByValAttr()) {
PlacedArgs[Arg] = vc::KernelMetadata::SKIP_OFFSET_VAL;
auto InsertIt = std::inserter(ImplicitLinearizationArgToOffset,
ImplicitLinearizationArgToOffset.end());
setImplicitLinearizationOffset(*Arg, Offset, *KM, InsertIt);
Offset += ByteSize;
} else if (ImplicitLinearizationArgToOffset.count(Arg)) {
// Don't update offset. This implicit arg must be mapped on an explicit
// one.
PlacedArgs[Arg] = ImplicitLinearizationArgToOffset[Arg];
} else {
PlacedArgs[Arg] = Offset;
Offset += ByteSize;
}
};
// First scan, assign implicit arguments.
for (auto &&[Arg, ArgKind] : zip(F->args(), KM->getArgKinds())) {
int ImpOffset = getImpOffset(ArgKind);
if (ImpOffset > 0) {
PlacedArgs[&Arg] = ImpOffset;
continue;
}
if (vc::isLocalSizeKind(ArgKind) || vc::isGroupCountKind(ArgKind) ||
vc::isPrintBufferKind(ArgKind) || vc::isPrivateBaseKind(ArgKind) ||
vc::isImplicitArgsBufferKind(ArgKind)) {
unsigned Bytes = Arg.getType()->getPrimitiveSizeInBits() / 8;
unsigned Align = Arg.getType()->getScalarSizeInBits() / 8;
placeArg(&Arg, Bytes, Align);
}
}
// Second scan, assign normal arguments.
unsigned Idx = 0;
for (auto &&[Arg, ArgKind] : zip(F->args(), KM->getArgKinds())) {
bool IsBuffer = KM->isBufferType(Idx++);
// Skip alaready assigned arguments.
if (PlacedArgs.count(&Arg))
continue;
// image/sampler arguments do not allocate vISA inputs
// buffer arguments do allocate unused vISA inputs
if (!vc::isNormalCategoryArgKind(ArgKind) && !IsBuffer) {
PlacedArgs[&Arg] = vc::KernelMetadata::SKIP_OFFSET_VAL;
continue;
}
Type *Ty = Arg.getType();
auto &DL = F->getParent()->getDataLayout();
unsigned Alignment = 0;
unsigned Bytes = 0;
if (IsBuffer) {
// Buffer is treated as stateless global pointer!
Bytes = DL.getPointerSize();
Alignment = IGCLLVM::getAlignmentValue(DL.getPointerABIAlignment(0));
} else if (Ty->isPointerTy()) {
if (Arg.hasByValAttr()) {
Ty = Ty->getContainedType(0);
Bytes = DL.getTypeAllocSize(Ty);
Alignment = IGCLLVM::getAlignmentValue(Bytes);
} else {
Bytes = DL.getPointerTypeSize(Ty);
Alignment = IGCLLVM::getAlignmentValue(
DL.getPointerABIAlignment(Ty->getPointerAddressSpace()));
}
} else {
Bytes = Ty->getPrimitiveSizeInBits() / 8;
Alignment = IGCLLVM::getAlignmentValue(Ty->getScalarSizeInBits() / 8);
}
placeArg(&Arg, Bytes, Alignment);
}
}
SmallVector<unsigned, 8> ArgOffsets;
std::transform(
F->arg_begin(), F->arg_end(), std::back_inserter(ArgOffsets),
[&PlacedArgs](const Argument &Arg) { return PlacedArgs[&Arg]; });
KM->updateArgOffsetsMD(std::move(ArgOffsets));
SmallVector<unsigned, 8> OffsetInArgs(F->arg_size(), 0);
SmallVector<unsigned, 8> Indexes;
std::transform(F->arg_begin(), F->arg_end(), std::back_inserter(Indexes),
[](const Argument &Arg) { return Arg.getArgNo(); });
for (Argument &Arg : F->args()) {
if (!KM->hasArgLinearization(&Arg))
continue;
for (const auto &Lin : KM->arg_lin(&Arg)) {
unsigned LinArgNo = Lin.Arg->getArgNo();
OffsetInArgs[LinArgNo] = Lin.Offset->getZExtValue();
Indexes[LinArgNo] = Arg.getArgNo();
}
}
KM->updateOffsetInArgsMD(std::move(OffsetInArgs));
KM->updateArgIndexesMD(std::move(Indexes));
}
|