1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXPrintfResolution
/// --------------------
/// This pass finds every call to printf function and replaces it with a series
/// of printf implementation functions from BiF. A proper version of
/// implementation (32/64 bit, cm/ocl/ze binary) is provided by outer logic.
/// Before:
/// %p = call spir_func i32 (i8 as(2)*, ...) @printf(i8 as(2)* %str)
/// After:
/// %init = call <4 x i32> @__vc_printf_init(<4 x i32> zeroinitializer)
/// %fmt = call <4 x i32> @__vc_printf_fmt(<4 x i32> %init, i8 as(2)* %str)
/// %printf = call i32 @__vc_printf_ret(<4 x i32> %fmt)
///
/// Vector <4 x i32> is passed between functions to transfer their internal
/// data. This data is handled by the function implementations themselves,
/// this pass knows nothing about it.
//===----------------------------------------------------------------------===//
#include "vc/BiF/PrintfIface.h"
#include "vc/GenXOpts/GenXOpts.h"
#include "vc/Support/BackendConfig.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/Printf.h"
#include "vc/Utils/General/BiF.h"
#include "vc/Utils/General/IRBuilder.h"
#include "vc/Utils/General/Types.h"
#include <llvm/ADT/STLExtras.h>
#include <llvm/ADT/iterator_range.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/Module.h>
#include <llvm/Linker/Linker.h>
#include <llvm/Pass.h>
#include <llvm/Support/ErrorHandling.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Operator.h"
#include "llvmWrapper/IR/Instructions.h"
#include <algorithm>
#include <functional>
#include <numeric>
#include <sstream>
#include <vector>
using namespace llvm;
using namespace vc;
using namespace vc::bif::printf;
namespace PrintfImplFunc {
enum Enum {
Init,
Fmt,
FmtGlobal,
FmtLegacy,
Arg,
ArgStr,
ArgStrGlobal,
ArgStrLegacy,
Ret,
Size
};
static constexpr const char *Name[Size] = {"__vc_printf_init",
"__vc_printf_fmt",
"__vc_printf_fmt_global",
"__vc_printf_fmt_legacy",
"__vc_printf_arg",
"__vc_printf_arg_str",
"__vc_printf_arg_str_global",
"__vc_printf_arg_str_legacy",
"__vc_printf_ret"};
} // namespace PrintfImplFunc
namespace {
class GenXPrintfResolution final : public ModulePass {
const DataLayout *DL = nullptr;
std::array<FunctionCallee, PrintfImplFunc::Size> PrintfImplDecl;
public:
static char ID;
GenXPrintfResolution() : ModulePass(ID) {}
StringRef getPassName() const override { return "GenX printf resolution"; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnModule(Module &M) override;
private:
std::unique_ptr<Module> getBiFModule(LLVMContext &Ctx);
void handlePrintfCall(CallInst &OrigPrintf);
void addPrintfImplDeclarations(Module &M);
void updatePrintfImplDeclarations(Module &M);
void preparePrintfImplForInlining();
CallInst &createPrintfInitCall(CallInst &OrigPrintf, int FmtStrSize,
const PrintfArgInfoSeq &ArgsInfo);
CallInst &createPrintfFmtCall(CallInst &OrigPrintf, CallInst &InitCall);
CallInst &createPrintfArgCall(CallInst &OrigPrintf, CallInst &PrevCall,
Value &Arg, PrintfArgInfo Info);
CallInst &createPrintfArgStrCall(CallInst &OrigPrintf, CallInst &PrevCall,
Value &Arg);
CallInst &createPrintfRetCall(CallInst &OrigPrintf, CallInst &PrevCall);
template <PrintfImplFunc::Enum DefaulDeclID>
CallInst &createCallWithStringArg(CallInst &OrigPrintf, Value &StrArg,
Value &AuxArg);
};
} // namespace
char GenXPrintfResolution::ID = 0;
namespace llvm {
void initializeGenXPrintfResolutionPass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(GenXPrintfResolution, "GenXPrintfResolution",
"GenXPrintfResolution", false, false)
INITIALIZE_PASS_DEPENDENCY(GenXBackendConfig)
INITIALIZE_PASS_END(GenXPrintfResolution, "GenXPrintfResolution",
"GenXPrintfResolution", false, false)
ModulePass *llvm::createGenXPrintfResolutionPass() {
initializeGenXPrintfResolutionPass(*PassRegistry::getPassRegistry());
return new GenXPrintfResolution;
}
