File: pow_s_ha.cl

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (957 lines) | stat: -rw-r--r-- 37,813 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/
/*
// ALGORITHM DESCRIPTION:
//
//   CONVENTIONS
//   A = B  denotes that A is equal to B.
//   A := B denotes assignment of a value of the expression B to
//          the variable A. All operations and roundings in B are considered
//          to be in the target precision.
//   <A>    denotes the rounding the IEEE-754 floating-point value A to the
//          target precision.
//   {A}    denotes the rounding the IEEE-754 floating-point value A to the
//          nearest integer.
//   ex(A)  denotes unbiased binary exponent of a number A so that
//          A = significand(A) * 2^ex(A).
//
//   HIGH LEVEL OVERVIEW
//
//   Denote x = a[i], y = b[i].
//
//   "Main" path.
//       When input arguments x, y are nonzero finite numbers, |x|<>1, and
//       x>0 or x<0 and y is integer, then we use the formula:
//
//           |x^y| = 2^( y * log2|x| ), where
//
//       x^y>0 if x>0 or x<0 and y is an even integer,
//       x^y<0 if x<0 and y is an odd integer.
//
//   Other paths.
//       Cases for other combinations of input arguments are
//       described in IEEE SPECIAL CONDITIONS table below.
//
//   IEEE SPECIAL CONDITIONS:
//   The following table describes the results for pow(x,y) expected by C99
//   standard. In case of a cell is empty, the result must be computed using
//   mathematical formula and rounded to target precision: pow(x,y) = <x^y>.
//      \   x ||     |      |    |      |    |    |      |    |      |     |
//        \   ||-Inf |finite| -1 |-1<x<0| -0 | +0 |0<x<1 |  1 |finite|+Inf | NaN
//    y     \ ||     | x<-1 |    |      |    |    |      |    |  x>1 |     |
// =========++=====+======+====+======+====+====+======+====+======+=====+=====
//     +Inf   ||+Inf | +Inf |  1 |  +0  | +0 | +0 |  +0  |  1 | +Inf |+Inf | NaN
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//      odd   ||     |      |    |      |    |    |      |    |      |     |
//    integer ||-Inf |      | -1 |      | -0 | +0 |      |  1 |      |+Inf | NaN
//      y>0   ||     |      |    |      |    |    |      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//     even   ||     |      |    |      |    |    |      |    |      |     |
//    integer ||+Inf |      |  1 |      | +0 | +0 |      |  1 |      |+Inf | NaN
//      y>0   ||     |      |    |      |    |    |      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//    finite  ||     | EDOM |EDOM| EDOM |    |    |      |    |      |     |
//    y>0 not ||+Inf |  NaN | NaN|  NaN | +0 | +0 |      |  1 |      |+Inf | NaN
//    integer ||     |  INV | INV|  INV |    |    |      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//      +0    ||  1  |   1  |  1 |   1  |  1 |  1 |   1  |  1 |   1  |  1  |  1
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//      -0    ||  1  |   1  |  1 |   1  |  1 |  1 |   1  |  1 |   1  |  1  |  1
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//    finite  ||     | EDOM |EDOM| EDOM |EDOM|EDOM|      |    |      |     |
//    y<0 not || +0  |  NaN | NaN|  NaN |+Inf|+Inf|      |  1 |      | +0  | NaN
//    integer ||     |  INV | INV|  INV |DIVZ|DIVZ|      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//     even   ||     |      |    |      |EDOM|EDOM|      |    |      |     |
//    integer || +0  |      |  1 |      |+Inf|+Inf|      |  1 |      | +0  | NaN
//      y<0   ||     |      |    |      |DIVZ|DIVZ|      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//      odd   ||     |      |    |      |EDOM|EDOM|      |    |      |     |
//    integer || -0  |      | -1 |      |-Inf|+Inf|      |  1 |      | +0  | NaN
//      y<0   ||     |      |    |      |DIVZ|DIVZ|      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//            ||     |      |    |      |EDOM|EDOM|      |    |      |     |
//     -Inf   || +0  |  +0  |  1 | +Inf |+Inf|+Inf| +Inf |  1 |  +0  | +0  | NaN
//            ||     |      |    |      |DIVZ|DIVZ|      |    |      |     |
// ---------++-----+------+----+------+----+----+------+----+------+-----+-----
//      NaN   || NaN |  NaN | NaN|  NaN | NaN| NaN|  NaN |  1 |  NaN | NaN | NaN
//
//   Here:
//       EDOM means Domain error,
//       INV  means Invalid floating point exception,
//       DIVZ means Divide-by-zero floating point exception.
