File: InternalIntrinsics.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (680 lines) | stat: -rw-r--r-- 24,217 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/*========================== begin_copyright_notice ============================

Copyright (C) 2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

/*========================== begin_copyright_notice ============================

This file is distributed under the University of Illinois Open Source License.
See LICENSE.TXT for details.

============================= end_copyright_notice ===========================*/

// Originated from llvm source lib/IR/Function.cpp
// Function.cpp - Implement the Global object classes

// Implementation of methods declared in InternalIntrinsics/InternalIntrinsics.h

#include "vc/InternalIntrinsics/InternalIntrinsics.h"

#include <llvm/ADT/StringExtras.h>
#include <llvm/ADT/StringMap.h>
#include <llvm/CodeGen/ValueTypes.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Intrinsics.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Type.h>
#include <llvm/Support/CommandLine.h>

#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"

using namespace llvm;
using namespace vc;

namespace vc::InternalIntrinsic {

// get Attributes for InternalIntrinsics, like ReadOnly, ReadNone, etc
AttributeList getAttributes(LLVMContext &C, ID id);

} // namespace vc::InternalIntrinsic

static cl::opt<bool> EnableInternalIntrinsicsCache(
    "enable-internal-intrinsics-cache", cl::init(true), cl::Hidden,
    cl::desc("Enable metadata caching of internal intrinsics"));

// Metadata name for caching
static StringRef InternalIntrinsicMDName{"internal_intrinsic_id"};

namespace {

/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
enum IIT_Info {
  // Common values should be encoded with 0-15.
  IIT_Done = 0,
  IIT_I1 = 1,
  IIT_I8 = 2,
  IIT_I16 = 3,
  IIT_I32 = 4,
  IIT_I64 = 5,
  IIT_F16 = 6,
  IIT_F32 = 7,
  IIT_F64 = 8,
  IIT_V2 = 9,
  IIT_V4 = 10,
  IIT_V8 = 11,
  IIT_V16 = 12,
  IIT_V32 = 13,
  IIT_PTR = 14,
  IIT_ARG = 15,

  // Values from 16+ are only encodable with the inefficient encoding.
  IIT_V64 = 16,
  IIT_MMX = 17,
  IIT_TOKEN = 18,
  IIT_METADATA = 19,
  IIT_EMPTYSTRUCT = 20,
  IIT_STRUCT2 = 21,
  IIT_STRUCT3 = 22,
  IIT_STRUCT4 = 23,
  IIT_STRUCT5 = 24,
  IIT_EXTEND_ARG = 25,
  IIT_TRUNC_ARG = 26,
  IIT_ANYPTR = 27,
  IIT_V1 = 28,
  IIT_VARARG = 29,
  IIT_HALF_VEC_ARG = 30,
  IIT_SAME_VEC_WIDTH_ARG = 31,
  IIT_PTR_TO_ARG = 32,
  IIT_PTR_TO_ELT = 33,
  IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
  IIT_I128 = 35,
  IIT_V512 = 36,
  IIT_V1024 = 37,
  IIT_STRUCT6 = 38,
  IIT_STRUCT7 = 39,
  IIT_STRUCT8 = 40,
  IIT_F128 = 41
};

} // namespace
// define static const unsigned IIT_Table
// define static const unsigned char IIT_LongEncodingTable
#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_GENERATOR_GLOBAL

static void
DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
              SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
  using namespace Intrinsic;

  IIT_Info Info = IIT_Info(Infos[NextElt++]);
  unsigned StructElts = 2;

