File: atanh_s_ha.cl

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (545 lines) | stat: -rw-r--r-- 19,192 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/
/*
// ALGORITHM DESCRIPTION:
//  *
//  *  Compute atanh(x) as 0.5 * log((1 + x)/(1 - x))
//  *
//  *  Special cases:
//  *
//  *  atanh(0)  = 0
//  *  atanh(+1) = +INF
//  *  atanh(-1) = -INF
//  *  atanh(x)  = NaN if |x| > 1, or if x is a NaN or INF
//
*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
typedef struct {
  unsigned int Log_HA_table[(1 << 8) + 2];
  unsigned int SgnMask;
  unsigned int XThreshold;
  unsigned int XhMask;
  unsigned int ExpMask0;
  unsigned int ExpMask2;
  unsigned int ha_poly_coeff[2];
  unsigned int ExpMask;
  unsigned int Two10;
  unsigned int MinLog1p;
  unsigned int MaxLog1p;
  unsigned int HalfMask;
  unsigned int L2H;
  unsigned int L2L;
  unsigned int sOne;
  unsigned int sPoly[10];
  unsigned int iHiDelta;
  unsigned int iLoRange;
  unsigned int iBrkValue;
  unsigned int iOffExpoMask;
  unsigned int sBigThreshold;
  unsigned int sC2;
  unsigned int sC3;
  unsigned int sHalf;
  unsigned int sLargestFinite;
  unsigned int sLittleThreshold;
  unsigned int sSign;
  unsigned int sThirtyOne;
  unsigned int sTopMask11;
  unsigned int sTopMask12;
  unsigned int sTopMask8;
  unsigned int XScale;
  unsigned int TinyRange;
  unsigned int sLn2Hi;
  unsigned int sLn2Lo;
  /* scalar part follow */
  unsigned int sInfs[2];
  unsigned int sOnes[2];
  unsigned int sZeros[2];
} __ocl_svml_internal_satanh_ha_data_t;
static __ocl_svml_internal_satanh_ha_data_t __ocl_svml_internal_satanh_ha_data =
    {
        /* Log_HA_table */
        {0xc2aeac38u, 0xb93cbf08u, 0xc2aeb034u, 0xb93ce972u, 0xc2aeb424u,
         0xb95e1069u, 0xc2aeb814u, 0xb9412b26u, 0xc2aebbfcu, 0xb9272b41u,
         0xc2aebfd4u, 0xb950fcd7u, 0xc2aec3acu, 0xb93f86b8u, 0xc2aec77cu,
         0xb933aa90u, 0xc2aecb44u, 0xb92e4507u, 0xc2aecf04u, 0xb9302df1u,
         0xc2aed2bcu, 0xb93a3869u, 0xc2aed66cu, 0xb94d32f7u, 0xc2aeda1cu,
         0xb929e7b5u, 0xc2aeddbcu, 0xb9511c6au, 0xc2aee15cu, 0xb94392acu,
         0xc2aee4f4u, 0xb94207fdu, 0xc2aee884u, 0xb94d35eau, 0xc2aeec14u,
         0xb925d225u, 0xc2aeef94u, 0xb94c8ea1u, 0xc2aef314u, 0xb94219adu,
         0xc2aef68cu, 0xb9471e0bu, 0xc2aef9fcu, 0xb95c430bu, 0xc2aefd6cu,
         0xb9422ca0u, 0xc2af00d4u, 0xb9397b7bu, 0xc2af0434u, 0xb942cd1cu,
         0xc2af0794u, 0xb91ebbeau, 0xc2af0ae4u, 0xb94ddf49u, 0xc2af0e34u,
         0xb950cbabu, 0xc2af1184u, 0xb92812a5u, 0xc2af14c4u, 0xb9544303u,
         0xc2af1804u, 0xb955e8d7u, 0xc2af1b44u, 0xb92d8d8du, 0xc2af1e74u,
         0xb95bb7fau, 0xc2af21acu, 0xb920ec71u, 0xc2af24d4u, 0xb93dacccu,
         0xc2af27fcu, 0xb9327882u, 0xc2af2b1cu, 0xb93fccb3u, 0xc2af2e3cu,
         0xb9262434u, 0xc2af3154u, 0xb925f7a4u, 0xc2af3464u, 0xb93fbd72u,
         0xc2af3774u, 0xb933e9f2u, 0xc2af3a7cu, 0xb942ef61u, 0xc2af3d84u,
         0xb92d3dfbu, 0xc2af4084u, 0xb93343ffu, 0xc2af437cu, 0xb9556dbfu,
         0xc2af4674u, 0xb95425adu, 0xc2af496cu, 0xb92fd461u, 0xc2af4c5cu,
