File: acosh_s_ha.cl

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (598 lines) | stat: -rw-r--r-- 21,285 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/
/*
// ALGORITHM DESCRIPTION:
//  *
//  *  Compute acosh(x) as log(x + sqrt(x*x - 1))
//  *
//  *  Special cases:
//  *
//  *  acosh(NaN)  = quiet NaN, and raise invalid exception
//  *  acosh(-INF) = NaN
//  *  acosh(+INF) = +INF
//  *  acosh(x)    = NaN if x < 1
//  *  acosh(1)    = +0
//
*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
typedef struct {
  unsigned int Log_HA_table[(1 << 8) + 2];
  unsigned int SgnMask;
  unsigned int XThreshold;
  unsigned int XhMask;
  unsigned int ExpMask0;
  unsigned int ExpMask2;
  unsigned int ha_poly_coeff[2];
  unsigned int ExpMask;
  unsigned int Two10;
  unsigned int MinLog1p;
  unsigned int MaxLog1p;
  unsigned int HalfMask;
  unsigned int L2H;
  unsigned int L2L;
  unsigned int sOne;
  unsigned int sPoly[10];
  unsigned int iHiDelta;
  unsigned int iLoRange;
  unsigned int iBrkValue;
  unsigned int iOffExpoMask;
  unsigned int sBigThreshold;
  unsigned int sC2;
  unsigned int sC3;
  unsigned int sHalf;
  unsigned int sLargestFinite;
  unsigned int sLittleThreshold;
  unsigned int sSign;
  unsigned int sThirtyOne;
  unsigned int sTopMask11;
  unsigned int sTopMask12;
  unsigned int sTopMask8;
  unsigned int XScale;
  unsigned int sLn2Hi;
  unsigned int sLn2Lo;
  /* scalar part follow */
  unsigned int sInfs[2];
  unsigned int sOnes[2];
  unsigned int sZeros[2];
} __ocl_svml_internal_sacosh_ha_data_t;
static __ocl_svml_internal_sacosh_ha_data_t __ocl_svml_internal_sacosh_ha_data =
    {
        /* Log_HA_table */
        {0xc2aeac38u, 0xb93cbf08u, 0xc2aeb034u, 0xb93ce972u, 0xc2aeb424u,
         0xb95e1069u, 0xc2aeb814u, 0xb9412b26u, 0xc2aebbfcu, 0xb9272b41u,
         0xc2aebfd4u, 0xb950fcd7u, 0xc2aec3acu, 0xb93f86b8u, 0xc2aec77cu,
         0xb933aa90u, 0xc2aecb44u, 0xb92e4507u, 0xc2aecf04u, 0xb9302df1u,
         0xc2aed2bcu, 0xb93a3869u, 0xc2aed66cu, 0xb94d32f7u, 0xc2aeda1cu,
         0xb929e7b5u, 0xc2aeddbcu, 0xb9511c6au, 0xc2aee15cu, 0xb94392acu,
         0xc2aee4f4u, 0xb94207fdu, 0xc2aee884u, 0xb94d35eau, 0xc2aeec14u,
         0xb925d225u, 0xc2aeef94u, 0xb94c8ea1u, 0xc2aef314u, 0xb94219adu,
         0xc2aef68cu, 0xb9471e0bu, 0xc2aef9fcu, 0xb95c430bu, 0xc2aefd6cu,
         0xb9422ca0u, 0xc2af00d4u, 0xb9397b7bu, 0xc2af0434u, 0xb942cd1cu,
         0xc2af0794u, 0xb91ebbeau, 0xc2af0ae4u, 0xb94ddf49u, 0xc2af0e34u,
         0xb950cbabu, 0xc2af1184u, 0xb92812a5u, 0xc2af14c4u, 0xb9544303u,
         0xc2af1804u, 0xb955e8d7u, 0xc2af1b44u, 0xb92d8d8du, 0xc2af1e74u,
         0xb95bb7fau, 0xc2af21acu, 0xb920ec71u, 0xc2af24d4u, 0xb93dacccu,
         0xc2af27fcu, 0xb9327882u, 0xc2af2b1cu, 0xb93fccb3u, 0xc2af2e3cu,
         0xb9262434u, 0xc2af3154u, 0xb925f7a4u, 0xc2af3464u, 0xb93fbd72u,
         0xc2af3774u, 0xb933e9f2u, 0xc2af3a7cu, 0xb942ef61u, 0xc2af3d84u,
         0xb92d3dfbu, 0xc2af4084u, 0xb93343ffu, 0xc2af437cu, 0xb9556dbfu,
         0xc2af4674u, 0xb95425adu, 0xc2af496cu, 0xb92fd461u, 0xc2af4c5cu,