  switch (Info) {
  case IIT_Done:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
    return;
  case IIT_VARARG:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
    return;
  case IIT_MMX:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
    return;
  case IIT_TOKEN:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
    return;
  case IIT_METADATA:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
    return;
  case IIT_F16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
    return;
  case IIT_F32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
    return;
  case IIT_F64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
    return;
  case IIT_F128:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
    return;
  case IIT_I1:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
    return;
  case IIT_I8:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
    return;
  case IIT_I16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 16));
    return;
  case IIT_I32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
    return;
  case IIT_I64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
    return;
  case IIT_I128:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
    return;
  case IIT_V1:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V2:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V4:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V8:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V512:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V1024:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_PTR:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::Pointer, Infos[NextElt++]));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  case IIT_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
    return;
  }
  case IIT_EXTEND_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::ExtendArgument, ArgInfo));
    return;
  }
  case IIT_TRUNC_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::TruncArgument, ArgInfo));
    return;
  }
  case IIT_HALF_VEC_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::HalfVecArgument, ArgInfo));
    return;
  }
  case IIT_SAME_VEC_WIDTH_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::SameVecWidthArgument, ArgInfo));
    return;
  }
  case IIT_PTR_TO_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::PtrToArgument, ArgInfo));
    return;
  }
  case IIT_PTR_TO_ELT: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
    return;
  }
  case IIT_VEC_OF_ANYPTRS_TO_ELT: {
    unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
    return;
  }
  case IIT_EMPTYSTRUCT:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
    return;
  case IIT_STRUCT8:
    ++StructElts;
    LLVM_FALLTHROUGH;
  case IIT_STRUCT7:
    ++StructElts;
    LLVM_FALLTHROUGH;
  case IIT_STRUCT6:
    ++StructElts;
    LLVM_FALLTHROUGH;
  case IIT_STRUCT5:
    ++StructElts;
    LLVM_FALLTHROUGH;
  case IIT_STRUCT4:
    ++StructElts;
    LLVM_FALLTHROUGH;
  case IIT_STRUCT3:
    ++StructElts;
    LLVM_FALLTHROUGH;
  case IIT_STRUCT2: {
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::Struct, StructElts));

    for (unsigned i = 0; i != StructElts; ++i)
      DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  }
  IGC_ASSERT_MESSAGE(0, "unhandled");
}

static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
                             ArrayRef<Type *> Tys, LLVMContext &Context) {
  using namespace Intrinsic;

  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);

  switch (D.Kind) {
  case IITDescriptor::Void:
    return Type::getVoidTy(Context);
  case IITDescriptor::VarArg:
    return Type::getVoidTy(Context);
  case IITDescriptor::MMX:
    return Type::getX86_MMXTy(Context);
  case IITDescriptor::Token:
    return Type::getTokenTy(Context);
  case IITDescriptor::Metadata:
    return Type::getMetadataTy(Context);
  case IITDescriptor::Half:
    return Type::getHalfTy(Context);
  case IITDescriptor::Float:
    return Type::getFloatTy(Context);
  case IITDescriptor::Double:
    return Type::getDoubleTy(Context);
  case IITDescriptor::Quad:
    return Type::getFP128Ty(Context);

  case IITDescriptor::Integer:
    return IntegerType::get(Context, D.Integer_Width);
  case IITDescriptor::Vector:
    return VectorType::get(DecodeFixedType(Infos, Tys, Context),
                           D.Vector_Width);
  case IITDescriptor::Pointer:
    return PointerType::get(DecodeFixedType(Infos, Tys, Context),
                            D.Pointer_AddressSpace);
  case IITDescriptor::Struct: {
    SmallVector<Type *, 8> Elts;
    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
      Elts.push_back(DecodeFixedType(Infos, Tys, Context));
    return StructType::get(Context, Elts);
  }
  case IITDescriptor::Argument:
    return Tys[D.getArgumentNumber()];
  case IITDescriptor::ExtendArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::getExtendedElementVectorType(VTy);

    return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
  }
  case IITDescriptor::TruncArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::getTruncatedElementVectorType(VTy);

