File: Region.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (1033 lines) | stat: -rw-r--r-- 38,641 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
/*========================== begin_copyright_notice ============================

Copyright (C) 2018-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//
// Implementation of methods for CMRegion class
//
//===----------------------------------------------------------------------===//

#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"

#include "vc/Utils/General/Types.h"
#include "vc/Utils/GenX/Region.h"
#include "vc/Utils/GenX/TypeSize.h"

#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/GenXIntrinsics/GenXIntrinsics.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvmWrapper/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "Probe/Assertion.h"

using namespace llvm;
using namespace vc;

// Find the datalayout if possible.
static const DataLayout *getDL(const Value *V) {
  IGC_ASSERT(V);
  if (auto *Inst = dyn_cast_or_null<Instruction>(V))
    return &Inst->getModule()->getDataLayout();
  if (auto *Arg = dyn_cast_or_null<Argument>(V))
    return &Arg->getParent()->getParent()->getDataLayout();
  return nullptr;
}

/***********************************************************************
 * Region constructor from a type
 */
CMRegion::CMRegion(Type *Ty, const DataLayout *DL)
    : ElementBytes(0), ElementTy(0), NumElements(1), VStride(0), Width(1),
      Stride(1), Offset(0), Indirect(0), IndirectIdx(0), IndirectAddrOffset(0),
      Mask(0), ParentWidth(0)
{
  IGC_ASSERT_MESSAGE(!Ty->isAggregateType(),
    "cannot create region based on an aggregate type");
  ElementTy = Ty;
  if (IGCLLVM::FixedVectorType *VT =
          dyn_cast<IGCLLVM::FixedVectorType>(ElementTy)) {
    ElementTy = VT->getElementType();
    NumElements = VT->getNumElements();
    Width = NumElements;
  }
  if (DL) {
    unsigned BitSize = DL->getTypeSizeInBits(ElementTy);
    ElementBytes = alignTo<8>(BitSize) / 8;
  } else {
    unsigned BitSize = ElementTy->getPrimitiveSizeInBits();
    ElementBytes = alignTo<8>(BitSize) / 8;
    IGC_ASSERT_MESSAGE(ElementBytes,
      "Cannot compute element size without data layout");
  }
}

/***********************************************************************
 * Region constructor from a value
 */
CMRegion::CMRegion(const Value *V, const DataLayout *DL)
    : CMRegion(V->getType(), DL ? DL : getDL(V)) {}

/***********************************************************************
 * Region constructor from a rd/wr region and its BaleInfo
 * This also works with rdpredregion and wrpredregion, with Offset in
 * bits rather than bytes, and with ElementBytes set to 1.
 */
CMRegion::CMRegion(const Instruction *Inst, bool WantParentWidth)
    : ElementBytes(0), ElementTy(0), NumElements(1), VStride(1), Width(1),
      Stride(1), Offset(0), Indirect(0), IndirectIdx(0), IndirectAddrOffset(0),
      Mask(0), ParentWidth(0) {
  // Determine where to get the subregion value from and which arg index
  // the region parameters start at.
  unsigned ArgIdx = 0;
  const Value *Subregion = 0;
  IGC_ASSERT(isa<CallInst>(Inst));
  switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
    case GenXIntrinsic::genx_rdpredregion:
      NumElements =
          cast<IGCLLVM::FixedVectorType>(Inst->getType())->getNumElements();
      Width = NumElements;
      Offset = cast<ConstantInt>(Inst->getOperand(1))->getZExtValue();
      ElementBytes = 1;
      return;
    case GenXIntrinsic::genx_wrpredregion:
      NumElements =
          cast<IGCLLVM::FixedVectorType>(Inst->getOperand(1)->getType())
              ->getNumElements();
      Width = NumElements;
      Offset = cast<ConstantInt>(Inst->getOperand(2))->getZExtValue();
      ElementBytes = 1;
      return;
    case GenXIntrinsic::genx_rdregioni:
    case GenXIntrinsic::genx_rdregionf:
      ArgIdx = 1;
      // The size/type of the region is given by the return value:
      Subregion = Inst;
      break;
    case GenXIntrinsic::genx_wrregioni:
    case GenXIntrinsic::genx_wrregionf:
    case GenXIntrinsic::genx_wrconstregion:
      ArgIdx = 2;
      // The size/type of the region is given by the "subregion value to
      // write" operand:
      Subregion = Inst->getOperand(1);
      // For wrregion, while we're here, also get the mask. We set mask to NULL
      // if the mask operand is constant 1 (i.e. not predicated).
      Mask = Inst->getOperand(GenXIntrinsic::GenXRegion::PredicateOperandNum);
      if (auto C = dyn_cast<Constant>(Mask))
        if (C->isAllOnesValue())
          Mask = 0;
      break;
    default:
      IGC_ASSERT(0);
      break;
  }
  // Get the region parameters.
  IGC_ASSERT(Subregion);
  ElementTy = Subregion->getType();
  if (IGCLLVM::FixedVectorType *VT =
          dyn_cast<IGCLLVM::FixedVectorType>(ElementTy)) {
    ElementTy = VT->getElementType();
    NumElements = VT->getNumElements();
  }
  ElementBytes = ElementTy->getPrimitiveSizeInBits() / 8;
  if (ElementTy->getPrimitiveSizeInBits())
    ElementBytes = ElementBytes ? ElementBytes : 1;
  VStride = cast<ConstantInt>(Inst->getOperand(ArgIdx))->getSExtValue();
  Width = cast<ConstantInt>(Inst->getOperand(ArgIdx + 1))->getSExtValue();
  Stride = cast<ConstantInt>(Inst->getOperand(ArgIdx + 2))->getSExtValue();
  ArgIdx += 3;
  // Get the start index.
  Value *V = Inst->getOperand(ArgIdx);
  IGC_ASSERT_MESSAGE(V->getType()->getScalarType()->isIntegerTy(16),
    "region index must be i16 or vXi16 type");