         0xb928e0a9u, 0xc2af4f44u, 0xb93faf8eu, 0xc2af522cu, 0xb934a465u,
         0xc2af550cu, 0xb94820d2u, 0xc2af57ecu, 0xb93a84d8u, 0xc2af5ac4u,
         0xb94c2eddu, 0xc2af5d9cu, 0xb93d7bb5u, 0xc2af606cu, 0xb94ec6aeu,
         0xc2af633cu, 0xb9406992u, 0xc2af6604u, 0xb952bcb6u, 0xc2af68ccu,
         0xb94616feu, 0xc2af6b8cu, 0xb95acde8u, 0xc2af6e4cu, 0xb951358fu,
         0xc2af710cu, 0xb929a0b7u, 0xc2af73c4u, 0xb92460d4u, 0xc2af7674u,
         0xb941c60fu, 0xc2af7924u, 0xb9421f4du, 0xc2af7bd4u, 0xb925ba37u,
         0xc2af7e7cu, 0xb92ce340u, 0xc2af811cu, 0xb957e5adu, 0xc2af83c4u,
         0xb9270b99u, 0xc2af865cu, 0xb95a9dfau, 0xc2af88fcu, 0xb932e4acu,
         0xc2af8b94u, 0xb9302671u, 0xc2af8e24u, 0xb952a8fau, 0xc2af90b4u,
         0xb95ab0eeu, 0xc2af9344u, 0xb94881e8u, 0xc2af95ccu, 0xb95c5e87u,
         0xc2af9854u, 0xb9568869u, 0xc2af9adcu, 0xb9374037u, 0xc2af9d5cu,
         0xb93ec5a6u, 0xc2af9fdcu, 0xb92d577du, 0xc2afa254u, 0xb9433399u,
         0xc2afa4ccu, 0xb94096f3u, 0xc2afa744u, 0xb925bda3u, 0xc2afa9b4u,
         0xb932e2e5u, 0xc2afac24u, 0xb928411du, 0xc2afae8cu, 0xb94611dau,
         0xc2afb0f4u, 0xb94c8ddbu, 0xc2afb35cu, 0xb93bed15u, 0xc2afb5bcu,
         0xb95466b2u, 0xc2afb81cu, 0xb9563119u, 0xc2afba7cu, 0xb94181f0u,
         0xc2afbcd4u, 0xb9568e1eu, 0xc2afbf2cu, 0xb95589d1u, 0xc2afc184u,
         0xb93ea881u, 0xc2afc3d4u, 0xb9521cf3u, 0xc2afc624u, 0xb950193bu,
         0xc2afc874u, 0xb938cec0u, 0xc2afcabcu, 0xb94c6e3fu, 0xc2afcd04u,
         0xb94b27d0u, 0xc2afcf4cu, 0xb9352ae6u, 0xc2afd18cu, 0xb94aa653u,
         0xc2afd3ccu, 0xb94bc84cu, 0xc2afd60cu, 0xb938be68u, 0xc2afd844u,
         0xb951b5a9u, 0xc2afda7cu, 0xb956da79u, 0xc2afdcb4u, 0xb94858aeu,
         0xc2afdeecu, 0xb9265b90u, 0xc2afe11cu, 0xb9310dd5u, 0xc2afe34cu,
         0xb92899abu, 0xc2afe574u, 0xb94d28b2u, 0xc2afe7a4u, 0xb91ee407u,
         0xc2afe9c4u, 0xb95df440u, 0xc2afebecu, 0xb94a8170u, 0xc2afee14u,
         0xb924b32au, 0xc2aff034u, 0xb92cb084u, 0xc2aff254u, 0xb922a015u,
         0xc2aff46cu, 0xb946a7fcu, 0xc2aff684u, 0xb958eddfu, 0xc2aff89cu,
         0xb95996edu, 0xc2affab4u, 0xb948c7e3u, 0xc2affcccu, 0xb926a508u,
         0xc2affedcu, 0xb9335235u, 0xc2b000ecu, 0xb92ef2d4u, 0xc2b002f4u,
         0xb959a9e1u, 0xc2b00504u, 0xb93399eeu, 0xc2b0070cu, 0xb93ce522u,
         0xc2b00914u, 0xb935ad3du, 0xc2b00b14u, 0xb95e1399u, 0xc2b00d1cu,
         0xb936392bu, 0xc2b00f1cu, 0xb93e3e84u}
        /*== SgnMask ==*/
        ,
        0x7fffffffu
        /*== XThreshold ==*/
        ,
        0x39800000u
        /*== XhMask ==*/
        ,
        0xffffff00u
        /*== ExpMask0 ==*/
        ,
        0x7f800000u
        /*== ExpMask2 ==*/
        ,
        0x7b000000u
        /*== ha_poly_coeff[2] ==*/
        ,
        {
            // VHEX_BROADCAST( S, 3fE35103 )    /* coeff3 */
            0x3eAAAB39u /* coeff2 */
            ,
            0xbf000036u /* coeff1 */
        }
        /*== ExpMask ==*/
        ,
        0x007fffffu
        /*== Two10 ==*/
