1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
/*========================== begin_copyright_notice ============================
This file is distributed under the University of Illinois Open Source License.
See LICENSE.TXT for details.
============================= end_copyright_notice ===========================*/
// Originated from llvm source lib/IR/Function.cpp
// Function.cpp - Implement the Global object classes
// Implementation of methods declared in InternalIntrinsics/InternalIntrinsics.h
#include "vc/InternalIntrinsics/InternalIntrinsics.h"
#include <llvm/ADT/StringExtras.h>
#include <llvm/ADT/StringMap.h>
#include <llvm/CodeGen/ValueTypes.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Intrinsics.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Type.h>
#include <llvm/Support/CommandLine.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"
using namespace llvm;
using namespace vc;
namespace vc::InternalIntrinsic {
// get Attributes for InternalIntrinsics, like ReadOnly, ReadNone, etc
AttributeList getAttributes(LLVMContext &C, ID id);
} // namespace vc::InternalIntrinsic
static cl::opt<bool> EnableInternalIntrinsicsCache(
"enable-internal-intrinsics-cache", cl::init(true), cl::Hidden,
cl::desc("Enable metadata caching of internal intrinsics"));
// Metadata name for caching
static StringRef InternalIntrinsicMDName{"internal_intrinsic_id"};
namespace {
/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
enum IIT_Info {
// Common values should be encoded with 0-15.
IIT_Done = 0,
IIT_I1 = 1,
IIT_I8 = 2,
IIT_I16 = 3,
IIT_I32 = 4,
IIT_I64 = 5,
IIT_F16 = 6,
IIT_F32 = 7,
IIT_F64 = 8,
IIT_V2 = 9,
IIT_V4 = 10,
IIT_V8 = 11,
IIT_V16 = 12,
IIT_V32 = 13,
IIT_PTR = 14,
IIT_ARG = 15,
// Values from 16+ are only encodable with the inefficient encoding.
IIT_V64 = 16,
IIT_MMX = 17,
IIT_TOKEN = 18,
IIT_METADATA = 19,
IIT_EMPTYSTRUCT = 20,
IIT_STRUCT2 = 21,
IIT_STRUCT3 = 22,
IIT_STRUCT4 = 23,
IIT_STRUCT5 = 24,
IIT_EXTEND_ARG = 25,
IIT_TRUNC_ARG = 26,
IIT_ANYPTR = 27,
IIT_V1 = 28,
IIT_VARARG = 29,
IIT_HALF_VEC_ARG = 30,
IIT_SAME_VEC_WIDTH_ARG = 31,
IIT_PTR_TO_ARG = 32,
IIT_PTR_TO_ELT = 33,
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
IIT_I128 = 35,
IIT_V512 = 36,
IIT_V1024 = 37,
IIT_STRUCT6 = 38,
IIT_STRUCT7 = 39,
IIT_STRUCT8 = 40,
IIT_F128 = 41
};
} // namespace
// define static const unsigned IIT_Table
// define static const unsigned char IIT_LongEncodingTable
#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_GENERATOR_GLOBAL
static void
DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
using namespace Intrinsic;
IIT_Info Info = IIT_Info(Infos[NextElt++]);
unsigned StructElts = 2;
switch (Info) {
case IIT_Done:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
return;
case IIT_VARARG:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
return;
case IIT_MMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
return;
case IIT_TOKEN:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
return;
case IIT_METADATA:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
return;
case IIT_F16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
return;
case IIT_F32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
return;
case IIT_F64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
return;
case IIT_F128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
return;
case IIT_I1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
return;
case IIT_I8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
return;
case IIT_I16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 16));
return;
case IIT_I32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
return;
case IIT_I64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
return;
case IIT_I128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
return;
case IIT_V1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V2:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V4:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V512:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V1024:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_PTR:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::Pointer, Infos[NextElt++]));
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
case IIT_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
return;
}
case IIT_EXTEND_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::ExtendArgument, ArgInfo));
return;
}
case IIT_TRUNC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::TruncArgument, ArgInfo));
return;
}
case IIT_HALF_VEC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::HalfVecArgument, ArgInfo));
