1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// Intel extension buffer structure, generic interface for
// 0-operand extensions (e.g. sync opcodes)
// 1-operand unary operations (e.g. render target writes)
// 2-operand binary operations (future extensions)
// 3-operand ternary operations (future extensions)
//
struct IntelExtensionStruct
{
uint opcode; // opcode to execute
uint rid; // resource ID
uint sid; // sampler ID
float4 src0f; // float source operand 0
float4 src1f; // float source operand 0
float4 src2f; // float source operand 0
float4 dst0f; // float destination operand
uint4 src0u;
uint4 src1u;
uint4 src2u;
uint4 dst0u;
float pad[181]; // total lenght 864
};
//
// extension opcodes
//
#define INTEL_EXT_WAVE_SHUFFLE 17
#define INTEL_EXT_WAVE_LANEINDEX 18
#define INTEL_EXT_WAVE_WAVEACTIVEBALLOT 19
#define INTEL_EXT_WAVE_WAVEPREFIXOP 20
#define INTEL_EXT_WAVE_WAVEALL 21
#define INTEL_EXT_SIMDSIZE 22
// Define RW buffer for Intel extensions.
// Application should bind null resource, operations will be ignored.
// If application needs to use slot other than u63, it needs to
// define INTEL_SHADER_EXT_UAV_SLOT as a unused slot. This should be
// defined before including this file in shader as:
// #define INTEL_SHADER_EXT_UAV_SLOT u8
#ifdef INTEL_SHADER_EXT_UAV_SLOT
RWStructuredBuffer<IntelExtensionStruct> g_IntelExt : register( INTEL_SHADER_EXT_UAV_SLOT );
#else
RWStructuredBuffer<IntelExtensionStruct> g_IntelExt : register( u63 );
#endif
//
// Initialize Intel HSLS Extensions
// This method should be called before any other extension function
//
void IntelExt_Init()
{
uint4 init = { 0x63746e69, 0x6c736c68, 0x6e747865, 0x0 }; // intc hlsl extn
g_IntelExt[0].src0u = init;
}
// Extension matching DirectX12 Wave instructions
// DX12 behavior is described here:
// https://github.com/Microsoft/DirectXShaderCompiler/wiki/Wave-Intrinsics
#define INTEL_EXT_WAVEOPS_SUM 0
#define INTEL_EXT_WAVEOPS_PROD 1
#define INTEL_EXT_WAVEOPS_UMIN 2
#define INTEL_EXT_WAVEOPS_UMAX 3
#define INTEL_EXT_WAVEOPS_IMIN 4
#define INTEL_EXT_WAVEOPS_IMAX 5
#define INTEL_EXT_WAVEOPS_OR 6
#define INTEL_EXT_WAVEOPS_XOR 7
#define INTEL_EXT_WAVEOPS_AND 8
#define INTEL_EXT_WAVEOPS_FSUM 9
#define INTEL_EXT_WAVEOPS_FPROD 10
#define INTEL_EXT_WAVEOPS_FMIN 11
#define INTEL_EXT_WAVEOPS_FMAX 12
#define INTEL_EXT_UINT64_ATOMIC 24
#define INTEL_EXT_ATOMIC_ADD 0
#define INTEL_EXT_ATOMIC_MIN 1
#define INTEL_EXT_ATOMIC_MAX 2
#define INTEL_EXT_ATOMIC_CMPXCHG 3
#define INTEL_EXT_ATOMIC_XCHG 4
#define INTEL_EXT_ATOMIC_AND 5
#define INTEL_EXT_ATOMIC_OR 6
#define INTEL_EXT_ATOMIC_XOR 7
float IntelExt_WaveReadLaneAt(float input, uint lane)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_SHUFFLE;
g_IntelExt[opcode].src0f.x = input;
g_IntelExt[opcode].src1u.x = lane;
return g_IntelExt[opcode].dst0f.x;
}
int IntelExt_WaveReadLaneAt(int input, uint lane)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_SHUFFLE;
g_IntelExt[opcode].src0u.x = input;
g_IntelExt[opcode].src1u.x = lane;
return g_IntelExt[opcode].dst0u.x;
}
uint IntelExt_WaveGetLaneIndex()
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_LANEINDEX;
return g_IntelExt[opcode].dst0u.x;
}
float IntelExt_QuadReadAcrossDiagonal(float localValue)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(localValue, (laneID & 0xFC) + ((laneID & 3) ^ 3));
}
int IntelExt_QuadReadAcrossDiagonal(int localValue)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(localValue, (laneID & 0xFC) + ((laneID & 3) ^ 3));
}