void GenXPrintfResolution::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<GenXBackendConfig>();
}
using CallInstRef = std::reference_wrapper<CallInst>;
static bool isPrintfCall(const CallInst &CI) {
auto *CalledFunc = CI.getCalledFunction();
if (!CalledFunc)
return false;
if (!CalledFunc->isDeclaration())
return false;
return CalledFunc->getName() == "printf" ||
CalledFunc->getName().contains("__spirv_ocl_printf");
}
static bool isPrintfCall(const Instruction &Inst) {
if (!isa<CallInst>(Inst))
return false;
return isPrintfCall(cast<CallInst>(Inst));
}
static std::vector<CallInstRef> collectWorkload(Module &M) {
std::vector<CallInstRef> Workload;
for (Function &F : M)
llvm::transform(
make_filter_range(instructions(F),
[](Instruction &Inst) { return isPrintfCall(Inst); }),
std::back_inserter(Workload),
[](Instruction &Inst) { return std::ref(cast<CallInst>(Inst)); });
return Workload;
}
// \p Workload must be a range of objects convertible to CallInst &. The range
// must not be empty. The set of called by \p Workload elements functions is
// returned. For the most case there should be only one printf declaration.
// Though considering that some frontends tend to place strings in different
// address spaces and that SPIR-V level linking is possible there may be cases
// where more that one printf declaration is present.
template <typename Range>
static SmallPtrSet<Function *, 1> getPrintfDeclarations(const Range &Workload) {
IGC_ASSERT_MESSAGE(Workload.begin() != Workload.end(),
"wrong argument: the input range must not be empty");
SmallPtrSet<Function *, 1> Declarations;
for (CallInst &CI : Workload)
Declarations.insert(CI.getCalledFunction());
IGC_ASSERT_MESSAGE(!Declarations.empty(),
"must be at least 1 printf declaration");
IGC_ASSERT_MESSAGE(
llvm::all_of(Declarations,
[](Function *F) { return F && F->isDeclaration(); }),
"printf must be a declaration");
return Declarations;
}
bool GenXPrintfResolution::runOnModule(Module &M) {
DL = &M.getDataLayout();
std::vector<CallInstRef> Workload = collectWorkload(M);
if (Workload.empty())
return false;
auto PrintfDecls = getPrintfDeclarations(Workload);
addPrintfImplDeclarations(M);
for (CallInst &CI : Workload)
handlePrintfCall(CI);
std::unique_ptr<Module> PrintfImplModule = getBiFModule(M.getContext());
PrintfImplModule->setDataLayout(M.getDataLayout());
PrintfImplModule->setTargetTriple(M.getTargetTriple());
if (Linker::linkModules(M, std::move(PrintfImplModule),
Linker::Flags::LinkOnlyNeeded)) {
IGC_ASSERT_MESSAGE(0, "Error linking printf implementation builtin module");
}
updatePrintfImplDeclarations(M);
preparePrintfImplForInlining();
IGC_ASSERT_MESSAGE(
llvm::all_of(PrintfDecls, [](Function *F) { return F->use_empty(); }),
"no users of printf function must be left");
for (Function *PrintfDecl : PrintfDecls)
PrintfDecl->eraseFromParent();
return true;
}
std::unique_ptr<Module> GenXPrintfResolution::getBiFModule(LLVMContext &Ctx) {
MemoryBufferRef PrintfBiFModuleBuffer =
getAnalysis<GenXBackendConfig>().getBiFModule(BiFKind::VCPrintf);
if (!PrintfBiFModuleBuffer.getBufferSize()) {
IGC_ASSERT_MESSAGE(0, "printf implementation module is absent");
}
return vc::getBiFModuleOrReportError(PrintfBiFModuleBuffer, Ctx);
}
static void assertPrintfCall(const CallInst &CI) {
IGC_ASSERT_MESSAGE(isPrintfCall(CI), "printf call is expected");
IGC_ASSERT_MESSAGE(CI.arg_size() > 0,
"printf call must have at least format string argument");
(void)CI;
}
// Returns pair of format string size (including '\0') and argument information.
static std::pair<int, PrintfArgInfoSeq>
analyzeFormatString(const Value &FmtStrOp) {
auto FmtStr = getConstStringFromOperandOptional(FmtStrOp);
if (!FmtStr)
vc::fatal(FmtStrOp.getContext(), "GenXPrintfResolution",
PrintfStringAccessError);
return {FmtStr.getValue().size() + 1, parseFormatString(FmtStr.getValue())};
}
// Marks strings passed as "%s" arguments in printf.
