1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#define DEBUG_TYPE "vc-transform-arg-copy"
#include "llvmWrapper/Analysis/CallGraph.h"
#include "llvmWrapper/IR/Attributes.h"
#include "llvmWrapper/IR/CallSite.h"
#include "llvmWrapper/IR/Function.h"
#include "llvmWrapper/IR/Instructions.h"
#include "Probe/Assertion.h"
#include "vc/Utils/GenX/TransformArgCopy.h"
#include "vc/Utils/GenX/TypeSize.h"
#include "vc/Utils/General/DebugInfo.h"
#include "vc/Utils/General/FunctionAttrs.h"
#include "vc/Utils/General/Types.h"
#include <llvm/ADT/STLExtras.h>
#include <llvm/ADT/Twine.h>
#include <llvm/GenXIntrinsics/GenXIntrinsics.h>
#include <llvm/IR/DerivedTypes.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/User.h>
#include <llvm/Support/Casting.h>
#include <llvm/Support/Debug.h>
#include <algorithm>
#include <iterator>
#include <numeric>
#include <utility>
using namespace llvm;
using namespace vc;
// Check if the value is only used by simple load or store.
static bool onlyUsedBySimpleValueLoadStore(const Value &Arg) {
auto UserChecker = [&Arg](const auto &U) {
auto *I = dyn_cast<Instruction>(U);
if (!I)
return false;
if (auto *LI = dyn_cast<LoadInst>(U))
return &Arg == LI->getPointerOperand();
if (auto *SI = dyn_cast<StoreInst>(U))
return &Arg == SI->getPointerOperand();
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
if (&Arg != GEP->getPointerOperand())
return false;
if (!GEP->hasAllZeroIndices())
return false;
return onlyUsedBySimpleValueLoadStore(*U);
}
if (isa<AddrSpaceCastInst>(U) || isa<PtrToIntInst>(U))
return onlyUsedBySimpleValueLoadStore(*U);
return false;
};
return llvm::all_of(Arg.users(), UserChecker);
}
// Check if the struct contains only suitable types.
// Currently suitable types are ints/vector of ints, floats/vector of floats,
// pointers/vector of pointers.
static bool containsOnlySuitableTypes(const StructType &StrTy) {
return llvm::all_of(StrTy.elements(), [](Type *Ty) {
return Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy() ||
Ty->isPtrOrPtrVectorTy();
});
}
// Returns true if data is only read using load-like intrinsics. The result may
// be false negative.
static bool isSinkedToLoadIntrinsics(const Instruction *Inst) {
if (isa<CallInst>(Inst)) {
auto *CI = cast<CallInst>(Inst);
auto IID = GenXIntrinsic::getAnyIntrinsicID(CI->getCalledFunction());
return IID == GenXIntrinsic::genx_svm_gather ||
IID == GenXIntrinsic::genx_gather_scaled;
}
return std::all_of(Inst->user_begin(), Inst->user_end(), [](const User *U) {
if (isa<InsertElementInst>(U) || isa<ShuffleVectorInst>(U) ||
isa<BinaryOperator>(U) || isa<CallInst>(U))
return isSinkedToLoadIntrinsics(cast<Instruction>(U));
return false;
});
}
// Arg is a ptr to a vector/struct type. If data is only read using load, then
// false is returned. Otherwise, or if it is not clear, true is returned. This
// is a recursive function. The result may be false positive.
static bool isPtrArgModified(const Value &Arg) {
// User iterator returns pointer both for star and arrow operators, because...
return std::any_of(Arg.user_begin(), Arg.user_end(), [](const User *U) {
if (isa<LoadInst>(U))
return false;
if (isa<AddrSpaceCastInst>(U) || isa<BitCastInst>(U) ||
isa<GetElementPtrInst>(U))
return isPtrArgModified(*U);
if (isa<PtrToIntInst>(U))
return !isSinkedToLoadIntrinsics(cast<Instruction>(U));
return true;
});
}
// Check if it is safe to pass structure by value.
static bool structSafeToPassByVal(const Argument &Arg) {
StructType *StrTy =
cast<StructType>(cast<PointerType>(Arg.getType())->getPointerElementType());
if (!containsOnlySuitableTypes(*StrTy))
return false;
// SRet/Byval are safe no matter what happens inside the
// function according to their langref definitions.
if (Arg.hasAttribute(Attribute::StructRet) ||
Arg.hasAttribute(Attribute::ByVal))
return true;
auto UserChecker = [&Arg](const auto &U) {
auto *I = dyn_cast<Instruction>(U);
if (!I)
return false;
if (auto *SI = dyn_cast<StoreInst>(U))
return &Arg == SI->getPointerOperand();
if (auto *LI = dyn_cast<LoadInst>(U))
return &Arg == LI->getPointerOperand();
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
IGC_ASSERT(&Arg == GEP->getPointerOperand());
// Check the first idx is zero.