float IntelExt_QuadReadLaneAt(float sourceValue, uint quadLaneID)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(sourceValue, (laneID & 0xFC) + quadLaneID);
}
int IntelExt_QuadReadLaneAt(int sourceValue, uint quadLaneID)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(sourceValue, (laneID & 0xFC) + quadLaneID);
}
float IntelExt_QuadReadAcrossX(float localValue)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(localValue, (laneID & 0xFC) + ((laneID & 3) ^ 1));
}
int IntelExt_QuadReadAcrossX(int localValue)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(localValue, (laneID & 0xFC) + ((laneID & 3) ^ 1));
}
float IntelExt_QuadReadAcrossY(float localValue)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(localValue, (laneID & 0xFC) + ((laneID & 3) ^ 2));
}
int IntelExt_QuadReadAcrossY(int localValue)
{
uint laneID = IntelExt_WaveGetLaneIndex();
return IntelExt_WaveReadLaneAt(localValue, (laneID & 0xFC) + ((laneID & 3) ^ 2));
}
uint4 IntelExt_WaveActiveBallot(bool localValue)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEACTIVEBALLOT;
g_IntelExt[opcode].src1u.x = localValue;
return uint4(g_IntelExt[opcode].dst0u.x, 0, 0, 0);
}
float IntelExt_WaveReadLaneFirst(float input)
{
uint firstLaneID = firstbitlow(IntelExt_WaveActiveBallot(true).x);
return IntelExt_WaveReadLaneAt(input, firstLaneID);
}
int IntelExt_WaveReadLaneFirst(int input)
{
uint firstLaneID = firstbitlow(IntelExt_WaveActiveBallot(true).x);
return IntelExt_WaveReadLaneAt(input, firstLaneID);
}
bool IntelExt_WaveActiveAllTrue(bool expr)
{
return (IntelExt_WaveActiveBallot(expr).x == IntelExt_WaveActiveBallot(true).x);
}
bool IntelExt_WaveActiveAllEqual(float localValue)
{
return IntelExt_WaveActiveAllTrue(IntelExt_WaveReadLaneFirst(localValue) == localValue);
}
bool IntelExt_WaveActiveAllEqual(int localValue)
{
return IntelExt_WaveActiveAllTrue(IntelExt_WaveReadLaneFirst(localValue) == localValue);
}
float IntelExt_WaveAll(float localValue, uint opType)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEALL;
g_IntelExt[opcode].src0f.x = localValue;
g_IntelExt[opcode].src1u.x = opType;
return g_IntelExt[opcode].dst0f.x;
}
int IntelExt_WaveAll(int localValue, uint opType)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEALL;
g_IntelExt[opcode].src0u.x = localValue;
g_IntelExt[opcode].src1u.x = opType;
return g_IntelExt[opcode].dst0u.x;
}
int IntelExt_WaveActiveBitAnd(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_AND);
}
int IntelExt_WaveActiveBitOr(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_OR);
}
int IntelExt_WaveActiveBitXor(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_XOR);
}
uint IntelExt_WaveActiveCountBits(bool bBit)
{
return countbits(IntelExt_WaveActiveBallot(bBit).x);
}
float IntelExt_WaveActiveMax(float localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_FMAX);
}
int IntelExt_WaveActiveMax(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_IMAX);
}
uint IntelExt_WaveActiveMax(uint localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_UMAX);
}
float IntelExt_WaveActiveMin(float localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_FMIN);
}
int IntelExt_WaveActiveMin(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_IMIN);
}
uint IntelExt_WaveActiveMin(uint localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_UMIN);
}
float IntelExt_WaveActiveProduct(float localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_FPROD);
}
int IntelExt_WaveActiveProduct(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_PROD);