         0xb928e0a9u, 0xc2af4f44u, 0xb93faf8eu, 0xc2af522cu, 0xb934a465u,
         0xc2af550cu, 0xb94820d2u, 0xc2af57ecu, 0xb93a84d8u, 0xc2af5ac4u,
         0xb94c2eddu, 0xc2af5d9cu, 0xb93d7bb5u, 0xc2af606cu, 0xb94ec6aeu,
         0xc2af633cu, 0xb9406992u, 0xc2af6604u, 0xb952bcb6u, 0xc2af68ccu,
         0xb94616feu, 0xc2af6b8cu, 0xb95acde8u, 0xc2af6e4cu, 0xb951358fu,
         0xc2af710cu, 0xb929a0b7u, 0xc2af73c4u, 0xb92460d4u, 0xc2af7674u,
         0xb941c60fu, 0xc2af7924u, 0xb9421f4du, 0xc2af7bd4u, 0xb925ba37u,
         0xc2af7e7cu, 0xb92ce340u, 0xc2af811cu, 0xb957e5adu, 0xc2af83c4u,
         0xb9270b99u, 0xc2af865cu, 0xb95a9dfau, 0xc2af88fcu, 0xb932e4acu,
         0xc2af8b94u, 0xb9302671u, 0xc2af8e24u, 0xb952a8fau, 0xc2af90b4u,
         0xb95ab0eeu, 0xc2af9344u, 0xb94881e8u, 0xc2af95ccu, 0xb95c5e87u,
         0xc2af9854u, 0xb9568869u, 0xc2af9adcu, 0xb9374037u, 0xc2af9d5cu,
         0xb93ec5a6u, 0xc2af9fdcu, 0xb92d577du, 0xc2afa254u, 0xb9433399u,
         0xc2afa4ccu, 0xb94096f3u, 0xc2afa744u, 0xb925bda3u, 0xc2afa9b4u,
         0xb932e2e5u, 0xc2afac24u, 0xb928411du, 0xc2afae8cu, 0xb94611dau,
         0xc2afb0f4u, 0xb94c8ddbu, 0xc2afb35cu, 0xb93bed15u, 0xc2afb5bcu,
         0xb95466b2u, 0xc2afb81cu, 0xb9563119u, 0xc2afba7cu, 0xb94181f0u,
         0xc2afbcd4u, 0xb9568e1eu, 0xc2afbf2cu, 0xb95589d1u, 0xc2afc184u,
         0xb93ea881u, 0xc2afc3d4u, 0xb9521cf3u, 0xc2afc624u, 0xb950193bu,
         0xc2afc874u, 0xb938cec0u, 0xc2afcabcu, 0xb94c6e3fu, 0xc2afcd04u,
         0xb94b27d0u, 0xc2afcf4cu, 0xb9352ae6u, 0xc2afd18cu, 0xb94aa653u,
         0xc2afd3ccu, 0xb94bc84cu, 0xc2afd60cu, 0xb938be68u, 0xc2afd844u,
         0xb951b5a9u, 0xc2afda7cu, 0xb956da79u, 0xc2afdcb4u, 0xb94858aeu,
         0xc2afdeecu, 0xb9265b90u, 0xc2afe11cu, 0xb9310dd5u, 0xc2afe34cu,
         0xb92899abu, 0xc2afe574u, 0xb94d28b2u, 0xc2afe7a4u, 0xb91ee407u,
         0xc2afe9c4u, 0xb95df440u, 0xc2afebecu, 0xb94a8170u, 0xc2afee14u,
         0xb924b32au, 0xc2aff034u, 0xb92cb084u, 0xc2aff254u, 0xb922a015u,
         0xc2aff46cu, 0xb946a7fcu, 0xc2aff684u, 0xb958eddfu, 0xc2aff89cu,
         0xb95996edu, 0xc2affab4u, 0xb948c7e3u, 0xc2affcccu, 0xb926a508u,
         0xc2affedcu, 0xb9335235u, 0xc2b000ecu, 0xb92ef2d4u, 0xc2b002f4u,
         0xb959a9e1u, 0xc2b00504u, 0xb93399eeu, 0xc2b0070cu, 0xb93ce522u,
         0xc2b00914u, 0xb935ad3du, 0xc2b00b14u, 0xb95e1399u, 0xc2b00d1cu,
         0xb936392bu, 0xc2b00f1cu, 0xb93e3e84u}
        /*== SgnMask ==*/
        ,
        0x7fffffffu
        /*== XThreshold ==*/
        ,
        0x39800000u
        /*== XhMask ==*/
        ,
        0xffffff00u
        /*== ExpMask0 ==*/
        ,
        0x7f800000u
        /*== ExpMask2 ==*/
        ,
        0x7b000000u
        /*== ha_poly_coeff[2] ==*/
        ,
        {
            // VHEX_BROADCAST( S, 3fE35103 )    /* coeff3 */
            0x3eAAAB39u /* coeff2 */
            ,
            0xbf000036u /* coeff1 */
        }
        /*== ExpMask ==*/
        ,
        0x007fffffu
        /*== Two10 ==*/