//
//   Invalid floating point exception is raised when one of arguments is SNaN.
//
//   Possible deviations of the algorithm from C99 standard:
//       Inexact flag can be raised even in some cases when x^y is exact finite
//       normalized number. Inexact and Underflow flags are raised in all cases
//       when x^y is exact denormalized.
//
//
//   ALGORITHM DETAILS
//   A careful algorithm must be used to realize mathematical ideas accurately.
//   In addition a number of execution paths required to handle special and
//   subtle cases.
//
//   At first, we check whether y is integer and save the result of this check
//   into iYIsInt variable.
//       The result is NOTINT when y is not an integer (here NOTINT=0).
//       The result is ODD    when y is an odd  integer (here ODD=1).
//       The result is EVEN   when y is an even integer (here EVEN=2).
//
//       The idea of the algorithm for this check is as follows:
//
//       If y is Inf or NaN then iYIsInt:=NOTINT,
//       else if |y| >= 2^53 then iYIsInt:=EVEN,
//       else if y=0 then iYIsInt:=EVEN,
//       else if |y|<1 then iYIsInt:=NOTINT,
//       else if fractional part of y is not zero then iYIsInt:=NOTINT,
//       else if the lowest bit in integer part of y is zero then iYIsInt:=EVEN,
//       else iYIsInt:=ODD.
//
//   After that pow algorithm follows.
//
//   1)  x=1 or y=0
//       r[i] := 1
//
//   2)  One of arguments is NaN, but x<>1, y<>0
//       r[i] := x + y
//
//   3)  x=0, y<>NaN, y<>0
//
//       3.1) y<0, x=0, y<>NaN
//           If x=-0, y is negative odd integer
//           then r[i] := -Inf
//           else r[i] := +Inf
//           Raise DIVZ
//
//           Error handling routine is called with IML_STATUS_ERRDOM.
//
//       3.2) y>0, x=0, y<>NaN
//           If x=-0, y is positive odd integer
//           then r[i] := -0
//           else r[i] := +0
//
//   4)  x=-1, y is non-zero integer or Inf
//       If y is odd integer
//       then r[i] := -1
//       else r[i] := +1
//
//   5)  one of arguments is Inf, but none of them is zero or NaN, and |x|<>1
//
//       5.1) |x|<1, y=-Inf
//           r[i] := +Inf
//
//       5.2) |x|<1, y=+Inf
//           r[i] := +0
//
//       5.3) |x|>1, y<0
//           If x<0, y is negative odd integer
//           then r[i] := -0
//           else r[i] := +0
//
//       5.4) |x|>1, y>0
//           If x<0, y is positive odd integer
//           then r[i] := -Inf
//           else r[i] := +Inf
//           (Here we use equality x*x*y=+Inf.)
//
//   6)  -Inf<x<0, y is finite non-integer
//       r[i] := 0/0 (resulting with NaN, and raising INV)
//
//       Error handling routine is called with IML_STATUS_ERRDOM.
//
//   7)  "Main" path: x,y are finite nonzero numbers, |x|<>1,
//       and if x<0 then y is integer
//
//       7.a) Get sign of the result into SignRes
//           Sign of result here is negative only if x<0 and y is odd.
//
//       7.b) Start calculating log2|x|
//
//           Here we use the following formula.
//           Let |x|=2^k1*X1, where k1 is integer, 1<=X1<2.