Value *Idx = *GEP->idx_begin();
auto *ConstIdx = dyn_cast<ConstantInt>(Idx);
return ConstIdx && ConstIdx->getZExtValue() == 0;
}
return false;
};
// Allow only CopyIn for non-byval/sret structures
return llvm::all_of(Arg.users(), UserChecker) && !isPtrArgModified(Arg);
}
// Check if argument should be transformed.
static bool argToTransform(const Argument &Arg,
vc::TypeSizeWrapper MaxStructSize) {
auto *PtrTy = dyn_cast<PointerType>(Arg.getType());
if (!PtrTy)
return false;
Type *ElemTy = PtrTy->getPointerElementType();
if ((ElemTy->isVectorTy() || onlyUsedBySimpleValueLoadStore(Arg)) &&
(ElemTy->isIntOrIntVectorTy() || ElemTy->isFPOrFPVectorTy()))
return true;
if (auto *StrTy = dyn_cast<StructType>(ElemTy)) {
const DataLayout &DL = Arg.getParent()->getParent()->getDataLayout();
if (structSafeToPassByVal(Arg) &&
vc::getTypeSize(StrTy, &DL) <= MaxStructSize)
return true;
}
return false;
}
// Collect arguments that should be transformed.
SmallPtrSet<Argument *, 8>
vc::collectArgsToTransform(Function &F, vc::TypeSizeWrapper MaxStructSize) {
SmallPtrSet<Argument *, 8> ArgsToTransform;
for (auto &Arg : F.args())
if (argToTransform(Arg, MaxStructSize))
ArgsToTransform.insert(&Arg);
return ArgsToTransform;
}
// Replaces uses of global variables with the corresponding allocas inside a
// specified function. More insts can be rebuild if global variable addrspace
// wasn't private.
void vc::replaceUsesWithinFunction(
const SmallDenseMap<Value *, Value *> &GlobalsToReplace, Function *F) {
for (auto &BB : *F) {
for (auto &Inst : BB) {
for (unsigned i = 0, e = Inst.getNumOperands(); i < e; ++i) {
Value *Op = Inst.getOperand(i);
auto Iter = GlobalsToReplace.find(Op);
if (Iter != GlobalsToReplace.end()) {
IGC_ASSERT_MESSAGE(Op->getType() == Iter->second->getType(),
"only global variables in private addrspace are "
"localized, so types must match");
Inst.setOperand(i, Iter->second);
}
}
}
}
}
GlobalArgInfo vc::GlobalArgsInfo::getGlobalInfoForArgNo(int ArgIdx) const {
IGC_ASSERT_MESSAGE(FirstGlobalArgIdx != UndefIdx,
"first global arg index isn't set");
auto Idx = ArgIdx - FirstGlobalArgIdx;
IGC_ASSERT_MESSAGE(Idx >= 0, "out of bound access");
IGC_ASSERT_MESSAGE(Idx < static_cast<int>(Globals.size()),
"out of bound access");
return Globals[ArgIdx - FirstGlobalArgIdx];
}
bool vc::RetToArgLink::isRealIdx(int Idx) {
bool Res = (Idx != OmittedIdx);
if (Res)
IGC_ASSERT_MESSAGE(Idx >= 0, "Not omitted idx is corrupted!");
return Res;
}
bool vc::RetToArgLink::isOmittedIdx(int Idx) { return !isRealIdx(Idx); }
RetToArgLink vc::RetToArgLink::createForOrigRet() {
return {OmittedIdx, OmittedIdx};
}
RetToArgLink vc::RetToArgLink::createForGlobalArg(int NewIdx) {
IGC_ASSERT_MESSAGE(isRealIdx(NewIdx), "Tried to build corrupted link!");
return {NewIdx, OmittedIdx};
}
RetToArgLink vc::RetToArgLink::createForOmittedArg(int OrigIdx) {
IGC_ASSERT_MESSAGE(isRealIdx(OrigIdx), "Tried to build corrupted link!");
return {OmittedIdx, OrigIdx};
}
RetToArgLink vc::RetToArgLink::createForLinkedArgs(int NewIdx, int OrigIdx) {
IGC_ASSERT_MESSAGE(isRealIdx(NewIdx) && isRealIdx(OrigIdx),
"Tried to build corrupted link!");
return {NewIdx, OrigIdx};
}
bool vc::RetToArgLink::isOrigRet() const {
return isOmittedIdx(NewIdx) && isOmittedIdx(OrigIdx);
}
bool vc::RetToArgLink::isGlobalArg() const {
return isRealIdx(NewIdx) && isOmittedIdx(OrigIdx);
}