        ,
        0x3b800000u
        /*== MinLog1p ==*/
        ,
        0xbf7fffffu
        /*== MaxLog1p ==*/
        ,
        0x7a800000u
        /*== HalfMask ==*/
        ,
        0xffffff00u
        /*== L2H ==*/
        ,
        0x3f317200u
        /*== L2L ==*/
        ,
        0x35bfbe00u
        /*== sOne = SP 1.0 ==*/
        ,
        0x3f800000u
        /*== sPoly[] = SP polynomial ==*/
        ,
        {
            0xbf000000u /* -5.0000000000000000000000000e-01 P0 */
            ,
            0x3eaaaaabu /*  3.3333334326744079589843750e-01 P1 */
            ,
            0xbe7fff87u /* -2.4999819695949554443359375e-01 P2 */
            ,
            0x3e4ccbbfu /*  1.9999597966670989990234375e-01 P3 */
            ,
            0xbe2acc84u /* -1.6679579019546508789062500e-01 P4 */
            ,
            0x3e127a46u /*  1.4304456114768981933593750e-01 P5 */
            ,
            0xbdf9c4feu /* -1.2195776402950286865234375e-01 P6 */
            ,
            0x3ddc3f2au /*  1.0754235088825225830078125e-01 P7 */
            ,
            0xbe038892u /* -1.2845066189765930175781250e-01 P8 */
            ,
            0x3df5e812u /*  1.2007154524326324462890625e-01 P9 */
        }
        /*== iHiDelta = SP 80000000-7f000000 ==*/
        ,
        0x01000000u
        /*== iLoRange = SP 00800000+iHiDelta ==*/
        ,
        0x01800000u
        /*== iBrkValue = SP 2/3 ==*/
        ,
        0x3f2aaaabu
        /*== iOffExpoMask = SP significand mask ==*/
        ,
        0x007fffffu
        /*== sBigThreshold ==*/
        ,
        0x4E800000u
        /*== sC2 ==*/
        ,
        0x3EC00000u
        /*== sC3 ==*/
        ,
        0x3EA00000u
        /*== sHalf ==*/
        ,
        0x3F000000u
        /*== sLargestFinite ==*/
        ,
        0x7F7FFFFFu
        /*== sLittleThreshold ==*/
        ,
        0x3D800000u
        /*== sSign ==*/
        ,
        0x80000000u
        /*== sThirtyOne ==*/
        ,
        0x41F80000u
        /*== sTopMask11 ==*/
        ,
        0xFFFFE000u
        /*== sTopMask12 ==*/
        ,
        0xFFFFF000u
        /*== sTopMask8 ==*/
        ,
        0xFFFF0000u
        /*== XScale ==*/
        ,
        0x30800000u
        /*== sLn2 = SP ln(2) ==*/
        ,
        0x3f317200u,
        0x35bfbe8eu
        /* scalar part follow */
        /*== sInfs = SP infinity, +/- ==*/
        ,
        {0x7f800000u, 0xff800000u}
        /*== sOnes = SP one, +/- ==*/
        ,
        {0x3f800000u, 0xbf800000u}
        /*== sZeros = SP zero +/- ==*/
        ,
        {0x00000000u, 0x80000000u}}; /*sLn_Table*/
static _iml_v2_sp_union_t __sacosh_ha__iml_sacosh_cout_tab[3] = {
    /* Other simple constants */
    0x3F800000, /* ONE  = 1.0f */
    0x00000000, /* ZERO = 0.0f */
    0x7F800000  /* INF  = 0x7f800000 */
};
#pragma float_control(push)
#pragma float_control(precise, on)
// For x = 1 we return +0
// For x = +inf we return +inf
// For NaNs just return a NaN; for others return a NaN and signal invalid.