//           Let C ~= 1/ln(2),
//           Rcp1 ~= 1/X1,   X2=Rcp1*X1,
//           Rcp2 ~= 1/X2,   X3=Rcp2*X2,
//           Rcp3 ~= 1/X3,   Rcp3C ~= C/X3.
//           Then
//
//               log2|x| = k1 + log2(1/Rcp1) + log2(1/Rcp2) + log2(C/Rcp3C) +
//                       + log2(X1*Rcp1*Rcp2*Rcp3C/C),
//
//           where X1*Rcp1*Rcp2*Rcp3C = C*(1+q), q is very small.
//
//           The values of Rcp1, log2(1/Rcp1), Rcp2, log2(1/Rcp2),
//           Rcp3C, log2(C/Rcp3C) are taken from tables.
//           Values of Rcp1, Rcp2, Rcp3C are such that RcpC=Rcp1*Rcp2*Rcp3C
//           is exactly represented in target precision.
//
//           log2(X1*Rcp1*Rcp2*Rcp3C/C) = log2(1+q) = ln(1+q)/ln2 =
//               = 1/(ln2)*q - 1/(2ln2)*q^2 + 1/(3ln2)*q^3 - ... =
//               = 1/(C*ln2)*cq - 1/(2*C^2*ln2)*cq^2 + 1/(3*C^3*ln2)*cq^3 - ...
=
//               = (1 + a1)*cq + a2*cq^2 + a3*cq^3 + ...,
//           where
//               cq=X1*Rcp1*Rcp2*Rcp3C-C,
//               a1=1/(C*ln(2))-1 is small,
//               a2=1/(2*C^2*ln2),
//               a3=1/(3*C^3*ln2),
//               ...
//
//           Calculation of log2|x| is performed as follows.
//
//           7.b.1) Getting X1
//               At first, represent |x| in the form |x| = 2^iDenoExpAdd * AX,
//               where AX is normalized.
//
//               Then get X1 by copying
//
//                   X1 := AX
//
//               and setting exponent field of X1 to biased 0.
//
//           7.b.2) Getting k
//               Get high 32 bits of AX into XHi.
//
//               Get k using XHi:
//
//                   k := XHi - K_SUB
//                   k := k >> IML_DP_NUM_HI_SIG_BITS
//                   k := k + DenoExpAdd
//
//               where K_SUB is high 32 bits of (1.5-2^(-rcpK1-1))/2,
//               rcpK1=5 in this implementation.
//
//               So we have:
//
//                   k=k1   if X1< 1.5-2^(-rcpK1-1),
//                   k=k1+1 if X1>=1.5-2^(-rcpK1-1).
//
//               Instead of k1, we will use k.
//
//           7.b.3) Get Rcp1, log2(1/Rcp1) from tables
//               Get index i1 from rcpK1 most significand bits of X1.
//               Get Rcp1.
//               Get log2(1/Rcp1) from a table as sum of two values L1Hi+L1Lo:
//                   L1Hi+L1Lo~=log2(1/Rcp1)   if X1< 1.5-2^(-rcpK1-1),
//                   L1Hi+L1Lo~=log2(1/Rcp1)-1 if X1>=1.5-2^(-rcpK1-1).
//
//           7.b.4) Get Rcp2, log2(1/Rcp2) from tables
//               Get X2.
//               Get index i2 from rcpK2 bits of significand of X2.
//               rcpK2=5 in this implementation.
//               Get Rcp2.
//               Get log2(1/Rcp2) from a table as sum of two values
//               L2Hi+L2Lo ~= log2(1/Rcp2).
//
//           7.b.5) Get Rcp3C, log2(C/Rcp3C) from tables
//               Get X3.
//               Get index i3 from rcpK3 bits of significand of X3.
//               rcpK3=7 in this implementation.
//               Get Rcp3C.
//               Get log2(C/Rcp3C) from a table as sum of two values
//               L3Hi+L3Lo ~= log2(C/Rcp3C).