bool vc::RetToArgLink::isOmittedArg() const {
return isOmittedIdx(NewIdx) && isRealIdx(OrigIdx);
}
int vc::RetToArgLink::getNewIdx() const {
IGC_ASSERT_MESSAGE(isRealIdx(NewIdx), "Tried to use bad new index!");
return NewIdx;
}
int vc::RetToArgLink::getOrigIdx() const {
IGC_ASSERT_MESSAGE(isRealIdx(OrigIdx), "Tried to use bad orig index!");
return OrigIdx;
}
vc::OrigArgInfo::OrigArgInfo(Type *TyIn, ArgKind KindIn, int NewIdxIn)
: TransformedOrigType{TyIn}, Kind{KindIn}, NewIdx{NewIdxIn} {
IGC_ASSERT_MESSAGE(TyIn, "Bad type provided");
IGC_ASSERT_MESSAGE(NewIdxIn == OmittedIdx || NewIdxIn >= 0,
"Undexpected new index");
}
int vc::OrigArgInfo::getNewIdx() const {
IGC_ASSERT_MESSAGE(NewIdx >= 0, "Tried to use bad new idx!");
return NewIdx;
}
vc::TransformedFuncInfo::TransformedFuncInfo(
Function &OrigFunc, SmallPtrSetImpl<Argument *> &ArgsToTransform) {
fillOrigArgInfo(OrigFunc, ArgsToTransform);
inheritAttributes(OrigFunc);
// struct-returns are not supported for transformed functions,
// so we need to discard the attribute
if (OrigFunc.hasStructRetAttr() && OrigFunc.hasLocalLinkage())
discardStructRetAttr(OrigFunc.getContext());
auto *OrigRetTy = OrigFunc.getFunctionType()->getReturnType();
if (!OrigRetTy->isVoidTy()) {
NewFuncType.Ret.push_back(OrigRetTy);
RetToArg.push_back(RetToArgLink::createForOrigRet());
}
appendRetCopyOutInfo();
}
// Whether provided \p GV should be passed by pointer.
static bool passLocalizedGlobalByPointer(const GlobalValue &GV) {
auto *Type = GV.getType()->getPointerElementType();
return Type->isAggregateType();
}
void vc::TransformedFuncInfo::appendGlobals(
SetVector<GlobalVariable *> &Globals) {
IGC_ASSERT_MESSAGE(GlobalArgs.FirstGlobalArgIdx == GlobalArgsInfo::UndefIdx,
"can only be initialized once");
GlobalArgs.FirstGlobalArgIdx = NewFuncType.Args.size();
for (auto *GV : Globals) {
if (passLocalizedGlobalByPointer(*GV)) {
NewFuncType.Args.push_back(vc::changeAddrSpace(
cast<PointerType>(GV->getType()), vc::AddrSpace::Private));
GlobalArgs.Globals.push_back({GV, GlobalArgKind::ByPointer});
} else {
int ArgIdx = NewFuncType.Args.size();
Type *PointeeTy = GV->getType()->getPointerElementType();
NewFuncType.Args.push_back(PointeeTy);
if (GV->isConstant())
GlobalArgs.Globals.push_back({GV, GlobalArgKind::ByValueIn});
else {
GlobalArgs.Globals.push_back({GV, GlobalArgKind::ByValueInOut});
NewFuncType.Ret.push_back(PointeeTy);
RetToArg.push_back(RetToArgLink::createForGlobalArg(ArgIdx));
}
}
}
}
void vc::TransformedFuncInfo::fillOrigArgInfo(
Function &OrigFunc, SmallPtrSetImpl<Argument *> &ArgsToTransform) {
IGC_ASSERT_MESSAGE(OrigArgs.empty(),
"shouldn't be filled before this method");
auto DetermineArgKind = [&ArgsToTransform](const Argument &Arg) {
if (!ArgsToTransform.count(&Arg))
return ArgKind::General;
if (Arg.hasAttribute(Attribute::StructRet))
return ArgKind::CopyOut;
if (Arg.hasAttribute(Attribute::ByVal))
return ArgKind::CopyIn;
if (isPtrArgModified(Arg))
return ArgKind::CopyInOut;
return ArgKind::CopyIn;
};
for (const auto &Arg : OrigFunc.args()) {
Type *Ty = Arg.getType();
int NewIdx = NewFuncType.Args.size();
auto Kind = DetermineArgKind(Arg);
// Update type for transformed arguments.
if (Kind != ArgKind::General) {
Ty = Ty->getPointerElementType();
}
if (Kind == ArgKind::CopyOut) {
// Save omitted arg info.
OrigArgs.push_back({Ty, Kind});
} else {
// Save arg info and update argument types.
