File: IGCConstantFolder.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (330 lines) | stat: -rw-r--r-- 11,792 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*========================== begin_copyright_notice ============================

Copyright (C) 2020-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "common/IGCConstantFolder.h"
#include <cfenv>
#include "Probe/Assertion.h"
#include "Types.hpp"
#include "iStdLib/utility.h"

namespace IGC
{

llvm::Constant* IGCConstantFolder::CreateGradientXFine(llvm::Constant* C0) const
{
    return CreateGradient(C0);
}

llvm::Constant* IGCConstantFolder::CreateGradientYFine(llvm::Constant* C0) const
{
    return CreateGradient(C0);
}

llvm::Constant* IGCConstantFolder::CreateGradientX(llvm::Constant* C0) const
{
    return CreateGradient(C0);
}

llvm::Constant* IGCConstantFolder::CreateGradientY(llvm::Constant* C0) const
{
    return CreateGradient(C0);
}

llvm::Constant* IGCConstantFolder::CreateRsq(llvm::Constant* C0) const
{
    IGC_ASSERT(nullptr != C0);
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != C0->getType());
    auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
    double C0value = C0->getType()->isFloatTy() ? static_cast<double>(APF.convertToFloat()) :
        APF.convertToDouble();
    if (C0value > 0.0)
    {
        const double sq = sqrt(C0value);
        IGC_ASSERT(sq);
        return llvm::ConstantFP::get(C0->getType(), 1.0 / sq);
    }
    else
    {
        return nullptr;
    }
}

llvm::Constant* IGCConstantFolder::CreateRoundNE(llvm::Constant* C0) const
{
    IGC_ASSERT(nullptr != C0);
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != C0->getType());
    auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
    double C0value = C0->getType()->isFloatTy() ? static_cast<double>(APF.convertToFloat()) :
        APF.convertToDouble();
    const int currentRoundingMode = std::fegetround();
    // Round to nearest, ties round to even.
    std::fesetround(FE_TONEAREST);
    double result = std::rint(C0value);
    std::fesetround(currentRoundingMode);
    return llvm::ConstantFP::get(C0->getType(), result);
}

llvm::Constant* IGCConstantFolder::CreateFSat(llvm::Constant* C0) const
{
    IGC_ASSERT(nullptr != C0);
    if (llvm::isa<llvm::UndefValue>(C0))
        return nullptr;
    IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != C0->getType());
    auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
    const llvm::APFloat& zero = llvm::cast<llvm::ConstantFP>(llvm::ConstantFP::get(C0->getType(), 0.))->getValueAPF();
    const llvm::APFloat& One = llvm::cast<llvm::ConstantFP>(llvm::ConstantFP::get(C0->getType(), 1.))->getValueAPF();
    return llvm::ConstantFP::get(C0->getContext(), llvm::minnum(One, llvm::maxnum(zero, APF)));
}

llvm::Constant* IGCConstantFolder::CreateFAdd(llvm::Constant* C0, llvm::Constant* C1, llvm::APFloatBase::roundingMode roundingMode) const
{
    if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1))
    {
        return IGCLLVM::ConstantFolderBase::CreateBinOp(llvm::Instruction::FAdd, C0, C1);
    }
    llvm::ConstantFP* CFP0 = llvm::cast<llvm::ConstantFP>(C0);
    llvm::ConstantFP* CFP1 = llvm::cast<llvm::ConstantFP>(C1);
    llvm::APFloat firstOperand = CFP0->getValueAPF();
    llvm::APFloat secondOperand = CFP1->getValueAPF();
    llvm::APFloat::opStatus status = firstOperand.add(secondOperand, roundingMode);
    if (llvm::APFloat::opInvalidOp != status)
    {
        return llvm::ConstantFP::get(C0->getContext(), firstOperand);
    }
    else
    {
        return nullptr;
    }
}

llvm::Constant* IGCConstantFolder::CreateFMul(llvm::Constant* C0, llvm::Constant* C1, llvm::APFloatBase::roundingMode roundingMode) const
{
    if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1))
    {
        return IGCLLVM::ConstantFolderBase::CreateBinOp(llvm::Instruction::FMul, C0, C1);
    }
    llvm::ConstantFP* CFP0 = llvm::cast<llvm::ConstantFP>(C0);
    llvm::ConstantFP* CFP1 = llvm::cast<llvm::ConstantFP>(C1);
    llvm::APFloat firstOperand = CFP0->getValueAPF();
    llvm::APFloat secondOperand = CFP1->getValueAPF();
    llvm::APFloat::opStatus status = firstOperand.multiply(secondOperand, roundingMode);
    if (llvm::APFloat::opInvalidOp != status)
    {
        return llvm::ConstantFP::get(C0->getContext(), firstOperand);
    }
    else
    {
        return nullptr;
    }
}

llvm::Constant* IGCConstantFolder::CreateFPTrunc(llvm::Constant* C0, llvm::Type* dstType, llvm::APFloatBase::roundingMode roundingMode) const
{
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return IGCLLVM::ConstantFolderBase::CreateFPCast(C0, dstType);
    }
    llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
    const llvm::fltSemantics& outputSemantics = dstType->isHalfTy() ? llvm::APFloatBase::IEEEhalf() :
        dstType->isFloatTy() ? llvm::APFloatBase::IEEEsingle() :
        llvm::APFloatBase::IEEEdouble();
    bool losesInfo = false;
    llvm::APFloat::opStatus status = APF.convert(outputSemantics, roundingMode, &losesInfo);
    if (llvm::APFloat::opInvalidOp != status)
    {
        return llvm::ConstantFP::get(C0->getContext(), APF);
    }
    else
    {
        return nullptr;
    }
}