//
//           7.b.6) Recombine k+log2(1/Rcp1)+log2(1/Rcp2)+log2(C/Rcp3C)
//               T := k + L1Hi + L2Hi + L3Hi
//               D :=     L1Lo + L2Lo + L3Lo
//
//               Now we have
//
//                   log2|x| ~= T + D + log2(Rcp1*Rcp2*Rcp3C*X1/C).
//
//           7.b.7) Get approximation CQ to cq
//               R1 := <<<X1*Rcp1>*Rcp2>*Rcp3C>
//               CQ := R1 - C  (the subrtaction is computed exactly)
//
//           7.b.8) Get the correction term E for CQ
//               We have cq=X1*RcpC-C, CQ=R1-C, cq=CQ+e.
//               So the exact correction term e=X1*RcpC-R1.
//               Approximation E to e is computed in multiprecision:
//
//               RcpC := Rcp1 * Rcp2 * Rcp3C
//
//               Split X1 into sum X1Hi+X1Lo so that X1Hi^2 is exactly
//               representable in target precision.
//
//               Split RcpC into sum RcpCHi+RcpCLo so that RcpCHi^2 is exactly
//               representable in target precision.
//
//               Computing E:
//               E := X1Hi*RcpCHi-R1
//               E := E + X1Lo*RcpCHi
//               E := E + X1Hi*RcpCLo
//               E := E + X1Lo*RcpCLo
//
//               Now we have CQ+E that represent cq more exactly than CQ.
//
//       Now we have
//
//           log2|x| ~= T + D + CQ + E + a1*CQ + a2*CQ^2 + a3*CQ^3 + ...
//
//       7.c) Get high part and exponent of log2|x|
//           Rebreak T + CQ into sum of high and low parts T_CQHi + CQLo.
//           Get exponent of T_CQHi into ELogAX variable.
//
//       7.d) Estimate |y*log2|x||
//           Using EYB=ex(y) and ELogAX, we estimate whether |y*log2|x||
//           is such that 2^(y*log2|x|) rounds to Inf, or 1, or 0 in target
//           precision, or it should be computed more accurately.
//
//       7.1) Here if ex(y) + ex(log2|x|) >= 11.
//           Here we have 2^11 <= |y*log2|x|| < Inf.
//
//           Get sign of y*log|x|.
//
//           If y*log|x|>0 then Tmp1=BIG_VALUE else Tmp1=SMALL_VALUE, where
//           BIG_VALUE=2^1023, SMALL_VALUE=2^(-1022) in this implementation.
//
//           Tmp1 := Tmp1 * Tmp1
//
//           r[i] := Tmp1 * SignRes
//
//       7.2) Here if ex(y) + ex(log2|x|) <= -62.
//           Here we have 0 < |y*log2|x|| <= 4*2^(-62).
//
//           Tmp1 := ONE
//           Tmp1 := Tmp1 + SMALL_VALUE
//           r[i] := Tmp1 * SignRes
//
//
//       7.3) Here if -62 < ex(y) + ex(log2|x|) < 11.
//           Here we have 2^(-61) <= |y*log2|x|| < 4*2^10.
//
//           7.3.a) R := CQ + E.
//               R represents cq more exactly than CQ.
//
//           7.3.b) Polynomial.
//               Log2Poly := A1*R + A2*R^2 + A3*R^3 + A4*R^4,
//
//               where A1=<a1>, ..., A4=<a4>.
//
//           7.3.c) Get 3 parts of log2|x|.
//               We have log2|x| ~= T_CQHi + Log2Poly + D + CQLo + E.
//               Represent log2|x| in the form of sum HH+HL+HLL.
//
//               LogPart3 := CQLo + E + D
//               Rebreak T_CQHi + Log2Poly into HH + HL
//               Now we have HH + HL + LogPart3 ~= log2|x|.
//
//               Rebreak HH + LogPart3 into HH + HLL.
//               HLL := HLL + HL
//
//               Split HH into HH + HL so that HH^2 is exactly representable
//               in target precision.