// Recursive function, long instruction chains aren't expected.
static void markStringArgument(Value &Arg) {
if (isa<GEPOperator>(Arg)) {
auto *String = getConstStringGVFromOperandOptional(Arg);
if (!String)
vc::fatal(Arg.getContext(), "GenXPrintfResolution",
PrintfStringAccessError);
String->addAttribute(PrintfStringVariable);
return;
}
if (isa<SelectInst>(Arg)) {
auto &SI = cast<SelectInst>(Arg);
// The same value can be potentially accessed by different paths. Though
// it is probably OK, since the same string can be marked several times
// and the most of the time cases would be simple so it is not that
// critical to pass same values several times in some rare complicated
// cases.
markStringArgument(*SI.getFalseValue());
markStringArgument(*SI.getTrueValue());
return;
}
if (isCastToGenericAS(Arg))
return markStringArgument(
*cast<IGCLLVM::AddrSpaceCastOperator>(Arg).getPointerOperand());
// An unsupported instruction or instruction sequence was met.
vc::fatal(Arg.getContext(), "GenXPrintfResolution", PrintfStringAccessError);
}
// Marks printf strings: format strings, strings passed as "%s" arguments.
static void markPrintfStrings(CallInst &OrigPrintf,
const PrintfArgInfoSeq &ArgsInfo) {
auto &FormatString =
getConstStringGVFromOperand(*OrigPrintf.getArgOperand(0));
FormatString.addAttribute(PrintfStringVariable);
// Handle string arguments (%s).
auto StringArgs = make_filter_range(
zip(drop_begin(OrigPrintf.args(), 1), ArgsInfo), [](auto &&ArgWithInfo) {
return std::get<const PrintfArgInfo &>(ArgWithInfo).Type ==
PrintfArgInfo::String;
});
for (auto &&[Arg, ArgInfo] : StringArgs)
markStringArgument(*Arg.get());
}
void GenXPrintfResolution::handlePrintfCall(CallInst &OrigPrintf) {
assertPrintfCall(OrigPrintf);
auto [FmtStrSize, ArgsInfo] =
analyzeFormatString(*OrigPrintf.getArgOperand(0));
if (ArgsInfo.size() != IGCLLVM::getNumArgOperands(&OrigPrintf) - 1)
vc::fatal(OrigPrintf.getContext(), "GenXPrintfResolution",
"printf format string and arguments don't correspond");
markPrintfStrings(OrigPrintf, ArgsInfo);
auto &InitCall = createPrintfInitCall(OrigPrintf, FmtStrSize, ArgsInfo);
auto &FmtCall = createPrintfFmtCall(OrigPrintf, InitCall);
// FIXME: combine LLVM call args type and format string info in more
// intelligent way.