return;
}
case IIT_SAME_VEC_WIDTH_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::SameVecWidthArgument, ArgInfo));
return;
}
case IIT_PTR_TO_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::PtrToArgument, ArgInfo));
return;
}
case IIT_PTR_TO_ELT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
return;
}
case IIT_VEC_OF_ANYPTRS_TO_ELT: {
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
return;
}
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
case IIT_STRUCT8:
++StructElts;
LLVM_FALLTHROUGH;
case IIT_STRUCT7:
++StructElts;
LLVM_FALLTHROUGH;
case IIT_STRUCT6:
++StructElts;
LLVM_FALLTHROUGH;
case IIT_STRUCT5:
++StructElts;
LLVM_FALLTHROUGH;
case IIT_STRUCT4:
++StructElts;
LLVM_FALLTHROUGH;
case IIT_STRUCT3:
++StructElts;
LLVM_FALLTHROUGH;
case IIT_STRUCT2: {
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::Struct, StructElts));
for (unsigned i = 0; i != StructElts; ++i)
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
}
IGC_ASSERT_MESSAGE(0, "unhandled");
}
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
ArrayRef<Type *> Tys, LLVMContext &Context) {
using namespace Intrinsic;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void:
return Type::getVoidTy(Context);
case IITDescriptor::VarArg:
return Type::getVoidTy(Context);
case IITDescriptor::MMX:
return Type::getX86_MMXTy(Context);
case IITDescriptor::Token:
return Type::getTokenTy(Context);
case IITDescriptor::Metadata:
return Type::getMetadataTy(Context);
case IITDescriptor::Half:
return Type::getHalfTy(Context);
case IITDescriptor::Float:
return Type::getFloatTy(Context);
case IITDescriptor::Double:
return Type::getDoubleTy(Context);
case IITDescriptor::Quad:
return Type::getFP128Ty(Context);
case IITDescriptor::Integer:
return IntegerType::get(Context, D.Integer_Width);
case IITDescriptor::Vector:
return VectorType::get(DecodeFixedType(Infos, Tys, Context),
D.Vector_Width);
case IITDescriptor::Pointer:
return PointerType::get(DecodeFixedType(Infos, Tys, Context),
D.Pointer_AddressSpace);
case IITDescriptor::Struct: {
SmallVector<Type *, 8> Elts;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
Elts.push_back(DecodeFixedType(Infos, Tys, Context));
return StructType::get(Context, Elts);
}
case IITDescriptor::Argument:
return Tys[D.getArgumentNumber()];
case IITDescriptor::ExtendArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getExtendedElementVectorType(VTy);
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
}
case IITDescriptor::TruncArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getTruncatedElementVectorType(VTy);
IntegerType *ITy = cast<IntegerType>(Ty);
IGC_ASSERT(ITy->getBitWidth() % 2 == 0);
return IntegerType::get(Context, ITy->getBitWidth() / 2);
}
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(
cast<VectorType>(Tys[D.getArgumentNumber()]));
case IITDescriptor::SameVecWidthArgument: {
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
Type *Ty = Tys[D.getArgumentNumber()];
if (IGCLLVM::FixedVectorType *VTy =
dyn_cast<IGCLLVM::FixedVectorType>(Ty)) {
return IGCLLVM::FixedVectorType::get(EltTy, VTy->getNumElements());
}
IGC_ASSERT_MESSAGE(0, "unhandled");
}
case IITDescriptor::PtrToArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
return PointerType::getUnqual(Ty);
}
case IITDescriptor::PtrToElt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy)
IGC_ASSERT_MESSAGE(0, "Expected an argument of Vector Type");
Type *EltTy = cast<VectorType>(VTy)->getElementType();
return PointerType::getUnqual(EltTy);
}
case IITDescriptor::VecOfAnyPtrsToElt:
// Return the overloaded type (which determines the pointers address space)
return Tys[D.getOverloadArgNumber()];
default:
break;
}
IGC_ASSERT_MESSAGE(0, "unhandled");
return nullptr;
}
/// getIntrinsicInfoTableEntries - Return the IIT table descriptor for the
/// specified intrinsic into an array of IITDescriptors.
///
static void
getIntrinsicInfoTableEntries(InternalIntrinsic::ID id,
SmallVectorImpl<Intrinsic::IITDescriptor> &T) {
IGC_ASSERT(isInternalIntrinsic(id));
// transform id
// from [not_internal_intrinsic; num_internal_intrinsic] to [0, ...]
unsigned ID = id - InternalIntrinsic::not_internal_intrinsic;
IGC_ASSERT(ID <= sizeof(IIT_Table) / sizeof(*IIT_Table));
// Check to see if the intrinsic's type was expressible by the table.
unsigned TableVal = IIT_Table[ID - 1];
// Decode the TableVal into an array of IITValues.
SmallVector<unsigned char, 8> IITValues;
ArrayRef<unsigned char> IITEntries;
unsigned NextElt = 0;
if ((TableVal >> 31) != 0) {
// This is an offset into the IIT_LongEncodingTable.
IITEntries = IIT_LongEncodingTable;
// Strip sentinel bit.