//
//               Now we have HH+HL+HLL ~= log2|x|.
//
//           7.3.d) Calculation of y*(HH+HL+HLL).
//               Split y into YHi+YLo.
//               Get high PH and medium PL parts of y*log2|x|.
//               Get low PLL part of y*log2|x|.
//               Now we have PH+PL+PLL ~= y*log2|x|.
//
//           7.3.e) Calculation of 2^(PH+PL+PLL).
//
//               Mathematical idea of computing 2^(PH+PL+PLL) is the following.
//               Let's represent PH+PL+PLL in the form N + j/2^expK + Z,
//               where expK=7 in this implementation, N and j are integers,
//               0<=j<=2^expK-1, |Z|<2^(-expK-1). Hence
//
//                   2^(PH+PL+PLL) ~= 2^N * 2^(j/2^expK) * 2^Z,
//
//               where 2^(j/2^expK) is stored in a table, and
//
//                   2^Z ~= 1 + B1*Z + B2*Z^2 ... + B5*Z^5.
//
//               We compute 2^(PH+PL+PLL) as follows.
//
//               Break PH into PHH + PHL, where PHH = N + j/2^expK.
//               Z = PHL + PL + PLL
//               Exp2Poly = B1*Z + B2*Z^2 ... + B5*Z^5
//               Get 2^(j/2^expK) from table in the form THI+TLO.
//               Now we have 2^(PH+PL+PLL) ~= 2^N * (THI + TLO) * (1 +
Exp2Poly).
//
//               Get significand of 2^(PH+PL+PLL) in the form ResHi+ResLo:
//               ResHi := THI
//               ResLo := THI * Exp2Poly + TLO
//
//               Get exponent ERes of the result:
//               Res := ResHi + ResLo:
//               ERes := ex(Res) + N
//
//               Now we can check whether result is normalized, denormalized,
//               overflowed or underflowed.
//
//               7.3.e.1) Here if ERes >= 1024.
//                   The result is overflowed.
//
//                   Tmp1 := BIG_VALUE * BIG_VALUE
//                   r[i] := Tmp1 * SignRes
//
//               7.3.e.2) Here if ERes < -1074-10.
//                   The result is underflowed.
//
//                   Tmp1 := SMALL_VALUE * SMALL_VALUE
//                   r[i] := Tmp1 * SignRes
//
//               7.3.e.3) Here if -1074-10 <= ERes < -1022-10.
//                   The result is a small denormalized number.
//
//                   SignRes := SignRes * DENO_UNSCALE
//                   N       := N + DENO_SCALE_EXP
//
//                   where DENO_UNSCALE=2^(-200),
//                   DENO_SCALE_EXP=200 in this implementation.
//
//                   TwoPowN := 2^N
//                   r[i] := Res * TwoPowN * SignRes
//
//               7.3.e.4) Here if -1022-10 <= ERes < -1022.
//                   The result is a big denormalized number.
//
//                   Rebreak ResHi+ResLo
//
//                   SignRes := SignRes * DENO_UNSCALE
//                   N       := N + DENO_SCALE_EXP
//
//                   TwoPowN := 2^N
//
//                   ResHi := ResHi * TwoPowN * SignRes
//                   ResLo := ResLo * TwoPowN * SignRes
//
//                   Res  := ResHi + ResLo
//                   r[i] := Res + SMALL_VALUE * SMALL_VALUE
//
//               7.3.e.5) Here if -1022 <= ERes <= 1023.
//                   The result is normalized.