auto ArgsWithInfo = zip(ArgsInfo, drop_begin(OrigPrintf.args(), 1));
// potentially FmtCall as there may be no arguments
auto &LastArgCall = *std::accumulate(
ArgsWithInfo.begin(), ArgsWithInfo.end(), &FmtCall,
[&OrigPrintf, this](CallInst *PrevCall, auto &&ArgWithInfo) {
return &createPrintfArgCall(OrigPrintf, *PrevCall,
*std::get<Use &>(ArgWithInfo).get(),
std::get<PrintfArgInfo &>(ArgWithInfo));
});
auto &RetCall = createPrintfRetCall(OrigPrintf, LastArgCall);
RetCall.takeName(&OrigPrintf);
OrigPrintf.replaceAllUsesWith(&RetCall);
OrigPrintf.eraseFromParent();
}
using PrintfImplTypeStorage = std::array<FunctionType *, PrintfImplFunc::Size>;
static PrintfImplTypeStorage getPrintfImplTypes(LLVMContext &Ctx) {
auto *TransferDataTy =
IGCLLVM::FixedVectorType::get(Type::getInt32Ty(Ctx), TransferDataSize);
auto *ArgsInfoTy =
IGCLLVM::FixedVectorType::get(Type::getInt32Ty(Ctx), ArgsInfoVector::Size);
auto *ArgDataTy = IGCLLVM::FixedVectorType::get(Type::getInt32Ty(Ctx), ArgData::Size);
constexpr bool IsVarArg = false;
PrintfImplTypeStorage FuncTys;
FuncTys[PrintfImplFunc::Init] =
FunctionType::get(TransferDataTy, ArgsInfoTy, IsVarArg);
FuncTys[PrintfImplFunc::Fmt] =
FunctionType::get(TransferDataTy,
{TransferDataTy, PointerType::get(Type::getInt8Ty(Ctx),
AddrSpace::Constant)},
IsVarArg);
FuncTys[PrintfImplFunc::FmtGlobal] =
FunctionType::get(TransferDataTy,
{TransferDataTy, PointerType::get(Type::getInt8Ty(Ctx),
AddrSpace::Global)},
IsVarArg);
FuncTys[PrintfImplFunc::FmtLegacy] =
FunctionType::get(TransferDataTy,
{TransferDataTy, PointerType::get(Type::getInt8Ty(Ctx),
AddrSpace::Private)},
IsVarArg);
FuncTys[PrintfImplFunc::Arg] = FunctionType::get(
TransferDataTy, {TransferDataTy, Type::getInt32Ty(Ctx), ArgDataTy},
IsVarArg);
FuncTys[PrintfImplFunc::ArgStr] = FuncTys[PrintfImplFunc::Fmt];
FuncTys[PrintfImplFunc::ArgStrGlobal] = FuncTys[PrintfImplFunc::FmtGlobal];
FuncTys[PrintfImplFunc::ArgStrLegacy] = FuncTys[PrintfImplFunc::FmtLegacy];
FuncTys[PrintfImplFunc::Ret] =
FunctionType::get(Type::getInt32Ty(Ctx), TransferDataTy, IsVarArg);
return FuncTys;
}
void GenXPrintfResolution::addPrintfImplDeclarations(Module &M) {
auto PrintfImplTy = getPrintfImplTypes(M.getContext());
for (int FuncID = 0; FuncID != PrintfImplFunc::Size; ++FuncID)
PrintfImplDecl[FuncID] = M.getOrInsertFunction(PrintfImplFunc::Name[FuncID],
PrintfImplTy[FuncID]);
}
// The function must be internal and have always inline attribute for
// always-inline pass to inline it and remove the original function body
// (the both are critical for GenXPrintfLegalization to work correctly).
void GenXPrintfResolution::preparePrintfImplForInlining() {
for (auto Callee : PrintfImplDecl) {
auto *Func = cast<Function>(Callee.getCallee());
Func->setLinkage(GlobalValue::LinkageTypes::InternalLinkage);
Func->addFnAttr(Attribute::AlwaysInline);
}
}
void GenXPrintfResolution::updatePrintfImplDeclarations(Module &M) {
std::transform(
std::begin(PrintfImplFunc::Name), std::end(PrintfImplFunc::Name),
PrintfImplDecl.begin(),
[&M](const char *Name) -> FunctionCallee { return M.getFunction(Name); });
}
using ArgsInfoStorage = std::array<unsigned, ArgsInfoVector::Size>;
// Returns arguments information required by init implementation function.
// FIXME: combine LLVM call args type and format string info before this
// function.
static ArgsInfoStorage collectArgsInfo(CallInst &OrigPrintf, int FmtStrSize,
const PrintfArgInfoSeq &FmtArgsInfo) {
assertPrintfCall(OrigPrintf);
ArgsInfoStorage ArgsInfo;
// It's not about format string.