  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    Offset = CI->getSExtValue(); // Constant index.
  else {
    Indirect = V; // Index is variable; assume no baled in add.
    // For a variable index, get the parent width arg.
    ConstantInt *PW = dyn_cast<ConstantInt>(Inst->getOperand(ArgIdx + 1));
    if (PW)
      ParentWidth = PW->getZExtValue();
  }
  // We do some trivial legalization here. The legalization pass does not
  // make these changes; instead we do them here so they are not permanently
  // written back into the IR but are made on the fly each time some other
  // pass uses this code to get the region info.
  if (NumElements == 1) {
    Width = Stride = 1;
    VStride = 0;
  } else {
    if (NumElements <= Width) {
      Width = NumElements;
      VStride = 0;
    } else if ((unsigned)VStride == Width * Stride) {
      // VStride == Width * Stride, so we can canonicalize to a 1D region,
      // but only if not indirect or not asked to preserve parentwidth,
      // and never if multi-indirect.
      if (!Indirect
          || (!isa<VectorType>(Indirect->getType()) && !WantParentWidth)) {
        Width = NumElements;
        VStride = 0;
        ParentWidth = 0;
      }
    } else if (Width == 1) {
      // We can turn a 2D width 1 region into a 1D region, but if it is
      // indirect it invalidates ParentWidth. So only do it if not asked
      // to keep ParentWidth. Also we cannot do it if it is multi-indirect.
      if (!Indirect
          || (!isa<VectorType>(Indirect->getType()) && !WantParentWidth)) {
        Width = NumElements;
        Stride = VStride;
        VStride = 0;
        ParentWidth = 0;
      }
    }
    if (Stride == 0 && Width == NumElements) {
      // Canonical scalar region.
      Width = 1;
      VStride = 0;
    }
  }
}

/***********************************************************************
 * Region constructor from bitmap of which elements to set
 *
 * Enter:   Bits = bitmap of which elements to set
 *          ElementBytes = bytes per element
 *
 * It is assumed that Bits represents a legal 1D region.
 */
CMRegion::CMRegion(unsigned Bits, unsigned ElementBytes)
    : ElementBytes(ElementBytes), ElementTy(0), NumElements(1), VStride(1),
      Width(1), Stride(1), Offset(0), Indirect(0), IndirectIdx(0),
      IndirectAddrOffset(0), Mask(0), ParentWidth(0)
{
  IGC_ASSERT(Bits);
  Offset = countTrailingZeros(Bits, ZB_Undefined);
  Bits >>= Offset;
  Offset *= ElementBytes;
  if (Bits != 1) {
    Stride = countTrailingZeros(Bits & ~1, ZB_Undefined);
    NumElements = Width = countPopulation(Bits);
  }
}

/***********************************************************************
 * CMRegion::getSubregion : modify Region struct for a subregion
 *
 * Enter:   StartIdx = start index of subregion (in elements)
 *          Size = size of subregion (in elements)
 *
 * This does not modify the Mask; the caller needs to do that separately.
 */
void CMRegion::getSubregion(unsigned StartIdx, unsigned Size)
{
  if (Indirect && isa<VectorType>(Indirect->getType())) {
    // Vector indirect (multi indirect). Set IndirectIdx to the index of
    // the start element in the vector indirect.
    IndirectIdx = StartIdx / Width;
    StartIdx %= Width;
  }
  int AddOffset = StartIdx / Width * VStride;
  AddOffset += StartIdx % Width * Stride;
  AddOffset *= ElementBytes;
  Offset += AddOffset;
  if (!(StartIdx % Width) && !(Size % Width)) {
    // StartIdx is at the start of a row and Size is a whole number of
    // rows.
  } else if (StartIdx % Width + Size > Width) {
    // The subregion goes over a row boundary. This can only happen if there
    // is only one row split and it is exactly in the middle.
    VStride += (Size / 2 - Width) * Stride;
    Width = Size / 2;
  } else {
    // Within a single row.
    Width = Size;
    VStride = Size * Stride;
  }
  NumElements = Size;
}

/***********************************************************************
 * CMRegion::createRdRegion : create rdregion intrinsic from "this" Region
 *
 * Enter:   Input = vector value to extract subregion from
 *          Name = name for new instruction
 *          InsertBefore = insert new inst before this point
 *          DL = DebugLoc to give the new instruction
 *          AllowScalar = true to return scalar if region is size 1
 *
 * Return:  newly created instruction
 */
Instruction *CMRegion::createRdRegion(Value *Input, const Twine &Name,
    Instruction *InsertBefore, const DebugLoc &DL, bool AllowScalar)
{
  IGC_ASSERT_MESSAGE(ElementBytes, "not expecting i1 element type");