NextElt = (TableVal << 1) >> 1;
} else {
// Decode the TableVal into an array of IITValues. If the entry was encoded
// into a single word in the table itself, decode it now.
do {
IITValues.push_back(TableVal & 0xF);
TableVal >>= 4;
} while (TableVal);
IITEntries = IITValues;
NextElt = 0;
}
// Okay, decode the table into the output vector of IITDescriptors.
DecodeIITType(NextElt, IITEntries, T);
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
DecodeIITType(NextElt, IITEntries, T);
}
/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
/// of named types is simply their name. Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types. A vararg function
/// type will have a suffix of 'vararg'. Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix. This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
static std::string getMangledTypeStr(Type *Ty) {
std::string Result;
if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
Result += "p" + utostr(PTyp->getAddressSpace()) +
getMangledTypeStr(PTyp->getPointerElementType());
} else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
Result += "a" + utostr(ATyp->getNumElements()) +
getMangledTypeStr(ATyp->getElementType());
} else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
if (!STyp->isLiteral())
Result += STyp->getName();
else {
Result += "s" + utostr(STyp->getNumElements());
for (unsigned int i = 0; i < STyp->getNumElements(); i++)
Result += getMangledTypeStr(STyp->getElementType(i));
}
} else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
Result += "f_" + getMangledTypeStr(FT->getReturnType());
for (size_t i = 0; i < FT->getNumParams(); i++)
Result += getMangledTypeStr(FT->getParamType(i));
if (FT->isVarArg())
Result += "vararg";
// Ensure nested function types are distinguishable.
Result += "f";
} else if (isa<VectorType>(Ty))
Result += "v" +
utostr(cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements()) +
getMangledTypeStr(cast<VectorType>(Ty)->getElementType());
else if (Ty)
Result += EVT::getEVT(Ty).getEVTString();
return Result;
}
static const char *const InternalIntrinsicNameTable[] = {
"not_internal_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_NAME_TABLE
};
/// Intrinsic::isOverloaded(ID) - Returns true if the intrinsic can be
/// overloaded.
static bool isOverloaded(InternalIntrinsic::ID id) {
IGC_ASSERT(isInternalIntrinsic(id) && "Invalid intrinsic ID!");
id = static_cast<InternalIntrinsic::ID>(
id - InternalIntrinsic::not_internal_intrinsic);
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}
/// This defines the "getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_ATTRIBUTES
/// Table of per-target intrinsic name tables.
#define GET_INTRINSIC_TARGET_DATA
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_TARGET_DATA
bool InternalIntrinsic::isOverloadedArg(unsigned IntrinID, unsigned ArgNum) {
#define GET_INTRINSIC_OVERLOAD_ARGS_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_OVERLOAD_ARGS_TABLE
}
bool InternalIntrinsic::isOverloadedRet(unsigned IntrinID) {
#define GET_INTRINSIC_OVERLOAD_RET_TABLE
#include "vc/InternalIntrinsics/InternalIntrinsicDescription.gen"
#undef GET_INTRINSIC_OVERLOAD_RET_TABLE
}
/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
/// target as \c Name, or the generic table if \c Name is not target specific.
///
/// Returns the relevant slice of \c IntrinsicNameTable
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
IGC_ASSERT(Name.startswith("llvm.vc.internal."));
ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
StringRef Target = "vc.internal";
auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
[](const IntrinsicTargetInfo &TI,
StringRef Target) { return TI.Name < Target; });
// We've either found the target or just fall back to the generic set, which
// is always first.
const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
return makeArrayRef(&InternalIntrinsicNameTable[1] + TI.Offset, TI.Count);
}
static InternalIntrinsic::ID lookupInternalIntrinsicID(StringRef Name) {
ArrayRef<const char *> NameTable = findTargetSubtable(Name);
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
if (Idx == -1) {
return InternalIntrinsic::not_internal_intrinsic;
}
IGC_ASSERT(Idx >= 0);
// Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
// an index into a sub-table.
int Adjust = NameTable.data() - InternalIntrinsicNameTable;
auto ID = static_cast<InternalIntrinsic::ID>(
Idx + Adjust + InternalIntrinsic::not_internal_intrinsic);
[[maybe_unused]] StringRef NameFromNameTable{NameTable[Idx]};
// If the intrinsic is not overloaded, require an exact match. If it is
// overloaded, require either exact or prefix match.