//
//                   Res  := 2^N * Res
//                   r[i] := Res * SignRes
//
//
*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
static __constant unsigned char __spow_ha___rcp_tbl[] = {
    0xff, 0xf0, 0xe3, 0xd7, 0xcc, 0xc2, 0xb9, 0xb1, 0xaa,
    0xa3, 0x9d, 0x97, 0x91, 0x8c, 0x88, 0x83, 0x7f,
};
// -log2(_VSTATIC(__rcp_tbl)[i]/2^8))*2^(23+32)
static __constant unsigned long __spow_ha___log2_tbl[] = {
    0x0000000000000000uL, 0x000b2671360338acuL, 0x001563dc29ffacb2uL,
    0x001f5fd8a9063e36uL, 0x002906cbcd2baf2euL, 0x003243001249ba76uL,
    0x003afcd815786af2uL, 0x00431b2abc31565cuL, 0x004a83cf0d01c170uL,
    0x00523bbc64c5e644uL, 0x00591db662b66428uL, 0x006043e946fd97f4uL,
    0x0067b3d42fd0fc50uL, 0x006e232e68aad484uL, 0x007373af48dce654uL,
    0x007a514b229c40a0uL, 0x0080000000000000uL,
};
// polynomial coefficients
// c6*2^31
static __constant int __spow_ha___lc6 = 0xE158260E;
// c5*2^31
static __constant int __spow_ha___lc5 = 0x24F7FD36;
// c4*2^31
static __constant int __spow_ha___lc4 = 0xD1D568F0;
// c3*2^31
static __constant int __spow_ha___lc3 = 0x3D8E12ED;
// c2*2^31
static __constant int __spow_ha___lc2 = 0xA3AAE26C;
// c1*2^(23+32)
static __constant unsigned long __spow_ha___lc1 = 0xB8AA3B295EBB00uL;
// exp2 coefficients
// c7*2^32
static __constant int __spow_ha___sc7 = 0x00016B68;
// c6*2^32
static __constant int __spow_ha___sc6 = 0x00095E83;
// c5*2^32
static __constant int __spow_ha___sc5 = 0x00580436;
// c4*2^32
static __constant int __spow_ha___sc4 = 0x027607DE;
// c3*2^32
static __constant int __spow_ha___sc3 = 0x0E359872;
// c2*2^32
static __constant int __spow_ha___sc2 = 0x3D7F7977;
// c1*2^32
static __constant int __spow_ha___sc1 = 0xB1721817;
static unsigned int __spow_ha_powf_cout(unsigned int xin, unsigned int yin,
                                        int *errcode) {
  int mant, expon, index, sgn_y, R, poly, N;
  int expon_y, is_int, mant_y, mi_y;
  unsigned int rcp, res, shift, abs_y, poly_low, poly_h, sgn_x = 0, p_inf;
  unsigned long poly64, exp64, poly_s1;
  // unpack mantissa, unbiased exponent
  mant = ((xin)&0x7fffff);
  expon = ((xin) >> 23) - 0x7f;
  abs_y = yin & 0x7fffffff;
  sgn_y = (((int)(yin)) >> (31));
  if ((((unsigned int)(abs_y - 1)) >= (0x7F800000 - 1)))
    goto SPECIAL_Y;
  // filter out special and negative cases, as well as denormals
  if ((((unsigned int)(xin - 0x00800000)) >= (0x7F800000 - 0x00800000)))
    goto SPECIAL_X;
LOGF_MAIN:
  // add leading mantissa bit
  mant |= 0x00800000;
  // table index
  index = ((mant + 0x00040000) >> (23 - 4)) - 0x10;
  // rcp ~ 2^8/mant
  rcp = 1 + __spow_ha___rcp_tbl[index];
  // reduced argument R = mant*rcp - 1, scale 2^32
  R = (((unsigned int)mant) * ((unsigned int)rcp)); // scale 2^31
  R = R + R;
  // (c6*R+c5)*2^31
  poly = ((((long)((int)(__spow_ha___lc6))) * ((int)(R))) >> 32);
  poly = poly + __spow_ha___lc5;
  // poly*R+c4, scale 2^31
  poly = ((((long)((int)(poly))) * ((int)(R))) >> 32);
  poly = poly + __spow_ha___lc4;
  // poly*R+c3, scale 2^31
  poly = ((((long)((int)(poly))) * ((int)(R))) >> 32);
  poly = poly + __spow_ha___lc3;
  // poly*R+c2, scale 2^31
  poly = ((((long)((int)(poly))) * ((int)(R))) >> 32);
  poly = poly + __spow_ha___lc2;
  // poly*2^(23+32)
  poly_low = poly << (32 - 8);
  poly_h = (((int)(poly)) >> (8));
  // c1+R*poly, scale 2^(23+32)
  poly64 = (((long)((int)(poly_h))) * ((int)(R))) + __spow_ha___lc1;
  // poly_low to be treated as positive value
  poly_low = (((unsigned int)(poly_low)) >> (1));
  poly_low = ((((long)((int)(poly_low))) * ((int)(R))) >> 32);
  poly_low += poly_low;
  poly64 += (long)((int)poly_low);
  // adjustment for x near 1.0
  shift = 0x7f + 21;
  if (!((expon << 4) + index)) {
    poly64 <<= 7;
    shift = 7 + 0x7f + 21;
    // is x exactly 1.0?