        ,
        0x3b800000u
        /*== MinLog1p ==*/
        ,
        0xbf7fffffu
        /*== MaxLog1p ==*/
        ,
        0x7a800000u
        /*== HalfMask ==*/
        ,
        0xffffff00u
        /*== L2H ==*/
        ,
        0x3f317200u
        /*== L2L ==*/
        ,
        0x35bfbe00u
        /*== sOne = SP 1.0 ==*/
        ,
        0x3f800000u
        /*== sPoly[] = SP polynomial ==*/
        ,
        {
            0xbf000000u /* -5.0000000000000000000000000e-01 P0 */
            ,
            0x3eaaaaabu /*  3.3333334326744079589843750e-01 P1 */
            ,
            0xbe7fff87u /* -2.4999819695949554443359375e-01 P2 */
            ,
            0x3e4ccbbfu /*  1.9999597966670989990234375e-01 P3 */
            ,
            0xbe2acc84u /* -1.6679579019546508789062500e-01 P4 */
            ,
            0x3e127a46u /*  1.4304456114768981933593750e-01 P5 */
            ,
            0xbdf9c4feu /* -1.2195776402950286865234375e-01 P6 */
            ,
            0x3ddc3f2au /*  1.0754235088825225830078125e-01 P7 */
            ,
            0xbe038892u /* -1.2845066189765930175781250e-01 P8 */
            ,
            0x3df5e812u /*  1.2007154524326324462890625e-01 P9 */
        }
        /*== iHiDelta = SP 80000000-7f000000 ==*/
        ,
        0x01000000u
        /*== iLoRange = SP 00800000+iHiDelta ==*/
        ,
        0x01800000u
        /*== iBrkValue = SP 2/3 ==*/
        ,
        0x3f2aaaabu
        /*== iOffExpoMask = SP significand mask ==*/
        ,
        0x007fffffu
        /*== sBigThreshold ==*/
        ,
        0x4E800000u
        /*== sC2 ==*/
        ,
        0x3EC00000u
        /*== sC3 ==*/
        ,
        0x3EA00000u
        /*== sHalf ==*/
        ,
        0x3F000000u
        /*== sLargestFinite ==*/
        ,
        0x7F7FFFFFu
        /*== sLittleThreshold ==*/
        ,
        0x3D800000u
        /*== sSign ==*/
        ,
        0x80000000u
        /*== sThirtyOne ==*/
        ,
        0x41F80000u
        /*== sTopMask11 ==*/
        ,
        0xFFFFE000u
        /*== sTopMask12 ==*/
        ,
        0xFFFFF000u
        /*== sTopMask8 ==*/
        ,
        0xFFFF0000u
        /*== XScale ==*/
        ,
        0x30800000u
        /*== TinyRange ==*/
        ,
        0x0C000000u
        /*== sLn2 = SP ln(2) ==*/
        ,
        0x3f317200u,
        0x35bfbe8eu
        /* scalar part follow */
        /*== sInfs = SP infinity, +/- ==*/
        ,
        {0x7f800000u, 0xff800000u}
        /*== sOnes = SP one, +/- ==*/
        ,
        {0x3f800000u, 0xbf800000u}
        /*== sZeros = SP zero +/- ==*/
        ,
        {0x00000000u, 0x80000000u}}; /*sLn_Table*/
static __constant _iml_v2_sp_union_t __satanh_ha__imlsAtanhTab[3] = {
    /* Other simple constants */
    0x3F800000, /* ONE = 1.0 */
    0x00000000, /* ZERO = 0.0 */
    0x7F800000  /* INF = 0x7f800000 */
};
#pragma float_control(push)
#pragma float_control(precise, on)
// This is called for all inputs x with |x| >= 1, and for infinity and NaN.