    IntegerType *ITy = cast<IntegerType>(Ty);
    IGC_ASSERT(ITy->getBitWidth() % 2 == 0);
    return IntegerType::get(Context, ITy->getBitWidth() / 2);
  }
  case IITDescriptor::HalfVecArgument:
    return VectorType::getHalfElementsVectorType(
        cast<VectorType>(Tys[D.getArgumentNumber()]));
  case IITDescriptor::SameVecWidthArgument: {
    Type *EltTy = DecodeFixedType(Infos, Tys, Context);
    Type *Ty = Tys[D.getArgumentNumber()];
    if (IGCLLVM::FixedVectorType *VTy =
            dyn_cast<IGCLLVM::FixedVectorType>(Ty)) {
      return IGCLLVM::FixedVectorType::get(EltTy, VTy->getNumElements());
    }
    IGC_ASSERT_MESSAGE(0, "unhandled");
  }
  case IITDescriptor::PtrToArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    return PointerType::getUnqual(Ty);
  }
  case IITDescriptor::PtrToElt: {
    Type *Ty = Tys[D.getArgumentNumber()];
    VectorType *VTy = dyn_cast<VectorType>(Ty);
    if (!VTy)
      IGC_ASSERT_MESSAGE(0, "Expected an argument of Vector Type");
    Type *EltTy = cast<VectorType>(VTy)->getElementType();
    return PointerType::getUnqual(EltTy);
  }
  case IITDescriptor::VecOfAnyPtrsToElt:
    // Return the overloaded type (which determines the pointers address space)
    return Tys[D.getOverloadArgNumber()];
  default:
    break;
  }
  IGC_ASSERT_MESSAGE(0, "unhandled");
  return nullptr;
}

/// getIntrinsicInfoTableEntries - Return the IIT table descriptor for the
/// specified intrinsic into an array of IITDescriptors.
///
static void
getIntrinsicInfoTableEntries(InternalIntrinsic::ID id,
                             SmallVectorImpl<Intrinsic::IITDescriptor> &T) {
  IGC_ASSERT(isInternalIntrinsic(id));

  // transform id
  // from [not_internal_intrinsic; num_internal_intrinsic] to [0, ...]
  unsigned ID = id - InternalIntrinsic::not_internal_intrinsic;
  IGC_ASSERT(ID <= sizeof(IIT_Table) / sizeof(*IIT_Table));

  // Check to see if the intrinsic's type was expressible by the table.
  unsigned TableVal = IIT_Table[ID - 1];

  // Decode the TableVal into an array of IITValues.
  SmallVector<unsigned char, 8> IITValues;
  ArrayRef<unsigned char> IITEntries;
  unsigned NextElt = 0;
  if ((TableVal >> 31) != 0) {
    // This is an offset into the IIT_LongEncodingTable.
    IITEntries = IIT_LongEncodingTable;

    // Strip sentinel bit.
    NextElt = (TableVal << 1) >> 1;
  } else {
    // Decode the TableVal into an array of IITValues.  If the entry was encoded
    // into a single word in the table itself, decode it now.
    do {
      IITValues.push_back(TableVal & 0xF);
      TableVal >>= 4;
    } while (TableVal);

    IITEntries = IITValues;
    NextElt = 0;
  }

  // Okay, decode the table into the output vector of IITDescriptors.
  DecodeIITType(NextElt, IITEntries, T);
  while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
    DecodeIITType(NextElt, IITEntries, T);
}

/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
/// of named types is simply their name.  Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types.  A vararg function
/// type will have a suffix of 'vararg'.  Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix.  This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
static std::string getMangledTypeStr(Type *Ty) {
  std::string Result;
  if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
    Result += "p" + utostr(PTyp->getAddressSpace()) +
              getMangledTypeStr(PTyp->getPointerElementType());
  } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
    Result += "a" + utostr(ATyp->getNumElements()) +
              getMangledTypeStr(ATyp->getElementType());
  } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
    if (!STyp->isLiteral())
      Result += STyp->getName();
    else {
      Result += "s" + utostr(STyp->getNumElements());
      for (unsigned int i = 0; i < STyp->getNumElements(); i++)
        Result += getMangledTypeStr(STyp->getElementType(i));
    }
  } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
    Result += "f_" + getMangledTypeStr(FT->getReturnType());
    for (size_t i = 0; i < FT->getNumParams(); i++)
      Result += getMangledTypeStr(FT->getParamType(i));
    if (FT->isVarArg())
      Result += "vararg";
    // Ensure nested function types are distinguishable.
    Result += "f";
  } else if (isa<VectorType>(Ty))
    Result += "v" +
              utostr(cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements()) +
              getMangledTypeStr(cast<VectorType>(Ty)->getElementType());
  else if (Ty)
    Result += EVT::getEVT(Ty).getEVTString();
  return Result;
}

static const char *const InternalIntrinsicNameTable[] = {
    "not_internal_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_NAME_TABLE
};