NewFuncType.Args.push_back(Ty);
OrigArgs.push_back({Ty, Kind, NewIdx});
}
}
}
AttributeList
vc::TransformedFuncInfo::gatherAttributes(LLVMContext &Context,
const AttributeList &AL) const {
AttributeList GatheredAttrs;
// Gather argument attributes.
for (auto OrigArgData : enumerate(OrigArgs)) {
int OrigIdx = OrigArgData.index();
const OrigArgInfo &OrigArgInfoEntry = OrigArgData.value();
if (OrigArgInfoEntry.getKind() == ArgKind::General) {
IGC_ASSERT_MESSAGE(!OrigArgInfoEntry.isOmittedArg(),
"unexpected omitted argument");
AttributeSet ArgAttrs = IGCLLVM::getParamAttrs(AL, OrigIdx);
if (ArgAttrs.hasAttributes())
GatheredAttrs = GatheredAttrs.addParamAttributes(
Context, OrigArgInfoEntry.getNewIdx(),
IGCLLVM::AttrBuilder{Context, ArgAttrs});
}
}
// Gather function attributes.
AttributeSet FnAttrs = IGCLLVM::getFnAttrs(AL);
if (FnAttrs.hasAttributes()) {
IGCLLVM::AttrBuilder B(Context, FnAttrs);
GatheredAttrs = IGCLLVM::addAttributesAtIndex(GatheredAttrs, Context, AttributeList::FunctionIndex, B);
}
return GatheredAttrs;
}
void vc::TransformedFuncInfo::inheritAttributes(Function &OrigFunc) {
LLVMContext &Context = OrigFunc.getContext();
const AttributeList &OrigAttrs = OrigFunc.getAttributes();
Attrs = gatherAttributes(Context, OrigAttrs);
}
void vc::TransformedFuncInfo::discardStructRetAttr(LLVMContext &Context) {
constexpr auto SretAttr = Attribute::StructRet;
for (auto ArgInfo : enumerate(NewFuncType.Args)) {
unsigned ParamIndex = ArgInfo.index();
if (Attrs.hasParamAttr(ParamIndex, SretAttr)) {
Attrs = Attrs.removeParamAttribute(Context, ParamIndex, SretAttr);
DiscardedParameterAttrs.push_back({ParamIndex, SretAttr});
}
}
}
void vc::TransformedFuncInfo::appendRetCopyOutInfo() {
for (auto OrigArgData : enumerate(OrigArgs)) {
int OrigIdx = OrigArgData.index();
const OrigArgInfo &OrigArgInfoEntry = OrigArgData.value();
switch (OrigArgInfoEntry.getKind()) {
case ArgKind::CopyInOut:
NewFuncType.Ret.push_back(OrigArgInfoEntry.getTransformedOrigType());
RetToArg.push_back(RetToArgLink::createForLinkedArgs(
OrigArgInfoEntry.getNewIdx(), OrigIdx));
break;
case ArgKind::CopyOut:
NewFuncType.Ret.push_back(OrigArgInfoEntry.getTransformedOrigType());
RetToArg.push_back(RetToArgLink::createForOmittedArg(OrigIdx));
break;
default:
break;
}
}
}
static Type *getRetType(LLVMContext &Context,
const TransformedFuncType &TFType) {
if (TFType.Ret.empty())
return Type::getVoidTy(Context);
if (TFType.Ret.size() == 1)
return TFType.Ret.front();
return StructType::get(Context, TFType.Ret);
}
Function *vc::createTransformedFuncDecl(Function &OrigFunc,
const TransformedFuncInfo &TFuncInfo) {
LLVMContext &Context = OrigFunc.getContext();
// Construct the new function type using the new arguments.
FunctionType *NewFuncTy = FunctionType::get(
getRetType(Context, TFuncInfo.getType()), TFuncInfo.getType().Args,
OrigFunc.getFunctionType()->isVarArg());
// Create the new function body and insert it into the module.
Function *NewFunc =
Function::Create(NewFuncTy, OrigFunc.getLinkage(), OrigFunc.getName());
LLVM_DEBUG(dbgs() << "\nVC-TRANSFORM-ARG-COPY: Transforming From:"
<< OrigFunc);
vc::transferNameAndCCWithNewAttr(TFuncInfo.getAttributes(), OrigFunc,
*NewFunc);
OrigFunc.getParent()->getFunctionList().insert(OrigFunc.getIterator(),
NewFunc);
vc::transferDISubprogram(OrigFunc, *NewFunc);
LLVM_DEBUG(dbgs() << " --> To: " << *NewFunc << "\n");
return NewFunc;
}
static std::vector<Value *>
getTransformedFuncCallArgs(CallInst &OrigCall,
const TransformedFuncInfo &NewFuncInfo) {
std::vector<Value *> NewCallOps;
// Loop over the operands, inserting loads in the caller.