//
// For +/- 1 return correspondingly signed infinity
// For larger arguments or infinity, return NaN
// For NaN, just return the same NaN
__attribute__((always_inline)) inline int
__ocl_svml_internal_satanh_ha(float *a, float *r) {
  int nRet = 0;
  float absx;
  float fRes;
  float sp_a = (*a);
  /* Get absolute value of argument */
  absx = sp_a;
  (((_iml_v2_sp_union_t *)&absx)->hex[0] =
       (((_iml_v2_sp_union_t *)&absx)->hex[0] & 0x7FFFFFFF) |
       ((_iml_uint32_t)(0) << 31));
  // First consider finite inputs
  if ((((((_iml_v2_sp_union_t *)&*a)->hex[0] >> 23) & 0xFF) !=
       0xFF)) { // If x is +/- 1, return corresponding infinity.
    if (((((_iml_v2_sp_union_t *)&(absx))->hex[0] ==
          ((__constant _iml_v2_sp_union_t *)&(
               ((__constant float *)__satanh_ha__imlsAtanhTab)[0]))
              ->hex[0])
             ? 1
             : 0)) {
      (*r) = (*a) / ((__constant float *)__satanh_ha__imlsAtanhTab)[1];
      nRet = 2;
      return nRet;
    }
    // Otherwise return NaN and raise invalid
    {
      (*r) = (float)(((__constant float *)__satanh_ha__imlsAtanhTab)[2] *
                     ((__constant float *)__satanh_ha__imlsAtanhTab)[1]);
      nRet = 1;
      return nRet;
    }
  } else { // If x is infinite, return NaN and raise invalid
    if (((((_iml_v2_sp_union_t *)&(absx))->hex[0] ==
          ((__constant _iml_v2_sp_union_t *)&(
               ((__constant float *)__satanh_ha__imlsAtanhTab)[2]))
              ->hex[0])
             ? 1
             : 0)) {
      (*r) = (float)(sp_a * ((__constant float *)__satanh_ha__imlsAtanhTab)[1]);
      nRet = 1;
      return nRet;
    }
    // Otherwise reflect input NaN
    {
      (*r) = (float)((*a) * (*a));
      return nRet;
    }
  }
}
#pragma float_control(pop)
float __ocl_svml_atanhf_ha(float x) {
  float r;
  unsigned int vm;
  float va1;
  float vr1;
  va1 = x;
  {
    float SgnMask;
    unsigned int iSpecialMask;
    float sSpecialMask;
    float sTinyMask;
    float sD;
    float sE;
    float sH;
    float sHalf;
    float sInput;
    float sL;
    float sQHi;
    float sQLo;
    float sR;
    float sResult;
    float sSign;
    float sTmp1;
    float sTmp2;
    float sTmp3;
    float sTmp4;
    float sTopMask12;
    float sU;
    float sUHi;
    float suLo;
    float sUTmp;
    float sV;
    float sVHi;
    float sVLo;
    float sZ;
    float sTinyRes;
    float sTinyRange;
    float ExpMask;
    float Two10;
    float Mantissa;
    float DblRcp;
    unsigned int IExpon;
    float FpExpon;
    float MinLog1p;
    float MaxLog1p;
    float One;
    float R;
    unsigned int Index;
    float THL[2];
    float L2H;
    float L2L;
    float Kh;
    float Kl;
    float poly_coeff[4];
    float dP;
    float Rh;
    float Rl;
    float Rlh;
    float XThreshold;
    float XhMask;
    float XMask;
    float Xabs;
    float X;
    float Xl;
    unsigned int ExpMask0;
    unsigned int ExpMask2;
    unsigned int Expon;
    unsigned int ExpX;
    float FpExpX;
    float DblRcp1;
    float A;
    float B;
    float dR2;
    // Load constants including One = 1
    One = as_float(__ocl_svml_internal_satanh_ha_data.sOne);
    SgnMask = as_float(__ocl_svml_internal_satanh_ha_data.SgnMask);
    XThreshold = as_float(__ocl_svml_internal_satanh_ha_data.XThreshold);
    XhMask = as_float(__ocl_svml_internal_satanh_ha_data.XhMask);
    // Strip off the sign, so treat X as positive until right at the end
    sInput = as_float((as_uint(va1) & as_uint(SgnMask)));
    // Check whether |X| < 1, in which case we use the main function.