/// Intrinsic::isOverloaded(ID) - Returns true if the intrinsic can be
/// overloaded.
static bool isOverloaded(InternalIntrinsic::ID id) {
  IGC_ASSERT(isInternalIntrinsic(id) && "Invalid intrinsic ID!");
  id = static_cast<InternalIntrinsic::ID>(
      id - InternalIntrinsic::not_internal_intrinsic);
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}

/// This defines the "getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_ATTRIBUTES

/// Table of per-target intrinsic name tables.
#define GET_INTRINSIC_TARGET_DATA
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_TARGET_DATA

bool InternalIntrinsic::isOverloadedArg(unsigned IntrinID, unsigned ArgNum) {
#define GET_INTRINSIC_OVERLOAD_ARGS_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_OVERLOAD_ARGS_TABLE
}

bool InternalIntrinsic::isOverloadedRet(unsigned IntrinID) {
#define GET_INTRINSIC_OVERLOAD_RET_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_OVERLOAD_RET_TABLE
}

/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
/// target as \c Name, or the generic table if \c Name is not target specific.
///
/// Returns the relevant slice of \c IntrinsicNameTable
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {

  IGC_ASSERT(Name.startswith("llvm.vc.internal."));

  ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
  StringRef Target = "vc.internal";
  auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
                             [](const IntrinsicTargetInfo &TI,
                                StringRef Target) { return TI.Name < Target; });
  // We've either found the target or just fall back to the generic set, which
  // is always first.
  const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
  return makeArrayRef(&InternalIntrinsicNameTable[1] + TI.Offset, TI.Count);
}

static InternalIntrinsic::ID lookupInternalIntrinsicID(StringRef Name) {
  ArrayRef<const char *> NameTable = findTargetSubtable(Name);
  int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
  if (Idx == -1) {
    return InternalIntrinsic::not_internal_intrinsic;
  }
  IGC_ASSERT(Idx >= 0);

  // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
  // an index into a sub-table.
  int Adjust = NameTable.data() - InternalIntrinsicNameTable;
  auto ID = static_cast<InternalIntrinsic::ID>(
      Idx + Adjust + InternalIntrinsic::not_internal_intrinsic);

  [[maybe_unused]] StringRef NameFromNameTable{NameTable[Idx]};

  // If the intrinsic is not overloaded, require an exact match. If it is
  // overloaded, require either exact or prefix match.
  IGC_ASSERT(Name.size() >= NameFromNameTable.size() &&
             "Expected either exact or prefix match");
  IGC_ASSERT(
      (Name.size() == NameFromNameTable.size()) ||
      (isOverloaded(ID) && "Non-overloadable intrinsic was overloaded!"));
  return ID;
}

/// getInternalName(ID) - Return the LLVM name for a Internal intrinsic
static std::string getInternalName(InternalIntrinsic::ID id,
                                   ArrayRef<Type *> Tys) {
  IGC_ASSERT(InternalIntrinsic::isInternalIntrinsic(id) &&
             "Invalid intrinsic ID!");
  IGC_ASSERT(Tys.empty() || (isOverloaded(id) &&
                             "Non-overloadable intrinsic was overloaded!"));
  id = static_cast<InternalIntrinsic::ID>(
      id - InternalIntrinsic::not_internal_intrinsic);
  std::string Result(InternalIntrinsicNameTable[id]);
  for (Type *Ty : Tys) {
    Result += "." + getMangledTypeStr(Ty);
  }
  return Result;
}

/// getInternalType(ID) - Return the function type for an
/// intrinsic.
static FunctionType *getInternalType(LLVMContext &Context,
                                     InternalIntrinsic::ID id,
                                     ArrayRef<Type *> Tys) {
  SmallVector<Intrinsic::IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(id, Table);