__attribute__((always_inline)) inline int
__ocl_svml_internal_sacosh_ha(float *a, float *r) {
  int nRet = 0;
  float purex = *a;
  // First deal with NaN inputs: return a NaN and set necessary flags
  if ((((((_iml_v2_sp_union_t *)&purex)->hex[0] >> 23) & 0xFF) == 0xFF) &&
      ((((_iml_v2_sp_union_t *)&purex)->hex[0] & 0x007FFFFF) != 0x0)) {
    (*r) = purex * purex;
    return nRet;
  }
  // For x = +1, return +0
  if (((_iml_v2_sp_union_t *)&(purex))->hex[0] ==
      ((_iml_v2_sp_union_t *)&(((float *)__sacosh_ha__iml_sacosh_cout_tab)[0]))
          ->hex[0]) {
    (*r) = (float)((float *)__sacosh_ha__iml_sacosh_cout_tab)[1];
    return nRet;
  }
  // For x = +infinity, return +infinity.
  if (((_iml_v2_sp_union_t *)&(purex))->hex[0] ==
      ((_iml_v2_sp_union_t *)&(((float *)__sacosh_ha__iml_sacosh_cout_tab)[2]))
          ->hex[0]) {
    (*r) = (float)((float *)__sacosh_ha__iml_sacosh_cout_tab)[2];
    return nRet;
  }
  // Otherwise return NaN and set invalid
  {
    (*r) = (float)(((float *)__sacosh_ha__iml_sacosh_cout_tab)[2] *
                   ((float *)__sacosh_ha__iml_sacosh_cout_tab)[1]);
    nRet = 1;
    return nRet;
  }
}
#pragma float_control(pop)
float __ocl_svml_acoshf_ha(float x) {
  float r;
  unsigned int vm;
  float va1;
  float vr1;
  va1 = x;
  {
    float SgnMask;
    float FpExponPlus;
    float sU;
    float sUHi;
    float suLo;
    float sV;
    float sVHi;
    float sVLo;
    float sVTmp;
    float sTmp1;
    float sTmp2;
    float sTmp3;
    float sTmp4;
    float sTmp5;
    float sTmp6;
    float sTmp7;
    float sTmp8;
    float sY;
    float sW;
    float sZ;
    float sR;
    float sS;
    float sT;
    float sE;
    float sTopMask8;
    float sTopMask12;
    float sC1;
    float sC2;
    float sC3;
    float sPol1;
    float sPol2;
    float sCorr;
    float sTmpf1;
    float sTmpf2;
    float sTmpf3;
    float sTmpf4;
    float sTmpf5;
    float sTmpf6;
    float sH;
    float sL;
    float XScale;
    float sThirtyOne;
    float sInfinityMask;
    float sTooSmallMask;
    float sSpecialMask;
    unsigned int iSpecialMask;
    float sBigThreshold;
    float sModerateMask;
    float sLargestFinite;
    float ExpMask;
    float Two10;
    float Mantissa;
    float DblRcp;
    unsigned int IExpon;
    float FpExpon;
    float MinLog1p;
    float MaxLog1p;
    float One;
    float R;
    unsigned int Index;
    float THL[2];
    float L2H;
    float L2L;
    float Kh;
    float Kl;
    float poly_coeff[4];
    float dP;
    float Rh;
    float Rl;
    float Rlh;
    float XThreshold;
    float XhMask;
    float XMask;
    float Xabs;
    float X;
    float Xl;
    unsigned int ExpMask0;
    unsigned int ExpMask2;
    unsigned int Expon;
    unsigned int ExpX;
    float FpExpX;
    float DblRcp1;
    float A;
    float B;
    float dR2;
    float sZero;
    // Load constants, always including One = 1
    One = as_float(__ocl_svml_internal_sacosh_ha_data.sOne);