ArgsInfo[ArgsInfoVector::NumTotal] = OrigPrintf.arg_size() - 1;
auto PrintfArgs =
make_range(std::next(OrigPrintf.arg_begin()), OrigPrintf.arg_end());
ArgsInfo[ArgsInfoVector::Num64Bit] =
llvm::count_if(PrintfArgs, [](Value *Arg) {
return Arg->getType()->getPrimitiveSizeInBits() == 64;
});
ArgsInfo[ArgsInfoVector::NumPtr] =
llvm::count_if(FmtArgsInfo, [](PrintfArgInfo Info) {
return Info.Type == PrintfArgInfo::Pointer;
});
ArgsInfo[ArgsInfoVector::NumStr] =
llvm::count_if(FmtArgsInfo, [](PrintfArgInfo Info) {
return Info.Type == PrintfArgInfo::String;
});
ArgsInfo[ArgsInfoVector::FormatStrSize] = FmtStrSize;
return ArgsInfo;
}
CallInst &GenXPrintfResolution::createPrintfInitCall(
CallInst &OrigPrintf, int FmtStrSize, const PrintfArgInfoSeq &FmtArgsInfo) {
assertPrintfCall(OrigPrintf);
auto ImplArgsInfo = collectArgsInfo(OrigPrintf, FmtStrSize, FmtArgsInfo);
IRBuilder<> IRB{&OrigPrintf};
auto *ArgsInfoV =
ConstantDataVector::get(OrigPrintf.getContext(), ImplArgsInfo);
return *IRB.CreateCall(PrintfImplDecl[PrintfImplFunc::Init], ArgsInfoV,
OrigPrintf.getName() + ".printf.init");
}
template <PrintfImplFunc::Enum DefaulDeclID, unsigned StrAS>
static PrintfImplFunc::Enum mutateDeclIDImpl();
template <>
PrintfImplFunc::Enum
mutateDeclIDImpl<PrintfImplFunc::Fmt, AddrSpace::Constant>() {
return PrintfImplFunc::Fmt;
}
template <>
PrintfImplFunc::Enum
mutateDeclIDImpl<PrintfImplFunc::Fmt, AddrSpace::Global>() {
return PrintfImplFunc::FmtGlobal;
}
template <>
PrintfImplFunc::Enum
mutateDeclIDImpl<PrintfImplFunc::Fmt, AddrSpace::Private>() {
return PrintfImplFunc::FmtLegacy;
}
template <>
PrintfImplFunc::Enum
mutateDeclIDImpl<PrintfImplFunc::ArgStr, AddrSpace::Constant>() {
return PrintfImplFunc::ArgStr;
}
template <>
PrintfImplFunc::Enum
mutateDeclIDImpl<PrintfImplFunc::ArgStr, AddrSpace::Global>() {
return PrintfImplFunc::ArgStrGlobal;
}
template <>
PrintfImplFunc::Enum
mutateDeclIDImpl<PrintfImplFunc::ArgStr, AddrSpace::Private>() {
return PrintfImplFunc::ArgStrLegacy;
}
// Transforms the provided declaration ID depending on the string address space
// \p StrAS. Only PrintfImplFunc::Fmt and PrintfImplFunc::ArgStr can be passed
// as \p DefaulDeclID.
template <PrintfImplFunc::Enum DefaulDeclID>
static PrintfImplFunc::Enum mutateDeclID(unsigned StrAS) {
switch (StrAS) {
default:
IGC_ASSERT_MESSAGE(0, "unexpected address space for a string argument");
case AddrSpace::Constant:
return mutateDeclIDImpl<DefaulDeclID, AddrSpace::Constant>();
case AddrSpace::Global:
return mutateDeclIDImpl<DefaulDeclID, AddrSpace::Global>();
case AddrSpace::Private:
return mutateDeclIDImpl<DefaulDeclID, AddrSpace::Private>();
}
}
// If \p StrArg is a generic pointer this function returns the resolved
// pointer - a non-generic pointer to the same object generic pointer was
// pointing to. When \p StrArg is already an non-generic pointer it is returned
// unchanged.
// \p StrArg must have a i8 pointer type.
static Value &resolveStringInGenericASIf(Value &StrArg) {
auto StrAS = StrArg.getType()->getPointerAddressSpace();
if (StrAS != AddrSpace::Generic)
return StrArg;
auto *GV = getConstStringGVFromOperandOptional(StrArg);
if (!GV)
// FIXME: String marking should already exclude too entangled string
// accesses. Though it is still possible to have series of switch
// instructions mixed with addrspace casts. This case is not
// supported here, but the string marking won't exclude it.
// Select instructions should be supported for consistancy.
vc::fatal(StrArg.getContext(), "GenXPrintfResolution",
"The pass cannot resolve generic address space "
"to access the provided string",
&StrArg);
return castArrayToFirstElemPtr(*GV);
}
// Common interface to generate call for format string or "%s" string argument
// handler.