    if (!R)
      return sgn_x | 0x3f800000;
  }
  // T+R*poly, scale 2^(2+32+(shift-bias))
  poly_low = (unsigned int)poly64;
  poly_h = (unsigned int)(poly64 >> 32);
  poly64 = (((long)((int)(poly_h))) * ((int)(R))) + __spow_ha___log2_tbl[index];
  // adjust for sign of poly_low
  poly_low = (((unsigned int)(poly_low)) >> (1));
  poly_low = ((((long)((int)(poly_low))) * ((int)(R))) >> 32);
  poly_low += poly_low;
  poly64 += (long)((int)poly_low);
  // log2(x) ~ expon+T+R*poly, sc 2^(2+32+(shift-bias))
  expon <<= 23;
  exp64 = (unsigned long)expon;
  poly64 += (exp64 << 32);
  poly_s1 = poly64 << 1;
  while (poly_s1 && (((long)(poly_s1 ^ poly64)) >= 0)) {
    poly64 = poly_s1;
    poly_s1 <<= 1;
    shift++;
  }
  // y, sc 2^(30-expon_y)
  // unpack mantissa, biased exponent
  expon_y = shift - ((abs_y) >> 23);
  mant = ((abs_y)&0x7fffff);
  // denormal y?
  if (abs_y < 0x00800000)
    expon_y = shift - 1;
  else
    mant |= 0x00800000;
  // apply sign to mantissa bits
  mant = (mant ^ sgn_y) - sgn_y;
  // mant, scale 2^30
  mant <<= 7;
  // y*log2(x), sc 2^(2+30 + expon_y)
  poly_low = (unsigned int)poly64;
  poly_h = (unsigned int)(poly64 >> 32);
  poly64 = (((long)((int)(poly_h))) * ((int)(mant)));
  // adjust for sign of poly_low
  poly_low = (((unsigned int)(poly_low)) >> (1));
  poly_low = ((((long)((int)(poly_low))) * ((int)(mant))) >> 32);
  poly_low += poly_low;
  poly64 += (long)((int)poly_low);
  if (expon_y < 0) // overflow/underflow
  {
    poly_h = (unsigned int)(poly64 >> 32);
    if (((int)poly_h) < 0)
      goto POWF_UF;
    goto POWF_OF;
  }
  if (expon_y >= 32) {
    expon_y -= 32;
    poly64 = (((long)(poly64)) >> (32));
    if (expon_y >= 32)
      return sgn_x | 0x3f800000;
  }
  // integer part in high 32 bits, fractional bits in low part
  poly64 = (((long)(poly64)) >> (expon_y));
  N = (unsigned int)(poly64 >> 32);
  // reduced exp2 argument, sc 2^32
  R = (unsigned int)poly64;
  // (c7*R+c6)*2^32
  poly = ((((unsigned long)((unsigned int)(__spow_ha___sc7))) *
           ((unsigned int)(R))) >>
          32);
  poly = poly + __spow_ha___sc6;
  // poly*2^32
  poly =
      ((((unsigned long)((unsigned int)(poly))) * ((unsigned int)(R))) >> 32);
  poly = poly + __spow_ha___sc5;
  // poly*2^32
  poly =
      ((((unsigned long)((unsigned int)(poly))) * ((unsigned int)(R))) >> 32);
  poly = poly + __spow_ha___sc4;
  // poly*2^32
  poly =
      ((((unsigned long)((unsigned int)(poly))) * ((unsigned int)(R))) >> 32);