  Value *StartIdx = getStartIdx(Name, InsertBefore, DL);
  IntegerType *I32Ty = Type::getInt32Ty(Input->getContext());
  Value *ParentWidthArg = UndefValue::get(I32Ty);
  if (Indirect)
    ParentWidthArg = ConstantInt::get(I32Ty, ParentWidth);
  Value *Args[] = {   // Args to new rdregion:
      Input, // input to original rdregion
      ConstantInt::get(I32Ty, VStride), // vstride
      ConstantInt::get(I32Ty, Width), // width
      ConstantInt::get(I32Ty, Stride), // stride
      StartIdx, // start index (in bytes)
      ParentWidthArg // parent width (if variable start index)
  };
  IGC_ASSERT_MESSAGE(
      ElementTy ==
          cast<IGCLLVM::FixedVectorType>(Args[0]->getType())->getElementType(),
      "Region and rdregion input operand types mismatch");
  Type *RegionTy = getRegionType(!AllowScalar);
  Module *M = InsertBefore->getParent()->getParent()->getParent();
  auto IID = ElementTy->isFloatingPointTy() ? GenXIntrinsic::genx_rdregionf
                                            : GenXIntrinsic::genx_rdregioni;
  Function *Decl = getGenXRegionDeclaration(M, IID, RegionTy, Args);
  Instruction *NewInst = CallInst::Create(Decl, Args, Name, InsertBefore);
  NewInst->setDebugLoc(DL);
  return NewInst;
}

/***********************************************************************
 * CMRegion::createWrRegion : create wrregion instruction for subregion
 * CMRegion::createWrConstRegion : create wrconstregion instruction for subregion
 *
 * Enter:   OldVal = vector value to insert subregion into (can be undef)
 *          Input = subregion value to insert (can be scalar, as long as
 *                  region size is 1)
 *          Name = name for new instruction
 *          InsertBefore = insert new inst before this point
 *          DL = DebugLoc to give any new instruction
 *
 * Return:  The new wrregion instruction. However, if it would have had a
 *          predication mask of all 0s, it is omitted and OldVal is returned
 *          instead.
 */
Instruction *CMRegion::createWrRegion(Value *OldVal, Value *Input,
                                      const Twine &Name,
                                      Instruction *InsertBefore,
                                      const DebugLoc &DL) {
  return createWrCommonRegion(OldVal->getType()->isFPOrFPVectorTy()
        ? GenXIntrinsic::genx_wrregionf : GenXIntrinsic::genx_wrregioni,
      OldVal, Input,
      Name, InsertBefore, DL);
}

Instruction *CMRegion::createWrConstRegion(Value *OldVal, Value *Input,
                                           const Twine &Name,
                                           Instruction *InsertBefore,
                                           const DebugLoc &DL) {
  IGC_ASSERT(!Indirect);
  IGC_ASSERT(!Mask);
  IGC_ASSERT(isa<Constant>(Input));
  return createWrCommonRegion(GenXIntrinsic::genx_wrconstregion, OldVal, Input,
      Name, InsertBefore, DL);
}

Instruction *CMRegion::createWrCommonRegion(GenXIntrinsic::ID IID,
                                            Value *OldVal, Value *Input,
                                            const Twine &Name,
                                            Instruction *InsertBefore,
                                            const DebugLoc &DL) {
  IGC_ASSERT_MESSAGE(ElementBytes, "not expecting i1 element type");
  if (isa<VectorType>(Input->getType()))
    IGC_ASSERT_MESSAGE(
        NumElements ==
            cast<IGCLLVM::FixedVectorType>(Input->getType())->getNumElements(),
        "input value and region are inconsistent");
  else
    IGC_ASSERT_MESSAGE(NumElements == 1, "input value and region are inconsistent");
  IGC_ASSERT_MESSAGE(OldVal->getType()->getScalarType() == Input->getType()->getScalarType(),
    "scalar type mismatch");
  Value *StartIdx = getStartIdx(Name, InsertBefore, DL);
  IntegerType *I32Ty = Type::getInt32Ty(Input->getContext());
  Value *ParentWidthArg = UndefValue::get(I32Ty);
  if (Indirect)
    ParentWidthArg = ConstantInt::get(I32Ty, ParentWidth);
  // Get the mask value. If R.Mask is 0, then the wrregion is unpredicated
  // and we just use constant 1.
  Value *MaskArg = Mask;
  if (!MaskArg)
    MaskArg = ConstantInt::get(Type::getInt1Ty(Input->getContext()), 1);
  // Build the wrregion.
  Value *Args[] = {   // Args to new wrregion:
      OldVal, // original vector
      Input, // value to write into subregion
      ConstantInt::get(I32Ty, VStride), // vstride
      ConstantInt::get(I32Ty, Width), // width
      ConstantInt::get(I32Ty, Stride), // stride
      StartIdx, // start index (in bytes)
      ParentWidthArg, // parent width (if variable start index)
      MaskArg // mask
  };
  Module *M = InsertBefore->getParent()->getParent()->getParent();
  Function *Decl = getGenXRegionDeclaration(M, IID, nullptr, Args);
  Instruction *NewInst = CallInst::Create(Decl, Args, Name, InsertBefore);
  NewInst->setDebugLoc(DL);
  return NewInst;
}