// PrintfImplFunc::Fmt should be provided in template parameter to handle format
// string, PrintfImplFunc::ArgStr - for "%s" argument. Only those 2 declaration
// IDs can be passed. The function itself will consider string address space and
// mutate the provided declaration ID.
template <PrintfImplFunc::Enum DefaulDeclID>
CallInst &GenXPrintfResolution::createCallWithStringArg(CallInst &OrigPrintf,
Value &StrArg,
Value &AuxArg) {
assertPrintfCall(OrigPrintf);
IRBuilder<> IRB{&OrigPrintf};
auto &ResolvedStrArg = resolveStringInGenericASIf(StrArg);
auto StrAS = ResolvedStrArg.getType()->getPointerAddressSpace();
PrintfImplFunc::Enum DeclID = mutateDeclID<DefaulDeclID>(StrAS);
return *IRB.CreateCall(PrintfImplDecl[DeclID], {&AuxArg, &ResolvedStrArg},
OrigPrintf.getName() + ".printf.str.arg");
}
CallInst &GenXPrintfResolution::createPrintfFmtCall(CallInst &OrigPrintf,
CallInst &InitCall) {
return createCallWithStringArg<PrintfImplFunc::Fmt>(
OrigPrintf, *OrigPrintf.getOperand(0), InitCall);
}
static ArgKind::Enum getIntegerArgKind(Type &ArgTy) {
IGC_ASSERT_MESSAGE(ArgTy.isIntegerTy(),
"wrong argument: integer type was expected");
auto BitWidth = ArgTy.getIntegerBitWidth();
switch (BitWidth) {
case 64:
return ArgKind::Long;
case 32:
return ArgKind::Int;
case 16:
return ArgKind::Short;
default:
IGC_ASSERT_MESSAGE(BitWidth == 8, "unexpected integer type");
return ArgKind::Char;
}
}
static ArgKind::Enum getFloatingPointArgKind(Type &ArgTy) {
IGC_ASSERT_MESSAGE(ArgTy.isFloatingPointTy(),
"wrong argument: floating point type was expected");
if (ArgTy.isDoubleTy())
return ArgKind::Double;
// FIXME: what about half?
IGC_ASSERT_MESSAGE(ArgTy.isFloatTy(), "unexpected floating point type");
return ArgKind::Float;
}
static ArgKind::Enum getPointerArgKind(Type &ArgTy, PrintfArgInfo Info) {
IGC_ASSERT_MESSAGE(ArgTy.isPointerTy(),
"wrong argument: pointer type was expected");
IGC_ASSERT_MESSAGE(Info.Type == PrintfArgInfo::Pointer ||
Info.Type == PrintfArgInfo::String,
"only %s and %p should correspond to pointer argument");
(void)ArgTy;
if (Info.Type == PrintfArgInfo::String)
return ArgKind::String;
return ArgKind::Pointer;
}
static ArgKind::Enum getArgKind(Type &ArgTy, PrintfArgInfo Info) {
if (ArgTy.isIntegerTy())
return getIntegerArgKind(ArgTy);
if (ArgTy.isFloatingPointTy())
return getFloatingPointArgKind(ArgTy);
return getPointerArgKind(ArgTy, Info);
}
// sizeof(<2 x i32>) == 64
static constexpr unsigned VecArgSize = 64;
static constexpr auto VecArgElementSize = VecArgSize / ArgData::Size;
// Casts Arg to <2 x i32> vector. For pointers ptrtoint i64 should be generated
// first.
Value &get64BitArgAsVector(Value &Arg, IRBuilder<> &IRB, const DataLayout &DL) {
IGC_ASSERT_MESSAGE(DL.getTypeSizeInBits(Arg.getType()) == 64,
"64-bit argument was expected");
auto *VecArgTy =
IGCLLVM::FixedVectorType::get(IRB.getInt32Ty(), ArgData::Size);
Value *ArgToBitCast = &Arg;
if (Arg.getType()->isPointerTy())
ArgToBitCast =
IRB.CreatePtrToInt(&Arg, IRB.getInt64Ty(), Arg.getName() + ".arg.p2i");
return *IRB.CreateBitCast(ArgToBitCast, VecArgTy, Arg.getName() + ".arg.bc");
}
// Just creates this instruction:
// insertelement <2 x i32> zeroinitializer, i32 %arg, i32 0
// \p Arg must be i32 type.