[[maybe_unused]] unsigned OmittedCount = 0;
for (auto &&[OrigArg, OrigArgData] :
zip(IGCLLVM::args(OrigCall), NewFuncInfo.getOrigArgInfo())) {
auto Kind = OrigArgData.getKind();
switch (Kind) {
case ArgKind::General:
NewCallOps.push_back(OrigArg.get());
break;
case ArgKind::CopyOut:
// The argument is omitted
++OmittedCount;
break;
default: {
IGC_ASSERT_MESSAGE(Kind == ArgKind::CopyIn || Kind == ArgKind::CopyInOut,
"unexpected arg kind");
LoadInst *Load =
new LoadInst(OrigArg.get()->getType()->getPointerElementType(),
OrigArg.get(), OrigArg.get()->getName() + ".val",
/* isVolatile */ false, &OrigCall);
NewCallOps.push_back(Load);
break;
}
}
}
IGC_ASSERT_MESSAGE(NewCallOps.size() ==
IGCLLVM::arg_size(OrigCall) - OmittedCount,
"varargs are unexpected");
return NewCallOps;
}
static AttributeList
inheritCallAttributes(CallInst &OrigCall, int NumOrigFuncArgs,
const TransformedFuncInfo &NewFuncInfo) {
IGC_ASSERT_MESSAGE(IGCLLVM::getNumArgOperands(&OrigCall) == NumOrigFuncArgs,
"varargs aren't supported");
const AttributeList &CallPAL = OrigCall.getAttributes();
auto &Context = OrigCall.getContext();
AttributeList NewCallAttrs = NewFuncInfo.gatherAttributes(Context, CallPAL);
for (auto DiscardInfo : NewFuncInfo.getDiscardedParameterAttrs()) {
NewCallAttrs = NewCallAttrs.removeParamAttribute(
Context, DiscardInfo.ArgIndex, DiscardInfo.Attr);
}
return NewCallAttrs;
}
static Value *extractValueFromRet(Value &RetVal, int RetIdx,
IRBuilder<> &Builder,
const TransformedFuncInfo &NewFuncInfo,
const Twine &Name = "") {
if (NewFuncInfo.getRetToArgInfo().size() == 1) {
// Structure of one element, omit struct.
return &RetVal;
}
IGC_ASSERT_MESSAGE(NewFuncInfo.getRetToArgInfo().size() > 1,
"Unexpected types number");
return Builder.CreateExtractValue(&RetVal, RetIdx, Name);
}
static void handleRetValuePortion(int RetIdx, RetToArgLink ArgInfo,
CallInst &OrigCall, CallInst &NewCall,
IRBuilder<> &Builder,
const TransformedFuncInfo &NewFuncInfo) {
// Original return value.
if (ArgInfo.isOrigRet()) {
IGC_ASSERT_MESSAGE(RetIdx == 0, "only zero element of returned value can "
"be original function argument");
auto *ExtractedVal =
extractValueFromRet(NewCall, RetIdx, Builder, NewFuncInfo, "ret");
OrigCall.replaceAllUsesWith(ExtractedVal);
return;
}
Value *OutVal = extractValueFromRet(NewCall, RetIdx, Builder, NewFuncInfo);
if (ArgInfo.isGlobalArg()) {
// Globals are at new indices.
int NewIdx = ArgInfo.getNewIdx();
IGC_ASSERT_MESSAGE(NewIdx >=
NewFuncInfo.getGlobalArgsInfo().FirstGlobalArgIdx,
"Corrupted global arg position!");
auto Kind =
NewFuncInfo.getGlobalArgsInfo().getGlobalInfoForArgNo(NewIdx).Kind;
IGC_ASSERT_MESSAGE(
Kind == GlobalArgKind::ByValueInOut,
"only passed by value localized global should be copied-out");
Builder.CreateStore(
OutVal, NewFuncInfo.getGlobalArgsInfo().getGlobalForArgNo(NewIdx));
} else {
// Use orig index: working with orig call's argument
int OrigArgIdx = ArgInfo.getOrigIdx();
auto Kind = NewFuncInfo.getOrigArgInfo()[OrigArgIdx].getKind();
IGC_ASSERT_MESSAGE(Kind == ArgKind::CopyInOut || Kind == ArgKind::CopyOut,
"only copy (in-)out args are expected");
Builder.CreateStore(OutVal, OrigCall.getArgOperand(OrigArgIdx));
}
}
static std::vector<Value *> handleGlobalArgs(Function &NewFunc,
const GlobalArgsInfo &GlobalArgs) {
// Collect all globals and their corresponding allocas.
std::vector<Value *> LocalizedGloabls;
Instruction *InsertPt = &*(NewFunc.begin()->getFirstInsertionPt());
llvm::transform(drop_begin(NewFunc.args(), GlobalArgs.FirstGlobalArgIdx),
std::back_inserter(LocalizedGloabls),
[InsertPt](Argument &GVArg) -> Value * {
if (GVArg.getType()->isPointerTy())
return &GVArg;
AllocaInst *Alloca = new AllocaInst(
GVArg.getType(), vc::AddrSpace::Private, "", InsertPt);
new StoreInst(&GVArg, Alloca, InsertPt);
return Alloca;
});
// Fancy naming and debug info.