/***********************************************************************
 * CMRegion::createRdPredRegion : create rdpredregion instruction
 * CMRegion::createRdPredRegionOrConst : create rdpredregion instruction, or
 *      simplify to constant
 *
 * Enter:   Input = vector value to extract subregion from
 *          Index = start index of subregion
 *          Size = size of subregion
 *          Name = name for new instruction
 *          InsertBefore = insert new inst before this point
 *          DL = DebugLoc to give any new instruction
 *
 * Return:  The new rdpredregion instruction
 *
 * Unlike createRdRegion, this is a static method in Region, because you pass
 * the region parameters (the start index and size) directly into this method.
 */
Instruction *CMRegion::createRdPredRegion(Value *Input, unsigned Index,
    unsigned Size, const Twine &Name, Instruction *InsertBefore,
    const DebugLoc &DL)
{
  Type *I32Ty = Type::getInt32Ty(InsertBefore->getContext());
  Value *Args[] = { // Args to new rdpredregion call:
    Input, // input predicate
    ConstantInt::get(I32Ty, Index) // start offset
  };
  auto RetTy =
      IGCLLVM::FixedVectorType::get(Args[0]->getType()->getScalarType(), Size);
  Module *M = InsertBefore->getParent()->getParent()->getParent();
  Function *Decl = getGenXRegionDeclaration(M, GenXIntrinsic::genx_rdpredregion,
      RetTy, Args);
  Instruction *NewInst = CallInst::Create(Decl, Args, Name, InsertBefore);
  NewInst->setDebugLoc(DL);
  return NewInst;
}

/***********************************************************************
 * CMRegion::createRdVectorSplat: create vector splat using rdregion
 *
 * Enter:   NumElements = number of elements in the resulting vector
 *          Input = Value from which splat is built
 *          Name = name for new instruction
 *          InsertBefore = insert new inst before this point
 *          DL = DebugLoc to give any new instruction
 *
 * Return:  The new rdregion representing vector splat
 */
Value *CMRegion::createRdVectorSplat(const DataLayout &DL, unsigned NumElements,
                                     Value *SplattedValue, const Twine &Name,
                                     Instruction *InsertPt,
                                     const DebugLoc &DbgLoc) {
  auto *V1Cast = CastInst::Create(
      Instruction::BitCast, SplattedValue,
      IGCLLVM::FixedVectorType::get(SplattedValue->getType(), 1),
      SplattedValue->getName() + ".v1cast", InsertPt);
  V1Cast->setDebugLoc(DbgLoc);

  CMRegion R(V1Cast->getType(), &DL);
  R.NumElements = NumElements;
  R.Width = 1;
  R.VStride = 0;
  R.Stride = 0;
  return R.createRdRegion(V1Cast, SplattedValue->getName() + ".splat", InsertPt,
                          DbgLoc, false /* AllowScalar */);
}

/***********************************************************************
* GetConstantSubvector : get a contiguous region from a vector constant
*/
static Constant *GetConstantSubvector(Constant *V,
  unsigned StartIdx, unsigned Size)
{
  Type *ElTy = cast<IGCLLVM::FixedVectorType>(V->getType())->getElementType();
  Type *RegionTy = IGCLLVM::FixedVectorType::get(ElTy, Size);
  if (isa<UndefValue>(V))
    V = UndefValue::get(RegionTy);
  else if (isa<ConstantAggregateZero>(V))
    V = ConstantAggregateZero::get(RegionTy);
  else {
    SmallVector<Constant *, 32> Val;
    for (unsigned i = 0; i != Size; ++i)
      Val.push_back(V->getAggregateElement(i + StartIdx));
    V = ConstantVector::get(Val);
  }
  return V;
}

Value *CMRegion::createRdPredRegionOrConst(Value *Input, unsigned Index,
    unsigned Size, const Twine &Name, Instruction *InsertBefore,
    const DebugLoc &DL)
{
  if (auto C = dyn_cast<Constant>(Input))
    return GetConstantSubvector(C, Index, Size);
  return createRdPredRegion(Input, Index, Size, Name, InsertBefore, DL);
}

/***********************************************************************
 * CMRegion::createWrPredRegion : create wrpredregion instruction
 *
 * Enter:   OldVal = vector value to insert subregion into (can be undef)
 *          Input = subregion value to insert
 *          Index = start index of subregion
 *          Name = name for new instruction
 *          InsertBefore = insert new inst before this point
 *          DL = DebugLoc to give any new instruction
 *
 * Return:  The new wrpredregion instruction
 *
 * Unlike createWrRegion, this is a static method in Region, because you pass
 * the only region parameter (the start index) directly into this method.
 */
Instruction *CMRegion::createWrPredRegion(Value *OldVal, Value *Input,
    unsigned Index, const Twine &Name, Instruction *InsertBefore,
    const DebugLoc &DL)
{
  IntegerType *I32Ty = Type::getInt32Ty(Input->getContext());
  Value *Args[] = {   // Args to new wrpredregion:
      OldVal, // original vector
      Input, // value to write into subregion
      ConstantInt::get(I32Ty, Index), // start index
  };
  Module *M = InsertBefore->getParent()->getParent()->getParent();
  Function *Decl = getGenXRegionDeclaration(M, GenXIntrinsic::genx_wrpredregion,
      nullptr, Args);
  Instruction *NewInst = CallInst::Create(Decl, Args, Name, InsertBefore);
  NewInst->setDebugLoc(DL);
  return NewInst;
}