    sSpecialMask = as_float(((unsigned int)(-(signed int)(!(sInput < One)))));
    iSpecialMask = as_uint(sSpecialMask);
    vm = 0;
    vm = iSpecialMask;
    sTinyRange = as_float(__ocl_svml_internal_satanh_ha_data.TinyRange);
    sTinyMask = as_float(((unsigned int)(-(signed int)(sInput < sTinyRange))));
    sTinyRes = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(va1, va1, va1);
    // Record the sign for eventual reincorporation.
    sSign = as_float(__ocl_svml_internal_satanh_ha_data.sSign);
    sSign = as_float((as_uint(va1) & as_uint(sSign)));
    // Or the sign bit in with the tiny result to handle atanh(-0) correctly
    sTinyRes = as_float((as_uint(sTinyRes) | as_uint(sSign)));
    // Compute V = 2 * X trivially, and UHi + U_lo = 1 - X in two pieces,
    // the upper part UHi being <= 12 bits long. Then we have
    // atanh(X) = 1/2 * log((1 + X) / (1 - X)) = 1/2 * log1p(V / (UHi + uLo)).
    sV = (sInput + sInput);
    sU = (One - sInput);
    sUTmp = (One - sU);
    sUTmp = (sUTmp - sInput);
    sTopMask12 = as_float(__ocl_svml_internal_satanh_ha_data.sTopMask12);
    sZ = (1.0f / (sU));
    sR = as_float((as_uint(sZ) & as_uint(sTopMask12)));
    // No need to split sU when FMA is available
    sE = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(-(sR), sU, One);
    sE = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(-(sR), sUTmp, sE);
    // Split V as well into upper 12 bits and lower part, so that we can get
    // a preliminary quotient estimate without rounding error.
    sVHi = as_float((as_uint(sV) & as_uint(sTopMask12)));
    sVLo = (sV - sVHi);
    // Hence get initial quotient estimate QHi + QLo = R * VHi + R * VLo
    sQHi = (sR * sVHi);
    sQLo = (sR * sVLo);
    // Compute D = E + E^2
    sD = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sE, sE, sE);
    // Compute R * (VHi + VLo) * (1 + E + E^2)
    //       = R *  (VHi + VLo) * (1 + D)
    //       = QHi + (QHi * D + QLo + QLo * D)
    sTmp1 = (sD * sQHi);
    sTmp2 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sD, sQLo, sQLo);
    sTmp3 = (sTmp1 + sTmp2);
    // Now finally accumulate the high and low parts of the
    // argument to log1p, H + L, with a final compensated summation.
    sH = (sQHi + sTmp3);
    sTmp4 = (sQHi - sH);
    sL = (sTmp4 + sTmp3);
    // Now we feed into the log1p code, using H in place of _VARG1 and
    // later incorporating L into the reduced argument.