for (auto &&[GAI, GVArg, MaybeAlloca] :
zip(GlobalArgs.Globals,
drop_begin(NewFunc.args(), GlobalArgs.FirstGlobalArgIdx),
LocalizedGloabls)) {
GVArg.setName(GAI.GV->getName() + ".in");
if (!GVArg.getType()->isPointerTy()) {
IGC_ASSERT_MESSAGE(
isa<AllocaInst>(MaybeAlloca),
"an alloca is expected when pass localized global by value");
MaybeAlloca->setName(GAI.GV->getName() + ".local");
vc::DIBuilder::createDbgDeclareForLocalizedGlobal(
*cast<AllocaInst>(MaybeAlloca), *GAI.GV, *InsertPt);
}
}
SmallDenseMap<Value *, Value *> GlobalsToReplace;
for (auto &&[GAI, LocalizedGlobal] :
zip(GlobalArgs.Globals, LocalizedGloabls))
GlobalsToReplace.insert(std::make_pair(GAI.GV, LocalizedGlobal));
// Replaces all globals uses within this new function.
replaceUsesWithinFunction(GlobalsToReplace, &NewFunc);
return LocalizedGloabls;
}
static Value *insertValueToRet(Value &Val, Value &RetVal, int RetIdx,
IRBuilder<> &Builder,
const TransformedFuncInfo &NewFuncInfo) {
if (NewFuncInfo.getRetToArgInfo().size() == 1) {
// Structure of one element, omit struct.
return &Val;
}
IGC_ASSERT_MESSAGE(NewFuncInfo.getRetToArgInfo().size() > 1,
"Unexpected types number");
return Builder.CreateInsertValue(&RetVal, &Val, RetIdx);
}
static Value *appendTransformedFuncRetPortion(
Value &NewRetVal, int RetIdx, RetToArgLink ArgInfo, ReturnInst &OrigRet,
IRBuilder<> &Builder, const TransformedFuncInfo &NewFuncInfo,
const std::vector<Value *> &OrigArgReplacements,
std::vector<Value *> &LocalizedGlobals) {
if (ArgInfo.isOrigRet()) {
IGC_ASSERT_MESSAGE(RetIdx == 0,
"original return value must be at zero index");
Value *OrigRetVal = OrigRet.getReturnValue();
IGC_ASSERT_MESSAGE(OrigRetVal, "type unexpected");
IGC_ASSERT_MESSAGE(OrigRetVal->getType()->isSingleValueType(),
"type unexpected");
return insertValueToRet(*OrigRetVal, NewRetVal, RetIdx, Builder,
NewFuncInfo);
}
if (ArgInfo.isGlobalArg()) {
// Globals are at new indices.
int NewIdx = ArgInfo.getNewIdx();
IGC_ASSERT_MESSAGE(NewIdx >=
NewFuncInfo.getGlobalArgsInfo().FirstGlobalArgIdx,
"Corrupted global arg position!");
auto Kind =
NewFuncInfo.getGlobalArgsInfo().getGlobalInfoForArgNo(NewIdx).Kind;
IGC_ASSERT_MESSAGE(
Kind == GlobalArgKind::ByValueInOut,
"only passed by value localized global should be copied-out");
Value *LocalizedGlobal =
LocalizedGlobals[NewIdx -
NewFuncInfo.getGlobalArgsInfo().FirstGlobalArgIdx];
IGC_ASSERT_MESSAGE(
isa<AllocaInst>(LocalizedGlobal),
"an alloca is expected when pass localized global by value");
Value *LocalizedGlobalVal = Builder.CreateLoad(
LocalizedGlobal->getType()->getPointerElementType(), LocalizedGlobal);
return insertValueToRet(*LocalizedGlobalVal, NewRetVal, RetIdx, Builder,
NewFuncInfo);
}
// Use orig index: working with orig call's argument replacement.
int OrigIdx = ArgInfo.getOrigIdx();
auto Kind = NewFuncInfo.getOrigArgInfo()[OrigIdx].getKind();
IGC_ASSERT_MESSAGE(Kind == ArgKind::CopyInOut || Kind == ArgKind::CopyOut,
"Only copy (in-)out values are expected");
Value *CurRetByPtr = OrigArgReplacements[OrigIdx];
IGC_ASSERT_MESSAGE(isa<PointerType>(CurRetByPtr->getType()),
"a pointer is expected");
if (isa<AddrSpaceCastInst>(CurRetByPtr))
CurRetByPtr = cast<AddrSpaceCastInst>(CurRetByPtr)->getOperand(0);
IGC_ASSERT_MESSAGE(isa<AllocaInst>(CurRetByPtr),
"corresponding alloca is expected");
Value *CurRetByVal = Builder.CreateLoad(
CurRetByPtr->getType()->getPointerElementType(), CurRetByPtr);
return insertValueToRet(*CurRetByVal, NewRetVal, RetIdx, Builder,
NewFuncInfo);
}
// Add some additional code before \p OrigCall to pass localized global value
// \p GAI to the transformed function.