}
float IntelExt_WaveActiveSum(float localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_FSUM);
}
int IntelExt_WaveActiveSum(int localValue)
{
return IntelExt_WaveAll(localValue, INTEL_EXT_WAVEOPS_SUM);
}
bool IntelExt_WaveActiveAnyTrue(bool expr)
{
return (IntelExt_WaveActiveBallot(expr).x != 0);
}
uint IntelExt_WaveGetLaneCount()
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_SIMDSIZE;
return g_IntelExt[opcode].dst0u.x;
}
bool IntelExt_WaveIsFirstLane()
{
uint firstLaneID = firstbitlow(IntelExt_WaveActiveBallot(true).x);
uint index = IntelExt_WaveGetLaneIndex();
return (firstLaneID == index);
}
uint IntelExt_WavePrefixCountBits(bool bBit)
{
uint ballot = IntelExt_WaveActiveBallot(bBit).x;
uint index = IntelExt_WaveGetLaneIndex();
return countbits(ballot & ((1 << index) - 1));
}
float IntelExt_WavePrefixProduct(float value)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEPREFIXOP;
g_IntelExt[opcode].src0f.x = value;
g_IntelExt[opcode].src1u.x = INTEL_EXT_WAVEOPS_FPROD;
return g_IntelExt[opcode].dst0f.x;
}
int IntelExt_WavePrefixProduct(int value)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEPREFIXOP;
g_IntelExt[opcode].src0u.x = value;
g_IntelExt[opcode].src1u.x = INTEL_EXT_WAVEOPS_PROD;
return g_IntelExt[opcode].dst0u.x;
}
float IntelExt_WavePrefixSum(float value)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEPREFIXOP;
g_IntelExt[opcode].src0f.x = value;
g_IntelExt[opcode].src1u.x = INTEL_EXT_WAVEOPS_FSUM;
return g_IntelExt[opcode].dst0f.x;
}
int IntelExt_WavePrefixSum(int value)
{
uint opcode = g_IntelExt.IncrementCounter();
g_IntelExt[opcode].opcode = INTEL_EXT_WAVE_WAVEPREFIXOP;
g_IntelExt[opcode].src0u.x = value;
g_IntelExt[opcode].src1u.x = INTEL_EXT_WAVEOPS_SUM;
return g_IntelExt[opcode].dst0u.x;
}
// uint64 typed atomics
// Interlocked max
uint2 IntelExt_InterlockedMaxUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_MAX;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked Min
uint2 IntelExt_InterlockedMinUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_MIN;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked and
uint2 IntelExt_InterlockedAndUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_AND;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked or
uint2 IntelExt_InterlockedOrUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_OR;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked add
uint2 IntelExt_InterlockedAddUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_ADD;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked xor
uint2 IntelExt_InterlockedXorUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_XOR;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked exchange
uint2 IntelExt_InterlockedExchangeUint64(RWTexture2D<uint2> uav, uint2 address, uint2 value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_XCHG;
return g_IntelExt[opcode].dst0u.xy;
}
// Interlocked compare exchange
uint2 IntelExt_InterlockedCompareExchangeUint64(RWTexture2D<uint2> uav, uint2 address, uint2 cmp_value, uint2 xchg_value)
{
uint opcode = g_IntelExt.IncrementCounter();
uav[uint2(opcode, opcode)] = uint2(0, 0); //dummy instruction to get the resource handle
g_IntelExt[opcode].opcode = INTEL_EXT_UINT64_ATOMIC;
g_IntelExt[opcode].src0u.xy = address;
g_IntelExt[opcode].src1u.xy = cmp_value;
g_IntelExt[opcode].src1u.zw = xchg_value;
g_IntelExt[opcode].src2u.x = INTEL_EXT_ATOMIC_CMPXCHG;
return g_IntelExt[opcode].dst0u.xy;
}
|