IGC_ASSERT(Name.size() >= NameFromNameTable.size() &&
"Expected either exact or prefix match");
IGC_ASSERT(
(Name.size() == NameFromNameTable.size()) ||
(isOverloaded(ID) && "Non-overloadable intrinsic was overloaded!"));
return ID;
}
/// getInternalName(ID) - Return the LLVM name for a Internal intrinsic
static std::string getInternalName(InternalIntrinsic::ID id,
ArrayRef<Type *> Tys) {
IGC_ASSERT(InternalIntrinsic::isInternalIntrinsic(id) &&
"Invalid intrinsic ID!");
IGC_ASSERT(Tys.empty() || (isOverloaded(id) &&
"Non-overloadable intrinsic was overloaded!"));
id = static_cast<InternalIntrinsic::ID>(
id - InternalIntrinsic::not_internal_intrinsic);
std::string Result(InternalIntrinsicNameTable[id]);
for (Type *Ty : Tys) {
Result += "." + getMangledTypeStr(Ty);
}
return Result;
}
/// getInternalType(ID) - Return the function type for an
/// intrinsic.
static FunctionType *getInternalType(LLVMContext &Context,
InternalIntrinsic::ID id,
ArrayRef<Type *> Tys) {
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(id, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
SmallVector<Type *, 8> ArgTys;
while (!TableRef.empty())
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
// DecodeFixedType returns Void for IITDescriptor::Void and
// IITDescriptor::VarArg If we see void type as the type of the last argument,
// it is vararg intrinsic
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
ArgTys.pop_back();
return FunctionType::get(ResultTy, ArgTys, true);
}
return FunctionType::get(ResultTy, ArgTys, false);
}
/// resetInternalAttributes(F) - recalculates attributes
/// of a CM intrinsic by setting the default values (as per
/// intrinsic definition)
/// adds metadata if EnableInternalIntrinsicsCache
///
/// F is required to be a Internal intrinsic function
static void resetInternalAttributes(Function *F) {
IGC_ASSERT(F);
InternalIntrinsic::ID GXID = InternalIntrinsic::getInternalIntrinsicID(F);
IGC_ASSERT(GXID != InternalIntrinsic::not_internal_intrinsic);
// Since Function::isIntrinsic() will return true due to llvm. prefix,
// Module::getOrInsertFunction fails to add the attributes. explicitly adding
// the attribute to handle this problem. This since is setup on the function
// declaration, attribute assignment is global and hence this approach
// suffices.
F->setAttributes(InternalIntrinsic::getAttributes(F->getContext(), GXID));
// Cache intrinsic ID in metadata.
if (EnableInternalIntrinsicsCache &&
!F->hasMetadata(InternalIntrinsicMDName)) {
LLVMContext &Ctx = F->getContext();
auto *Ty = IntegerType::getInt32Ty(Ctx);
auto *Cached = ConstantInt::get(Ty, GXID);
auto *MD = MDNode::get(Ctx, {ConstantAsMetadata::get(Cached)});
F->addMetadata(InternalIntrinsicMDName, *MD);
}
}
InternalIntrinsic::ID
InternalIntrinsic::getInternalIntrinsicID(const Function *F) {
IGC_ASSERT(F);
llvm::StringRef Name = F->getName();
if (!Name.startswith(getInternalIntrinsicPrefix())) {
return InternalIntrinsic::not_internal_intrinsic;
}
// Check metadata cache.
if (auto *MD = F->getMetadata(InternalIntrinsicMDName)) {
IGC_ASSERT(MD->getNumOperands() == 1 && "Invalid intrinsic metadata");
auto Val = cast<ValueAsMetadata>(MD->getOperand(0))->getValue();
InternalIntrinsic::ID Id = static_cast<InternalIntrinsic::ID>(
cast<ConstantInt>(Val)->getZExtValue());
// we need to check that metadata is correct and can be actually used
if (isInternalIntrinsic(Id)) {
const char *NamePrefix =
InternalIntrinsicNameTable[Id -
InternalIntrinsic::not_internal_intrinsic];
if (Name.startswith(NamePrefix))
return Id;
}
}
// Fallback to string lookup.
auto ID = lookupInternalIntrinsicID(Name);
IGC_ASSERT(ID != InternalIntrinsic::not_internal_intrinsic &&
"Intrinsic not found!");
return ID;
}
Function *InternalIntrinsic::getInternalDeclaration(Module *M,
InternalIntrinsic::ID id,
ArrayRef<Type *> Tys) {
IGC_ASSERT(isInternalNonTrivialIntrinsic(id));
IGC_ASSERT(Tys.empty() || (isOverloaded(id) &&
"Non-overloadable intrinsic was overloaded!"));
auto InternalName = getInternalName(id, Tys);
FunctionType *FTy = getInternalType(M->getContext(), id, Tys);
Function *F = M->getFunction(InternalName);
if (!F)
F = Function::Create(FTy, GlobalVariable::ExternalLinkage, InternalName, M);
resetInternalAttributes(F);
return F;
}
|