// An argument corresponding to \p GAI is returned.
static Value *passGlobalAsCallArg(GlobalArgInfo GAI, CallInst &OrigCall) {
// We should should load the global first to pass it by value.
if (GAI.Kind == GlobalArgKind::ByValueIn ||
GAI.Kind == GlobalArgKind::ByValueInOut)
return new LoadInst(GAI.GV->getType()->getPointerElementType(), GAI.GV,
GAI.GV->getName() + ".val",
/* isVolatile */ false, &OrigCall);
IGC_ASSERT_MESSAGE(
GAI.Kind == GlobalArgKind::ByPointer,
"localized global can be passed only by value or by pointer");
auto *GVTy = cast<PointerType>(GAI.GV->getType());
// No additional work when addrspaces match
if (GVTy->getAddressSpace() == vc::AddrSpace::Private)
return GAI.GV;
// Need to add a temprorary cast inst to match types.
// When this switch to the caller, it'll remove this cast.
return new AddrSpaceCastInst{
GAI.GV, vc::changeAddrSpace(GVTy, vc::AddrSpace::Private),
GAI.GV->getName() + ".tmp", &OrigCall};
}
void vc::FuncUsersUpdater::run() {
std::vector<CallInst *> DirectUsers;
for (auto *U : OrigFunc.users()) {
IGC_ASSERT_MESSAGE(
isa<CallInst>(U),
"the transformation is not applied to indirectly called functions");
DirectUsers.push_back(cast<CallInst>(U));
}
std::vector<CallInst *> NewDirectUsers;
// Loop over all of the callers of the function, transforming the call sites
// to pass in the loaded pointers.
for (auto *OrigCall : DirectUsers) {
IGC_ASSERT(OrigCall->getCalledFunction() == &OrigFunc);
auto *NewCall = updateFuncDirectUser(*OrigCall);
NewDirectUsers.push_back(NewCall);
}
for (auto *OrigCall : DirectUsers)
OrigCall->eraseFromParent();
}
CallInst *vc::FuncUsersUpdater::updateFuncDirectUser(CallInst &OrigCall) {
std::vector<Value *> NewCallOps =
getTransformedFuncCallArgs(OrigCall, NewFuncInfo);
AttributeList NewCallAttrs = inheritCallAttributes(
OrigCall, OrigFunc.getFunctionType()->getNumParams(), NewFuncInfo);
// Push any localized globals.
IGC_ASSERT_MESSAGE(NewCallOps.size() ==
NewFuncInfo.getGlobalArgsInfo().FirstGlobalArgIdx,
"call operands and called function info are inconsistent");
llvm::transform(NewFuncInfo.getGlobalArgsInfo().Globals,
std::back_inserter(NewCallOps),
[&OrigCall](GlobalArgInfo GAI) {
return passGlobalAsCallArg(GAI, OrigCall);
});
IGC_ASSERT_EXIT_MESSAGE(!isa<InvokeInst>(OrigCall),
"InvokeInst not supported");
CallInst *NewCall = CallInst::Create(&NewFunc, NewCallOps, "", &OrigCall);
IGC_ASSERT(nullptr != NewCall);
NewCall->setCallingConv(OrigCall.getCallingConv());
NewCall->setAttributes(NewCallAttrs);
if (cast<CallInst>(OrigCall).isTailCall())
NewCall->setTailCall();
NewCall->setDebugLoc(OrigCall.getDebugLoc());
NewCall->takeName(&OrigCall);
// Update the callgraph to know that the callsite has been transformed.
auto CalleeNode = static_cast<IGCLLVM::CallGraphNode *>(
CG[OrigCall.getParent()->getParent()]);
CalleeNode->replaceCallEdge(
#if LLVM_VERSION_MAJOR <= 10
CallSite(&OrigCall), NewCall,
#else
OrigCall, *NewCall,
#endif
&NewFuncCGN);
IRBuilder<> Builder(&OrigCall);
for (auto RetToArg : enumerate(NewFuncInfo.getRetToArgInfo()))
handleRetValuePortion(RetToArg.index(), RetToArg.value(), OrigCall,
*NewCall, Builder, NewFuncInfo);
return NewCall;
}
void vc::FuncBodyTransfer::run() {
// Since we have now created the new function, splice the body of the old
// function right into the new function.