    SgnMask = as_float(__ocl_svml_internal_sacosh_ha_data.SgnMask);
    XThreshold = as_float(__ocl_svml_internal_sacosh_ha_data.XThreshold);
    XhMask = as_float(__ocl_svml_internal_sacosh_ha_data.XhMask);
    sZero = as_float(0);
    sLargestFinite =
        as_float(__ocl_svml_internal_sacosh_ha_data.sLargestFinite);
    sInfinityMask =
        as_float(((unsigned int)(-(signed int)(!(va1 <= sLargestFinite)))));
    sTooSmallMask = as_float(((unsigned int)(-(signed int)(!(va1 > One)))));
    sSpecialMask = as_float((as_uint(sInfinityMask) | as_uint(sTooSmallMask)));
    iSpecialMask = as_uint(sSpecialMask);
    vm = 0;
    vm = iSpecialMask;
    // The following computation can go wrong for very large X, e.g.
    // the X^2 - 1 = U * V can overflow. But for large X we have
    // acosh(X) / log(2 X) - 1 =~= 1/(4 * X^2), so for X >= 2^30
    // we can just later stick X back into the log and tweak up the exponent.
    // Actually we scale X by 2^-30 and tweak the exponent up by 31,
    // to stay in the safe range for the later log computation.
    // Compute a flag now telling us when to do this.
    sBigThreshold = as_float(__ocl_svml_internal_sacosh_ha_data.sBigThreshold);
    sModerateMask =
        as_float(((unsigned int)(-(signed int)(va1 < sBigThreshold))));
    // sU is needed later on
    sU = (va1 - One);
    // dTmp5-dTmp6=rounded(x^2)-1, dTmp4=x^2-rounded(x^2)
    // dTmp5 + (dTmp4-dTmp6) = x^2-1
    sTmp1 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(va1, va1, sZero);
    sTmp4 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(va1, va1, -(sTmp1));
    sTmp5 = (sTmp1 - One);
    sTmp6 = (sTmp5 - sTmp1);
    sTmp6 = (sTmp6 + One);
    sTmp7 = (sTmp4 - sTmp6);
    // Finally, express Y + W = U * V accurately where Y has <= 8 bits
    sTopMask8 = as_float(__ocl_svml_internal_sacosh_ha_data.sTopMask8);
    sY = as_float((as_uint(sTmp5) & as_uint(sTopMask8)));
    sTmp8 = (sTmp5 - sY);
    sW = (sTmp8 + sTmp7);
    // Compute R = 1/sqrt(Y + W) * (1 + d)
    // Force R to <= 8 significant bits.
    // This means that R * Y and R^2 * Y are exactly representable.
    sZ = (1.0f / SPIRV_OCL_BUILTIN(sqrt, _f32, )(sY));
    sR = as_float((as_uint(sZ) & as_uint(sTopMask8)));
    // Compute S = (Y/sqrt(Y + W)) * (1 + d)
    //     and T = (W/sqrt(Y + W)) * (1 + d)
    //
    // so that S + T = sqrt(Y + W) * (1 + d)
    // S is exact, and the rounding error in T is OK.
    sS = (sY * sR);
    sT = (sW * sR);
    // Compute e = -(2 * d + d^2)
    // The first FMR is exact, and the rounding error in the other is acceptable
    // since d and e are ~ 2^-8
    sE = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(-(sS), sR, One);
    sE = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(-(sT), sR, sE);
    // Now       1 / (1 + d)
    //         = 1 / (1 + (sqrt(1 - e) - 1))
    //         = 1 / sqrt(1 - e)
    //         = 1 + 1/2 * e + 3/8 * e^2 + 5/16 * e^3 + 35/128 * e^4 + ...