/***********************************************************************
 * CMRegion::createWrPredPredRegion : create wrpredpredregion instruction
 *
 * Enter:   OldVal = vector value to insert subregion into (can be undef)
 *          Input = subregion value to insert
 *          Index = start index of subregion
 *          Pred = predicate for the write region
 *          Name = name for new instruction
 *          InsertBefore = insert new inst before this point
 *          DL = DebugLoc to give any new instruction
 *
 * Return:  The new wrpredpredregion instruction
 *
 * Unlike createWrRegion, this is a static method in Region, because you pass
 * the only region parameter (the start index) directly into this method.
 */
Instruction *CMRegion::createWrPredPredRegion(Value *OldVal, Value *Input,
    unsigned Index, Value *Pred, const Twine &Name, Instruction *InsertBefore,
    const DebugLoc &DL)
{
  Type *Tys[] = { OldVal->getType(), Input->getType() };
  Function *CalledFunc = GenXIntrinsic::getGenXDeclaration(
      InsertBefore->getParent()->getParent()->getParent(),
      GenXIntrinsic::genx_wrpredpredregion, Tys);
  Value *Args[] = { OldVal, Input,
      ConstantInt::get(Type::getInt32Ty(InsertBefore->getContext()), Index),
      Pred };
  auto NewInst = CallInst::Create(CalledFunc, Args, "", InsertBefore);
  NewInst->setDebugLoc(DL);
  return NewInst;
}

/***********************************************************************
 * setRegionCalledFunc : for an existing rdregion/wrregion call, modify
 *      its called function to match its operand types
 *
 * This is used in GenXLegalization after modifying a wrregion operand
 * such that its type changes. The called function then needs to change
 * because it is decorated with overloaded types.
 */
void CMRegion::setRegionCalledFunc(Instruction *Inst)
{
  auto CI = cast<CallInst>(Inst);
  SmallVector<Value *, 8> Opnds;
  for (unsigned i = 0, e = IGCLLVM::getNumArgOperands(CI); i != e; ++i)
    Opnds.push_back(CI->getOperand(i));
  Function *Decl = getGenXRegionDeclaration(
      Inst->getParent()->getParent()->getParent(),
      GenXIntrinsic::getGenXIntrinsicID(Inst),
      Inst->getType(), Opnds);
  CI->setOperand(IGCLLVM::getNumArgOperands(CI), Decl);
}

/***********************************************************************
 * getRegionDeclaration : get the function declaration for a region intrinsic
 *
 * Enter:   M = Module
 *          IID = intrinsic ID
 *          RetTy = return type (can be 0 if return type not overloaded)
 *          Args = array of operands so we can determine overloaded types
 *
 * Return:  the Function
 */
Function *CMRegion::getGenXRegionDeclaration(Module *M,
    GenXIntrinsic::ID IID, Type *RetTy, ArrayRef<Value *> Args)
{
  switch (IID) {
    case GenXIntrinsic::genx_rdregioni:
    case GenXIntrinsic::genx_rdregionf: {
      Type *Tys[] = { RetTy, Args[0]->getType(), Args[4]->getType() };
      return GenXIntrinsic::getGenXDeclaration(M, IID, Tys);
    }
    case GenXIntrinsic::genx_wrregioni:
    case GenXIntrinsic::genx_wrregionf:
    case GenXIntrinsic::genx_wrconstregion: {
      Type *Tys[] = { Args[0]->getType(), Args[1]->getType(),
          Args[5]->getType(), Args[7]->getType() };
      return GenXIntrinsic::getGenXDeclaration(M, IID, Tys);
    }
    case GenXIntrinsic::genx_rdpredregion: {
      Type *Tys[] = { RetTy, Args[0]->getType() };
      return GenXIntrinsic::getGenXDeclaration(M, IID, Tys);
    }
    case GenXIntrinsic::genx_wrpredregion: {
      Type *Tys[] = { Args[0]->getType(), Args[1]->getType() };
      return GenXIntrinsic::getGenXDeclaration(M, IID, Tys);
    }
    default:
      IGC_ASSERT_EXIT_MESSAGE(0, "unrecognized region intrinsic ID");
  }
  return nullptr;
}