Value &get32BitIntArgAsVector(Value &Arg, IRBuilder<> &IRB,
const DataLayout &DL) {
IGC_ASSERT_MESSAGE(Arg.getType()->isIntegerTy(32),
"i32 argument was expected");
auto *VecArgTy =
IGCLLVM::FixedVectorType::get(IRB.getInt32Ty(), ArgData::Size);
auto *BlankVec = ConstantAggregateZero::get(VecArgTy);
return *IRB.CreateInsertElement(BlankVec, &Arg, IRB.getInt32(0),
Arg.getName() + ".arg.insert");
}
// Takes arg that is not greater than 32 bit and casts it to i32 with possible
// zero extension.
static Value &getArgAs32BitInt(Value &Arg, IRBuilder<> &IRB,
const DataLayout &DL) {
auto ArgSize = DL.getTypeSizeInBits(Arg.getType());
IGC_ASSERT_MESSAGE(ArgSize <= VecArgElementSize,
"argument isn't expected to be greater than 32 bit");
if (ArgSize < VecArgElementSize) {
// FIXME: seems like there may be some problems with signed types, depending
// on our BiF and runtime implementation.
// FIXME: What about half?
IGC_ASSERT_MESSAGE(Arg.getType()->isIntegerTy(),
"only integers are expected to be less than 32 bits");
return *IRB.CreateZExt(&Arg, IRB.getInt32Ty(), Arg.getName() + ".arg.zext");
}
if (Arg.getType()->isPointerTy())
return *IRB.CreatePtrToInt(&Arg, IRB.getInt32Ty(),
Arg.getName() + ".arg.p2i");
if (!Arg.getType()->isIntegerTy())
return *IRB.CreateBitCast(&Arg, IRB.getInt32Ty(),
Arg.getName() + ".arg.bc");
return Arg;
}
// Args are passed via <2 x i32> vector. This function casts \p Arg to this
// vector type. \p Arg is zext if necessary (zext in common sense - writing
// top element of a vector with zeros is zero extending too).
static Value &getArgAsVector(Value &Arg, IRBuilder<> &IRB,
const DataLayout &DL) {
IGC_ASSERT_MESSAGE(!isa<IGCLLVM::FixedVectorType>(Arg.getType()),
"scalar type is expected");
auto ArgSize = DL.getTypeSizeInBits(Arg.getType());
if (ArgSize == VecArgSize)
return get64BitArgAsVector(Arg, IRB, DL);
IGC_ASSERT_MESSAGE(ArgSize < VecArgSize,
"arg is expected to be not greater than 64 bit");
Value &Arg32Bit = getArgAs32BitInt(Arg, IRB, DL);
return get32BitIntArgAsVector(Arg32Bit, IRB, DL);
}
// Create call to printf argument handler implementation for string argument
// (%s). Strings require a separate implementation.
CallInst &GenXPrintfResolution::createPrintfArgStrCall(CallInst &OrigPrintf,
CallInst &PrevCall,
Value &Arg) {
return createCallWithStringArg<PrintfImplFunc::ArgStr>(OrigPrintf, Arg,
PrevCall);
}
CallInst &GenXPrintfResolution::createPrintfArgCall(CallInst &OrigPrintf,
CallInst &PrevCall,
Value &Arg,
PrintfArgInfo Info) {
assertPrintfCall(OrigPrintf);
ArgKind::Enum Kind = getArgKind(*Arg.getType(), Info);
IRBuilder<> IRB{&OrigPrintf};
if (Kind == ArgKind::String)
return createPrintfArgStrCall(OrigPrintf, PrevCall, Arg);
Value &ArgVec = getArgAsVector(Arg, IRB, *DL);
return *IRB.CreateCall(PrintfImplDecl[PrintfImplFunc::Arg],
{&PrevCall, IRB.getInt32(Kind), &ArgVec},
OrigPrintf.getName() + ".printf.arg");
}
CallInst &GenXPrintfResolution::createPrintfRetCall(CallInst &OrigPrintf,
CallInst &PrevCall) {
assertPrintfCall(OrigPrintf);
IRBuilder<> IRB{&OrigPrintf};
return *IRB.CreateCall(PrintfImplDecl[PrintfImplFunc::Ret], &PrevCall);
}
|