    //
    // So compute the first three nonconstant terms of that, so that
    // we have a relative correction (1 + Corr) to apply to S etc.
    //
    // C1 = 1/2
    // C2 = 3/8
    // C3 = 5/16
    sC3 = as_float(__ocl_svml_internal_sacosh_ha_data.sC3);
    sC2 = as_float(__ocl_svml_internal_sacosh_ha_data.sC2);
    sC2 = as_float(__ocl_svml_internal_sacosh_ha_data.sC2);
    sPol2 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sC3, sE, sC2);
    sC1 = as_float(__ocl_svml_internal_sacosh_ha_data.sHalf);
    sPol1 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sPol2, sE, sC1);
    sCorr = (sPol1 * sE);
    // Now get the final argument to the log1p function:
    //
    //     [X + sqrt(X^2 - 1)] - 1
    //   = (X - 1) + sqrt(Y + W)
    //   = U + sqrt(Y + W)
    //   = U + (S + T) * (1 + Corr)
    //   = [U + S] + [T + (S + T) * Corr]
    //
    // The bottom part is computed directly as sTmpf4:
    sTmpf1 = (sS + sT);
    sTmpf2 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sTmpf1, sCorr, sT);
    // The top part uses a compensated summation sTmpf3 + sTmpf5. Note that
    //
    // U / S =~= (X - 1) / sqrt(X^2 - 1) = sqrt[(X - 1) / (X + 1)]
    //       = sqrt(1 - 2 / (X + 1)).
    //
    // As this is certainly <= 1, even taking into account the fact
    // that S is approximate we are OK until relatively large X,
    // and then as usual the well-conditioned log function kicks in.
    // So we can treat S as the dominant component.
    sTmpf3 = (sU + sS);
    sTmpf4 = (sS - sTmpf3);
    sTmpf5 = (sTmpf4 + sU);
    // Now finally accumulate the high and low parts of the
    // argument to log1p with a final compensated summation: H + L
    sH = (sTmpf2 + sTmpf3);
    sTmpf6 = (sTmpf3 - sH);
    sL = (sTmpf6 + sTmpf2);
    // Now we feed into the log1p code, using H in place of _VARG1 and
    // also adding L into Xl.
    // compute 1+x as high, low parts
    A = ((One > sH) ? One : sH);
    B = ((One < sH) ? One : sH);
    Xabs = as_float((as_uint(sH) & as_uint(SgnMask)));
    XMask = as_float(((unsigned int)(-(signed int)(Xabs < XThreshold))));
    XhMask = as_float((as_uint(XhMask) | as_uint(XMask)));
    X = (A + B);
    X = as_float((as_uint(X) & as_uint(XhMask)));
    Xl = (A - X);
    Xl = (Xl + B);
    // Now multiplex to the case X = 2^-30 * input, Xl = sL = 0 in the "big"
    // case.
    XScale = as_float(__ocl_svml_internal_sacosh_ha_data.XScale);
    XScale = (va1 * XScale);
    X = as_float((((~as_uint(sModerateMask)) & as_uint(XScale)) |
                  (as_uint(sModerateMask) & as_uint(X))));
    Xl = as_float((as_uint(Xl) & as_uint(sModerateMask)));
    sL = as_float((as_uint(sL) & as_uint(sModerateMask)));
    // Now resume the main code.