/***********************************************************************
 * getStartIdx : get the LLVM IR Value for the start index of a region
 *
 * This is common code used by both createRdRegion and createWrRegion.
 */
Value *CMRegion::getStartIdx(const Twine &Name, Instruction *InsertBefore,
    const DebugLoc &DL)
{
  IntegerType *I16Ty = Type::getInt16Ty(InsertBefore->getContext());
  if (!Indirect)
    return ConstantInt::get(I16Ty, Offset);
  // Deal with indirect (variable index) region.
  if (auto VT = dyn_cast<IGCLLVM::FixedVectorType>(Indirect->getType())) {
    if (VT->getNumElements() != NumElements) {
      // We have a vector indirect and we need to take a subregion of it.
      CMRegion IdxRegion(Indirect);
      IdxRegion.getSubregion(IndirectIdx, NumElements / Width);
      Indirect = IdxRegion.createRdRegion(Indirect,
          Name + ".multiindirect_idx_subregion", InsertBefore, DL);
      IndirectIdx = 0;
    }
  }
  Value *Index = Indirect;
  if (Offset) {
    Constant *OffsetVal = ConstantInt::get(I16Ty, Offset);
    if (auto VT = dyn_cast<IGCLLVM::FixedVectorType>(Indirect->getType()))
      OffsetVal = ConstantVector::getSplat(
          IGCLLVM::getElementCount(VT->getNumElements()), OffsetVal);
    auto BO = BinaryOperator::Create(Instruction::Add, Index, OffsetVal,
        Name + ".indirect_idx_add", InsertBefore);
    BO->setDebugLoc(DL);
    Index = BO;
  }
  return Index;
}

/***********************************************************************
 * isSimilar : compare two regions to see if they have the same region
 *      parameters other than start offset, also allowing element type to
 *      be different
 */
bool CMRegion::isSimilar(const CMRegion &R2) const
{
  if (ElementBytes == R2.ElementBytes)
    return isStrictlySimilar(R2);
  // Change the element type to match, so we can compare the regions.
  CMRegion R = R2;
  // FIXME: we need DataLayout here
  if (!R.changeElementType(ElementTy, nullptr))
    return false;
  return isStrictlySimilar(R);
}

SmallVector<unsigned, 8> CMRegion::getAccessIndices() const {
  IGC_ASSERT(!Indirect);
  SmallVector<unsigned, 8> Res;
  Res.reserve(NumElements);
  IGC_ASSERT(Offset % ElementBytes == 0);
  unsigned StartIdx = Offset / ElementBytes;
  for (unsigned Row = 0; Row < NumElements / Width; ++Row)
    for (unsigned RowIdx = 0; RowIdx < Width; ++RowIdx)
      Res.push_back(StartIdx + Row * VStride + RowIdx * Stride);
  IGC_ASSERT(Res.size() == NumElements);
  return Res;
}

SmallBitVector CMRegion::getAccessBitMap(int MinTrackingOffset) const {
  // Construct bitmap for a single row
  SmallBitVector RowBitMap(getRowLength());
  for (unsigned i = 0; i < Width; i++) {
    RowBitMap <<= (Stride * ElementBytes);
    RowBitMap.set(0, ElementBytes);
  }
  // Apply row bitmap to a whole region bitmap
  // exactly NumRows times
  SmallBitVector BitMap(getLength());
  unsigned NumRows = NumElements / Width;
  if (NumRows != 1) {
    for (unsigned i = 0; i < NumRows; i++) {
      BitMap <<= (VStride * ElementBytes);
      BitMap |= RowBitMap;
    }
  } else
    BitMap = std::move(RowBitMap);
  // Adjust mask according to min tracking
  // offset for comparison
  IGC_ASSERT(Offset >= MinTrackingOffset);
  unsigned Diff = Offset - MinTrackingOffset;
  if (Diff) {
    BitMap.resize(BitMap.size() + Diff);
    BitMap <<= Diff;
  }
  return BitMap;
}

// overlap: Compare two regions to see whether they overlaps each other.
bool CMRegion::overlap(const CMRegion &R2) const {
  // To be conservative, if any of them is indirect, they overlaps.
  if (Indirect || R2.Indirect)
    return true;
  // To be conservative, if different masks are used, they overlaps.
  if (Mask != R2.Mask)
    return true;
  // Check offsets of regions for intersection
  int MaxOffset = std::max(Offset, R2.Offset);
  int MinEndOffset = std::min(Offset + getLength(), R2.Offset + R2.getLength());
  if (MaxOffset > MinEndOffset)
    return false;
  // Check overlapping using bit masks
  int MinOffset = std::min(Offset, R2.Offset);
  auto Mask1 = getAccessBitMap(MinOffset);
  auto Mask2 = R2.getAccessBitMap(MinOffset);
  // If there are any common bits then these regions overlap
  return Mask1.anyCommon(Mask2);
}

/***********************************************************************
 * CMRegion::isContiguous : test whether a region is contiguous
 */
bool CMRegion::isContiguous() const {
  return (Width == 1 || Stride == 1) &&
         (Width == NumElements || VStride == static_cast<int>(Width));
}

/***********************************************************************
 * CMRegion::isWhole : test whether a region covers exactly the whole of the
 *      given type, allowing for the element type being different
 */
bool CMRegion::isWhole(Type *Ty, const DataLayout *DL) const
{
  return isContiguous() && Offset == 0 &&
    NumElements * ElementBytes == vc::getTypeSize(Ty, DL).inBytes();
}