  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
  Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);

  SmallVector<Type *, 8> ArgTys;
  while (!TableRef.empty())
    ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));

  // DecodeFixedType returns Void for IITDescriptor::Void and
  // IITDescriptor::VarArg If we see void type as the type of the last argument,
  // it is vararg intrinsic
  if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
    ArgTys.pop_back();
    return FunctionType::get(ResultTy, ArgTys, true);
  }
  return FunctionType::get(ResultTy, ArgTys, false);
}

/// resetInternalAttributes(F) - recalculates attributes
/// of a CM intrinsic by setting the default values (as per
/// intrinsic definition)
/// adds metadata if EnableInternalIntrinsicsCache
///
/// F is required to be a Internal intrinsic function
static void resetInternalAttributes(Function *F) {

  IGC_ASSERT(F);

  InternalIntrinsic::ID GXID = InternalIntrinsic::getInternalIntrinsicID(F);

  IGC_ASSERT(GXID != InternalIntrinsic::not_internal_intrinsic);

  // Since Function::isIntrinsic() will return true due to llvm. prefix,
  // Module::getOrInsertFunction fails to add the attributes. explicitly adding
  // the attribute to handle this problem. This since is setup on the function
  // declaration, attribute assignment is global and hence this approach
  // suffices.
  F->setAttributes(InternalIntrinsic::getAttributes(F->getContext(), GXID));

  // Cache intrinsic ID in metadata.
  if (EnableInternalIntrinsicsCache &&
      !F->hasMetadata(InternalIntrinsicMDName)) {
    LLVMContext &Ctx = F->getContext();
    auto *Ty = IntegerType::getInt32Ty(Ctx);
    auto *Cached = ConstantInt::get(Ty, GXID);
    auto *MD = MDNode::get(Ctx, {ConstantAsMetadata::get(Cached)});
    F->addMetadata(InternalIntrinsicMDName, *MD);
  }
}

InternalIntrinsic::ID
InternalIntrinsic::getInternalIntrinsicID(const Function *F) {
  IGC_ASSERT(F);
  llvm::StringRef Name = F->getName();
  if (!Name.startswith(getInternalIntrinsicPrefix())) {
    return InternalIntrinsic::not_internal_intrinsic;
  }

  // Check metadata cache.
  if (auto *MD = F->getMetadata(InternalIntrinsicMDName)) {
    IGC_ASSERT(MD->getNumOperands() == 1 && "Invalid intrinsic metadata");
    auto Val = cast<ValueAsMetadata>(MD->getOperand(0))->getValue();
    InternalIntrinsic::ID Id = static_cast<InternalIntrinsic::ID>(
        cast<ConstantInt>(Val)->getZExtValue());

    // we need to check that metadata is correct and can be actually used
    if (isInternalIntrinsic(Id)) {
      const char *NamePrefix =
          InternalIntrinsicNameTable[Id -
                                     InternalIntrinsic::not_internal_intrinsic];
      if (Name.startswith(NamePrefix))
        return Id;
    }
  }

  // Fallback to string lookup.
  auto ID = lookupInternalIntrinsicID(Name);
  IGC_ASSERT(ID != InternalIntrinsic::not_internal_intrinsic &&
             "Intrinsic not found!");
  return ID;
}

Function *InternalIntrinsic::getInternalDeclaration(Module *M,
                                                    InternalIntrinsic::ID id,
                                                    ArrayRef<Type *> Tys) {
  IGC_ASSERT(isInternalNonTrivialIntrinsic(id));
  IGC_ASSERT(Tys.empty() || (isOverloaded(id) &&
                             "Non-overloadable intrinsic was overloaded!"));

  auto InternalName = getInternalName(id, Tys);
  FunctionType *FTy = getInternalType(M->getContext(), id, Tys);
  Function *F = M->getFunction(InternalName);
  if (!F)
    F = Function::Create(FTy, GlobalVariable::ExternalLinkage, InternalName, M);

  resetInternalAttributes(F);
  return F;
}