    ExpMask = as_float(__ocl_svml_internal_sacosh_ha_data.ExpMask);
    Two10 = as_float(__ocl_svml_internal_sacosh_ha_data.Two10);
    /* preserve mantissa, set input exponent to 2^(-8) */
    Mantissa = as_float((as_uint(X) & as_uint(ExpMask)));
    Mantissa = as_float((as_uint(Mantissa) | as_uint(Two10)));
    MinLog1p = as_float(__ocl_svml_internal_sacosh_ha_data.MinLog1p);
    MaxLog1p = as_float(__ocl_svml_internal_sacosh_ha_data.MaxLog1p);
    ExpMask0 = (__ocl_svml_internal_sacosh_ha_data.ExpMask0);
    ExpMask2 = (__ocl_svml_internal_sacosh_ha_data.ExpMask2);
    /* reciprocal approximation good to at least 7.9 bits */
    DblRcp = (1.0f / (Mantissa));
    /* exponent of X needed to scale Xl */
    Expon = as_uint(X);
    ExpX = (Expon & ExpMask0);
    /* 2^ (-8-exp(X) ) */
    ExpX = (ExpMask2 - ExpX);
    /* exponent bits */
    IExpon = as_uint(X);
    IExpon = ((unsigned int)(IExpon) >> (23));
    /* round reciprocal to nearest integer, will have 1+7 mantissa bits */
    DblRcp = SPIRV_OCL_BUILTIN(rint, _f32, )(DblRcp);
    /* scale DblRcp */
    FpExpX = as_float(ExpX);
    DblRcp1 = (FpExpX * DblRcp);
    /* biased exponent in DP format */
    FpExpon = ((float)((int)(IExpon)));
    // Add 31 to the exponent in the "large" case to get log(2 * input)
    sThirtyOne = as_float(__ocl_svml_internal_sacosh_ha_data.sThirtyOne);
    FpExponPlus = (FpExpon + sThirtyOne);
    FpExpon = as_float((((~as_uint(sModerateMask)) & as_uint(FpExponPlus)) |
                        (as_uint(sModerateMask) & as_uint(FpExpon))));
    /* argument reduction */
    Rh = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(X, DblRcp1, -(One));
    Rl = (Xl * DblRcp1);
    R = (Rh + Rl);
    Rlh = (R - Rh);
    Rl = (Rl - Rlh);
    Rl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sL, DblRcp1, Rl);
    /* prepare table index */
    Index = as_uint(DblRcp);
    /* table lookup */
    Index = ((unsigned int)(Index) >> (23 - 7 - 3));

    THL[0] =
        as_float(((unsigned int *)((char *)(&__ocl_svml_internal_sacosh_ha_data
                                                 .Log_HA_table[0]) -
                                   0x21800))[Index >> 2]);
    THL[1] =
        as_float(((unsigned int *)((char *)(&__ocl_svml_internal_sacosh_ha_data
                                                 .Log_HA_table[0]) -
                                   0x21800))[(Index >> 2) + 1]);

    /* exponent*log(2.0) */
    L2H = as_float(__ocl_svml_internal_sacosh_ha_data.L2H);
    L2L = as_float(__ocl_svml_internal_sacosh_ha_data.L2L);
    Kh = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(FpExpon, L2H, THL[0]);
    Kl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(FpExpon, L2L, THL[1]);
    /* polynomial */
    // VLOAD_CONST( S, poly_coeff[2], TAB.ha_poly_coeff[0] );
    poly_coeff[1] =
        as_float(__ocl_svml_internal_sacosh_ha_data.ha_poly_coeff[0]);
    poly_coeff[0] =
        as_float(__ocl_svml_internal_sacosh_ha_data.ha_poly_coeff[1]);
    // VQFMA( S, P12, poly_coeff[2], dR, poly_coeff[1] );
    dP =
        SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly_coeff[1], R, poly_coeff[0]);
    dR2 = (R * R);
    dP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(dP, dR2, Rl);
    /* reconstruction */
    THL[0] = (Kh + R);
    Rh = (THL[0] - Kh);
    Rl = (R - Rh);
    Kl = (Kl + Rl);
    Kl = (Kl + dP);
    vr1 = (Kl + THL[0]);
  }
  if (__builtin_expect((vm) != 0, 0)) {
    float __cout_a1;
    float __cout_r1;
    ((float *)&__cout_a1)[0] = va1;
    ((float *)&__cout_r1)[0] = vr1;
    __ocl_svml_internal_sacosh_ha(&__cout_a1, &__cout_r1);
    vr1 = ((float *)&__cout_r1)[0];
  }
  r = vr1;
  return r;
}