/***********************************************************************
 * evaluateConstantRdRegion : evaluate rdregion with constant input
 */
Constant *CMRegion::evaluateConstantRdRegion(Constant *Input, bool AllowScalar)
{
  IGC_ASSERT(!Indirect);
  if (NumElements != 1)
    AllowScalar = false;
  if (Constant *SV = Input->getSplatValue()) {
    if (AllowScalar)
      return SV;
    return ConstantVector::getSplat(IGCLLVM::getElementCount(NumElements), SV);
  }
  auto VT = cast<IGCLLVM::FixedVectorType>(Input->getType());
  SmallVector<Constant *, 8> Values;
  Constant *Undef = UndefValue::get(
      AllowScalar ? ElementTy
                  : IGCLLVM::FixedVectorType::get(ElementTy, NumElements));
  if (isa<UndefValue>(Input))
    return Undef;
  unsigned RowIdx = getOffsetInElements();
  unsigned Idx = RowIdx;
  unsigned NextRow = Width;
  for (unsigned i = 0; i != NumElements; ++i) {
    if (i == NextRow) {
      RowIdx += VStride;
      Idx = RowIdx;
    }
    if (Idx >= VT->getNumElements())
      return Undef; // out of range index
    // Get the element value and push it into Values.
    if (ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(Input))
      Values.push_back(CDV->getElementAsConstant(Idx));
    else {
      auto CV = cast<ConstantVector>(Input);
      Values.push_back(CV->getOperand(Idx));
    }
    Idx += Stride;
  }
  if (AllowScalar)
    return Values[0];
  return ConstantVector::get(Values);
}

/***********************************************************************
 * evaluateConstantWrRegion : evaluate wrregion with constant inputs
 */
Constant *CMRegion::evaluateConstantWrRegion(Constant *OldVal, Constant *NewVal)
{
  IGC_ASSERT(!Indirect);
  SmallVector<Constant *, 8> Vec;
  for (unsigned i = 0, e = cast<IGCLLVM::FixedVectorType>(OldVal->getType())
                               ->getNumElements();
       i != e; ++i)
    Vec.push_back(OldVal->getAggregateElement(i));
  unsigned Off = getOffsetInElements();
  unsigned Row = Off;
  auto NewVT = dyn_cast<IGCLLVM::FixedVectorType>(NewVal->getType());
  unsigned NewNumEls = !NewVT ? 1 : NewVT->getNumElements();
  for (unsigned i = 0;;) {
    if (Off >= Vec.size())
      return UndefValue::get(OldVal->getType()); // out of range
    Vec[Off] = !NewVT ? NewVal : NewVal->getAggregateElement(i);
    if (++i == NewNumEls)
      break;
    if (i % Width) {
      Off += Stride;
      continue;
    }
    Row += VStride;
    Off = Row;
  }
  return ConstantVector::get(Vec);
}

/***********************************************************************
 * CMRegion::changeElementType : change element type of the region
 *
 * Return:  true if succeeded, false if failed (nothing altered)
 */
bool CMRegion::changeElementType(Type *NewElementType, const DataLayout *DL) {
  // TODO: enable this assert once out codebase is ready
  // IGC_ASSERT(DL);
  IGC_ASSERT(ElementBytes);
  IGC_ASSERT_MESSAGE(Offset % ElementBytes == 0, "Impossible offset (in bytes) for data type");

  unsigned NewElementBytes = vc::getTypeSize(NewElementType, DL).inBytes();

  if (Indirect || Mask)
    return false;

  if (NewElementBytes == ElementBytes) {
    // No change in element size
    ElementTy = NewElementType;
    return true;
  }

  unsigned Ratio = NewElementBytes / ElementBytes;
  if (Ratio >= 1) {
    IGC_ASSERT_MESSAGE(isPowerOf2_32(Ratio), "Ratio must be pow of 2");
    // Trying to make the element size bigger.
    if (Width & (Ratio - 1))
      return false; // width misaligned
    if (VStride & (Ratio - 1))
      return false; // vstride misaligned
    if (Stride != 1)
      return false; // rows not contiguous
    if (Offset & (Ratio - 1))
      return false;
    unsigned LogRatio = Log2_32(Ratio);
    NumElements >>= LogRatio;
    Width >>= LogRatio;
    VStride >>= LogRatio;
    if (Width == 1) {
      // Width is now 1, so turn it into a 1D region.
      Stride = VStride;
      VStride = 0;
      Width = NumElements;
    }
    ElementTy = NewElementType;
    ElementBytes = NewElementBytes;
    return true;
  }
  // Trying to make the element size smaller.
  IGC_ASSERT(NewElementBytes);
  Ratio = ElementBytes / NewElementBytes;
  IGC_ASSERT_MESSAGE(isPowerOf2_32(Ratio), "Ratio must be pow of 2");
  unsigned LogRatio = Log2_32(Ratio);
  if (Stride == 1 || Width == 1) {
    // Row contiguous.
    Stride = 1;
    NumElements <<= LogRatio;
    Width <<= LogRatio;
    VStride <<= LogRatio;
    ElementTy = NewElementType;
    ElementBytes = NewElementBytes;
    return true;
  }
  if (!is2D()) {
    // 1D and not contiguous. Turn it into a 2D region.
    VStride = Stride << LogRatio;
    Stride = 1;
    Width = Ratio;
    NumElements <<= LogRatio;
    ElementTy = NewElementType;
    ElementBytes = NewElementBytes;
    return true;
  }
  return false;
}