    // compute 1+x as high, low parts
    A = ((One > sH) ? One : sH);
    B = ((One < sH) ? One : sH);
    Xabs = as_float((as_uint(sH) & as_uint(SgnMask)));
    XMask = as_float(((unsigned int)(-(signed int)(Xabs < XThreshold))));
    XhMask = as_float((as_uint(XhMask) | as_uint(XMask)));
    X = (A + B);
    X = as_float((as_uint(X) & as_uint(XhMask)));
    Xl = (A - X);
    Xl = (Xl + B);
    ExpMask = as_float(__ocl_svml_internal_satanh_ha_data.ExpMask);
    Two10 = as_float(__ocl_svml_internal_satanh_ha_data.Two10);
    /* preserve mantissa, set input exponent to 2^(-8) */
    Mantissa = as_float((as_uint(X) & as_uint(ExpMask)));
    Mantissa = as_float((as_uint(Mantissa) | as_uint(Two10)));
    MinLog1p = as_float(__ocl_svml_internal_satanh_ha_data.MinLog1p);
    MaxLog1p = as_float(__ocl_svml_internal_satanh_ha_data.MaxLog1p);
    ExpMask0 = (__ocl_svml_internal_satanh_ha_data.ExpMask0);
    ExpMask2 = (__ocl_svml_internal_satanh_ha_data.ExpMask2);
    /* reciprocal approximation good to at least 7.9 bits */
    DblRcp = (1.0f / (Mantissa));
    /* exponent of X needed to scale Xl */
    Expon = as_uint(X);
    ExpX = (Expon & ExpMask0);
    /* 2^ (-8-exp(X) ) */
    ExpX = (ExpMask2 - ExpX);
    /* exponent bits */
    IExpon = as_uint(X);
    IExpon = ((unsigned int)(IExpon) >> (23));
    /* round reciprocal to nearest integer, will have 1+7 mantissa bits */
    DblRcp = SPIRV_OCL_BUILTIN(rint, _f32, )(DblRcp);
    /* scale DblRcp */
    FpExpX = as_float(ExpX);
    DblRcp1 = (FpExpX * DblRcp);
    /* biased exponent in DP format */
    FpExpon = ((float)((int)(IExpon)));
    /* argument reduction */
    Rh = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(X, DblRcp1, -(One));
    Rl = (Xl * DblRcp1);
    R = (Rh + Rl);
    Rlh = (R - Rh);
    Rl = (Rl - Rlh);
    Rl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sL, DblRcp1, Rl);
    /* prepare table index */
    Index = as_uint(DblRcp);
    /* table lookup */
    Index = ((unsigned int)(Index) >> (23 - 7 - 3));

    THL[0] =
        as_float(((unsigned int *)((char *)(&__ocl_svml_internal_satanh_ha_data
                                                 .Log_HA_table[0]) -
                                   0x21800))[Index >> 2]);
    THL[1] =
        as_float(((unsigned int *)((char *)(&__ocl_svml_internal_satanh_ha_data
                                                 .Log_HA_table[0]) -
                                   0x21800))[(Index >> 2) + 1]);

    /* exponent*log(2.0) */
    L2H = as_float(__ocl_svml_internal_satanh_ha_data.L2H);
    L2L = as_float(__ocl_svml_internal_satanh_ha_data.L2L);
    Kh = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(FpExpon, L2H, THL[0]);
    Kl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(FpExpon, L2L, THL[1]);
    /* polynomial */
    // VLOAD_CONST( S, poly_coeff[2], TAB.ha_poly_coeff[0] );
    poly_coeff[1] =
        as_float(__ocl_svml_internal_satanh_ha_data.ha_poly_coeff[0]);
    poly_coeff[0] =
        as_float(__ocl_svml_internal_satanh_ha_data.ha_poly_coeff[1]);
    // VQFMA( S, P12, poly_coeff[2], dR, poly_coeff[1] );
    dP =
        SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly_coeff[1], R, poly_coeff[0]);
    dR2 = (R * R);
    dP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(dP, dR2, Rl);
    /* reconstruction */
    THL[0] = (Kh + R);
    Rh = (THL[0] - Kh);
    Rl = (R - Rh);
    Kl = (Kl + Rl);
    Kl = (Kl + dP);
    sResult = (Kl + THL[0]);
    // Finally, halve the result and reincorporate the sign:
    sHalf = as_float(__ocl_svml_internal_satanh_ha_data.sHalf);
    // Half = Half^Sign
    sHalf = as_float((as_uint(sHalf) ^ as_uint(sSign)));
    // Result = Half*Result
    vr1 = (sHalf * sResult);
    // Blend main path result and tiny arguments path result
    vr1 = as_float((((~as_uint(sTinyMask)) & as_uint(vr1)) |
                    (as_uint(sTinyMask) & as_uint(sTinyRes))));
  }
  if (__builtin_expect((vm) != 0, 0)) {
    float __cout_a1;
    float __cout_r1;
    ((float *)&__cout_a1)[0] = va1;
    ((float *)&__cout_r1)[0] = vr1;
    __ocl_svml_internal_satanh_ha(&__cout_a1, &__cout_r1);
    vr1 = ((float *)&__cout_r1)[0];
  }
  r = vr1;
  return r;
}