NewFunc.getBasicBlockList().splice(NewFunc.begin(),
OrigFunc.getBasicBlockList());
std::vector<Value *> OrigArgReplacements = handleTransformedFuncArgs();
std::vector<Value *> LocalizedGlobals =
handleGlobalArgs(NewFunc, NewFuncInfo.getGlobalArgsInfo());
handleTransformedFuncRets(OrigArgReplacements, LocalizedGlobals);
}
std::vector<Value *> vc::FuncBodyTransfer::handleTransformedFuncArgs() {
std::vector<Value *> OrigArgReplacements;
Instruction *InsertPt = &*(NewFunc.begin()->getFirstInsertionPt());
std::transform(
NewFuncInfo.getOrigArgInfo().begin(), NewFuncInfo.getOrigArgInfo().end(),
std::back_inserter(OrigArgReplacements),
[InsertPt, this](const auto &OrigArgData) -> Value * {
switch (OrigArgData.getKind()) {
case ArgKind::CopyIn:
case ArgKind::CopyInOut: {
auto *NewArg = IGCLLVM::getArg(NewFunc, OrigArgData.getNewIdx());
auto *Alloca = new AllocaInst(NewArg->getType(),
vc::AddrSpace::Private, "", InsertPt);
new StoreInst{NewArg, Alloca, InsertPt};
return Alloca;
}
case ArgKind::CopyOut: {
IGC_ASSERT_MESSAGE(OrigArgData.isOmittedArg(),
"Unexpected existing arg");
return new AllocaInst(OrigArgData.getTransformedOrigType(),
AddrSpace::Private, "", InsertPt);
}
default:
IGC_ASSERT_MESSAGE(OrigArgData.getKind() == ArgKind::General,
"unexpected argument kind");
return IGCLLVM::getArg(NewFunc, OrigArgData.getNewIdx());
}
});
std::transform(
OrigArgReplacements.begin(), OrigArgReplacements.end(),
OrigFunc.arg_begin(), OrigArgReplacements.begin(),
[InsertPt](Value *Replacement, Argument &OrigArg) -> Value * {
if (Replacement->getType() == OrigArg.getType())
return Replacement;
IGC_ASSERT_MESSAGE(isa<PointerType>(Replacement->getType()),
"only pointers can posibly mismatch");
IGC_ASSERT_MESSAGE(isa<PointerType>(OrigArg.getType()),
"only pointers can posibly mismatch");
IGC_ASSERT_MESSAGE(
Replacement->getType()->getPointerAddressSpace() !=
OrigArg.getType()->getPointerAddressSpace(),
"pointers should have different addr spaces when they mismatch");
IGC_ASSERT_MESSAGE(
Replacement->getType()->getPointerElementType() ==
OrigArg.getType()->getPointerElementType(),
"pointers must have same element type when they mismatch");
return new AddrSpaceCastInst(Replacement, OrigArg.getType(), "",
InsertPt);
});
for (auto &&[OrigArg, OrigArgReplacement] :
zip(OrigFunc.args(), OrigArgReplacements)) {
OrigArgReplacement->takeName(&OrigArg);
OrigArg.replaceAllUsesWith(OrigArgReplacement);
}
return OrigArgReplacements;
}
void vc::FuncBodyTransfer::handleTransformedFuncRet(
ReturnInst &OrigRet, const std::vector<Value *> &OrigArgReplacements,
std::vector<Value *> &LocalizedGlobals) {
Type *NewRetTy = NewFunc.getReturnType();
IRBuilder<> Builder(&OrigRet);
auto &&RetToArg = enumerate(NewFuncInfo.getRetToArgInfo());
Value *NewRetVal = std::accumulate(
RetToArg.begin(), RetToArg.end(), cast<Value>(UndefValue::get(NewRetTy)),
[&OrigRet, &Builder, &OrigArgReplacements, &LocalizedGlobals,
this](Value *NewRet, auto NewRetPortionInfo) {
return appendTransformedFuncRetPortion(
*NewRet, NewRetPortionInfo.index(), NewRetPortionInfo.value(),
OrigRet, Builder, NewFuncInfo, OrigArgReplacements,
LocalizedGlobals);
});
Builder.CreateRet(NewRetVal);
OrigRet.eraseFromParent();
}
void vc::FuncBodyTransfer::handleTransformedFuncRets(
const std::vector<Value *> &OrigArgReplacements,
std::vector<Value *> &LocalizedGlobals) {
Type *NewRetTy = NewFunc.getReturnType();
if (NewRetTy->isVoidTy())
return;
std::vector<ReturnInst *> OrigRets;
llvm::transform(make_filter_range(
instructions(NewFunc),
[](Instruction &Inst) { return isa<ReturnInst>(Inst); }),
std::back_inserter(OrigRets),
[](Instruction &RI) { return &cast<ReturnInst>(RI); });
for (ReturnInst *OrigRet : OrigRets)
handleTransformedFuncRet(*OrigRet, OrigArgReplacements, LocalizedGlobals);
}
|