/***********************************************************************
 * CMRegion::append : append region AR to this region
 *
 * Return:  true if succeeded (this region modified)
 *          false if not possible to append (this region in indeterminate state)
 *
 * This succeeds even if it leaves this region in an illegal state where
 * it has a non-integral number of rows. After doing a sequence of appends,
 * the caller needs to check that the resulting region is legal by calling
 * isWholeNumRows().
 */
bool CMRegion::append(CMRegion AR)
{
  IGC_ASSERT(AR.isWholeNumRows());
  if (Indirect != AR.Indirect)
    return false;
  IGC_ASSERT(AR.Width);
  unsigned ARNumRows = AR.NumElements / AR.Width;
  // Consider each row of AR separately.
  for (unsigned ARRow = 0; ARRow != ARNumRows;
      ++ARRow, AR.Offset += AR.VStride * AR.ElementBytes) {
    if (NumElements == Width) {
      // This region is currently 1D.
      if (NumElements == 1) {
        IGC_ASSERT(ElementBytes);
        Stride = (AR.Offset - Offset) / ElementBytes;
      }
      else if (AR.Width != 1 && Stride != AR.Stride)
        return false; // Mismatched stride.
      int NextOffset = Offset + Width * Stride * ElementBytes;
      if (AR.Offset == NextOffset) {
        // AR is a continuation of the same single row.
        Width += AR.Width;
        NumElements = Width;
        continue;
      }
      // AR is the start (or whole) of a second row.
      if (AR.Width > Width)
        return false; // AR row is bigger than this row.
      IGC_ASSERT(ElementBytes);
      VStride = (AR.Offset - Offset) / ElementBytes;
      NumElements += AR.Width;
      continue;
    }
    // This region is already 2D.
    IGC_ASSERT(Width);
    unsigned ExtraBit = NumElements % Width;
    int NextOffset = Offset + ((VStride * (NumElements / Width))
        + ExtraBit) * ElementBytes;
    if (NextOffset != AR.Offset)
      return false; // Mismatched next offset.
    if (AR.Width > Width - ExtraBit)
      return false; // Too much to fill whole row, or remainder of row after
                    //   existing extra bit.
    if (AR.Width != 1 && AR.Stride != Stride)
      return false; // Mismatched stride.
    NumElements += AR.Width;
  }
  return true;
}

/***********************************************************************
 * Region debug dump/print
 */
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void CMRegion::dump() const
{
  errs() << *this << "\n";
}
#endif

void CMRegion::print(raw_ostream &OS) const
{
  OS << *IGCLLVM::FixedVectorType::get(ElementTy, NumElements) << " <"
     << VStride << ";" << Width << "," << Stride << ">(";
  if (Indirect) {
    OS << Indirect->getName();
    if (auto VT = dyn_cast<IGCLLVM::FixedVectorType>(Indirect->getType()))
      OS << "<" << VT->getNumElements() << ">(" << IndirectIdx << ")";
    OS << " + ";
  }
  OS << Offset << ")";
  if (Indirect && ParentWidth)
    OS << " {parentwidth=" << ParentWidth << "}";
  if (Mask)
    OS << " {mask=" << *Mask << "}";
}

unsigned CMRegion::getOffsetInElements() const {
  IGC_ASSERT_MESSAGE(
      ElementBytes,
      "the class is in invalid state: ElementBytes must not be zero");
  IGC_ASSERT_MESSAGE(Offset % ElementBytes == 0,
                     "offset must be in element bytes");
  return Offset / ElementBytes;
}

Type *CMRegion::getRegionType(bool UseDegenerateVectorType) const {
  IGC_ASSERT_MESSAGE(ElementTy && NumElements, "the class is in invalid state");
  if (UseDegenerateVectorType)
    return IGCLLVM::FixedVectorType::get(ElementTy, NumElements);
  if (NumElements == 1)
    return ElementTy;
  return IGCLLVM::FixedVectorType::get(ElementTy, NumElements);
}

// Analyzes region. Returns whether the region is 1D and what stride this 1D
// region has. The second return value is unspecified when the region is not
// 1D.
static std::pair<bool, int> analyze1DRegion(int NumElements, int VStride,
                                            int Width, int Stride) {
  if (Width == NumElements)
    return {true, Stride};
  if (Width == 1)
    return {true, VStride};
  // Don't care what stride to return when the region is not 1D.
  return {VStride == Width * Stride, Stride};
}

bool CMRegion::is1D() const {
  return analyze1DRegion(NumElements, VStride, Width, Stride).first;
}

int CMRegion::get1DStride() const {
  IGC_ASSERT_MESSAGE(is1D(), "the method can only be called for 1D region");
  return analyze1DRegion(NumElements, VStride, Width, Stride).second;
}

int CMRegion::getDstStride() const {
  auto Stride = get1DStride();
  if (Width == 1)
    return 1;
  IGC_ASSERT_MESSAGE(Stride > 0, "stride cannot be zero");
  return Stride;
}

void CMRegion::setElementTy(Type *Ty, DataLayout *DL) {
  ElementTy = Ty;
  ElementBytes = vc::getTypeSize(ElementTy, DL).inBytes();
}