llvm::Constant* IGCConstantFolder::CreateUbfe(llvm::Constant* C0, llvm::Constant* C1, llvm::Constant* C2) const
{
    if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2))
    {
        return nullptr;
    }
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
    llvm::ConstantInt* CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
    llvm::ConstantInt* CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number to shift
    uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
    uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
    uint32_t bitwidth = CI2->getType()->getBitWidth();

    llvm::APInt result = CI2->getValue();
    if ((width + offset) < bitwidth)
    {
        result = result.shl(bitwidth - (width + offset));
        result = result.lshr(bitwidth - width);
    }
    else
    {
        // For HW only bits 0..4 in offset value are relevant
        result = result.lshr(offset & BITMASK_RANGE(0, 4));
    }
    return llvm::ConstantInt::get(C0->getContext(), result);
}

llvm::Constant* IGCConstantFolder::CreateIbfe(llvm::Constant* C0, llvm::Constant* C1, llvm::Constant* C2) const
{
    if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2) || C2->getType()->getIntegerBitWidth() != 32)
    {
        return nullptr;
    }
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
    llvm::ConstantInt* CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
    llvm::ConstantInt* CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number to shift
    uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
    uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
    uint32_t bitwidth = CI2->getType()->getBitWidth();

    llvm::APInt result = CI2->getValue();
    if ((width + offset) < bitwidth)
    {
        result = result.shl(bitwidth - (width + offset));
        result = result.ashr(bitwidth - width);
    }
    else
    {
        // For HW only bits 0..4 in offset value are relevant
        result = result.ashr(offset & BITMASK_RANGE(0, 4));
    }
    return llvm::ConstantInt::get(C0->getContext(), result);
}

llvm::Constant* IGCConstantFolder::CreateCanonicalize(llvm::Constant* C0, bool flushDenorms /*= true*/) const
{
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return C0;
    }
    auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
    if (flushDenorms && APF.isDenormal())
    {
        APF = llvm::APFloat::getZero(APF.getSemantics(), APF.isNegative());
    }
    return llvm::ConstantFP::get(C0->getContext(), APF);
}

llvm::Constant* IGCConstantFolder::CreateGradient(llvm::Constant* C0) const
{
    IGC_ASSERT(nullptr != C0);
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
    IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
    if (llvm::cast<llvm::ConstantFP>(C0)->getValueAPF().isFinite())
    {
        IGC_ASSERT(nullptr != C0->getType());
        return llvm::ConstantFP::get(C0->getType(), 0.0f);
    }
    else
    {
        // Preserve nan or infinite value
        return C0;
    }
}

llvm::Constant* IGCConstantFolder::CreateFirstBitHi(llvm::Constant* C0) const
{
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0);
    const unsigned fbh = CI0->getValue().countLeadingZeros();
    if (fbh == CI0->getType()->getBitWidth())
    {
        return llvm::ConstantInt::get(C0->getType(), -1);
    }
    return llvm::ConstantInt::get(C0->getType(), fbh);
}

llvm::Constant* IGCConstantFolder::CreateFirstBitShi(llvm::Constant* C0) const
{
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    IGC_ASSERT(llvm::isa<llvm::ConstantInt>(C0));
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0);
    const uint32_t fbs = CI0->isNegative() ? CI0->getValue().countLeadingOnes() : CI0->getValue().countLeadingZeros();
    if (fbs == CI0->getType()->getBitWidth())
    {
        return llvm::ConstantInt::get(C0->getType(), -1);
    }
    return llvm::ConstantInt::get(C0->getType(), fbs);
}

llvm::Constant* IGCConstantFolder::CreateFirstBitLo(llvm::Constant* C0) const
{
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    IGC_ASSERT(llvm::isa<llvm::ConstantInt>(C0));
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0);
    const unsigned fbl = CI0->getValue().countTrailingZeros();
    if (fbl == CI0->getType()->getBitWidth())
    {
        return llvm::ConstantInt::get(C0->getType(), -1);
    }
    return llvm::ConstantInt::get(C0->getType(), fbl);
}

llvm::Constant* IGCConstantFolder::CreateBfi(llvm::Constant* C0, llvm::Constant* C1, llvm::Constant* C2, llvm::Constant* C3) const
{
    if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2))
    {
        return nullptr;
    }
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
    llvm::ConstantInt* CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
    llvm::ConstantInt* CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number the bits are taken from.
    llvm::ConstantInt* CI3 = llvm::cast<llvm::ConstantInt>(C3); // the number with bits to be replaced.
    uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
    uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
    uint32_t bitwidth = CI2->getType()->getBitWidth();
    llvm::APInt bitmask = llvm::APInt::getBitsSet(bitwidth, offset, offset + width);
    llvm::APInt result = CI2->getValue();
    result = result.shl(offset);
    result = (result & bitmask) | (CI3->getValue() & ~bitmask);
    return llvm::ConstantInt::get(C0->getContext(), result);
}

llvm::Constant* IGCConstantFolder::CreateBfrev(llvm::Constant* C0) const
{
    if (llvm::isa<llvm::UndefValue>(C0))
    {
        return nullptr;
    }
    llvm::ConstantInt* CI0 = llvm::cast<llvm::ConstantInt>(C0);
    llvm::APInt result = CI0->getValue();
    result = result.reverseBits();
    return llvm::ConstantInt::get(C0->getContext(), result);
}

} // namespace IGC