  poly = poly + __spow_ha___sc3;
  // poly*2^32
  poly =
      ((((unsigned long)((unsigned int)(poly))) * ((unsigned int)(R))) >> 32);
  poly = poly + __spow_ha___sc2;
  // poly*2^32
  poly =
      ((((unsigned long)((unsigned int)(poly))) * ((unsigned int)(R))) >> 32);
  poly = poly + __spow_ha___sc1;
  // poly*2^32
  poly =
      ((((unsigned long)((unsigned int)(poly))) * ((unsigned int)(R))) >> 32);
  // rounding and overflow/underflow checking
  // poly*2^31
  poly = (((unsigned int)(poly)) >> (1)) + 128;
  expon = N + 0x7f;
  N = expon + (((unsigned int)(poly)) >> (31));
  // overflow?
  if (N >= 0xff)
    goto POWF_OF;
  // underflow, possibly gradual?
  if (N <= 0)
    goto POWF_GRAD_UF;
  res = sgn_x | ((expon << 23) + (((unsigned int)(poly)) >> (8)));
  return res;
POWF_OF:
  res = sgn_x | 0x7f800000;
  *errcode = 3;
  return res; // goto POWF_ERRCALL;
POWF_GRAD_UF:
  if (N < -24)
    goto POWF_UF;
  // poly*2^31, undo rounding to 24 bits
  poly = poly + 0x80000000 - 128;
  N = expon;
  while (N < 1) {
    poly = (((unsigned int)(poly)) >> (1));
    N++;
  }
  poly = (((unsigned int)(poly + 128)) >> (8));
  if (poly)
    return sgn_x | poly;
POWF_UF:
  res = sgn_x;
  *errcode = 4;
  return res; // goto POWF_ERRCALL;
SPECIAL_Y:
  // 0, Inf, NaN
  // 0?
  if (!abs_y)
    return 0x3f800000;
  // NaN?
  if (abs_y > 0x7f800000)
    return ((xin == 0x3f800000) ? xin : 0xffc00000);
  // +/-Inf
  // x is NaN?
  if (((unsigned int)(xin + xin)) > 0xff000000u)
    return 0xffc00000;
  // |x| == 1?
  R = (xin & 0x7fffffff) - 0x3f800000;
  if (R == 0)
    return 0x3f800000;
  R ^= sgn_y;
  if (((int)R) < 0)
    return 0;
  res = 0x7f800000;
  if (!(xin + xin)) {
    *errcode = 1;
  }
  return res;
SPECIAL_X:
  p_inf = 0x7f800000;
  // +Inf?
  if (xin == p_inf)
    return (sgn_y ? 0 : xin);
  // NaN
  if (((unsigned int)(xin + xin)) > 0xff000000u)
    return 0xffc00000;
  if (((int)xin) > 0) {
  DENORM_X:
    // denormal input, normalize
    expon = 1 - 0x7f;
    while (mant < 0x00800000) {
      expon--;
      mant <<= 1;
    }
    // return to main computation
    goto LOGF_MAIN;
  }
  // is y an integer?
  is_int = 0;
  if (abs_y >= 0x3f800000) {
    if (abs_y >= 0x4b800000)
      is_int = 1; // and even integer (>=2^24)
    else {
      shift = 23 + 0x7f - (((unsigned int)(abs_y)) >> (23));
      mant_y = ((abs_y)&0x7fffff) | 0x00800000;
      mi_y = (((unsigned int)(mant_y)) >> (shift));
      if (mant_y == (mi_y << shift)) {
        is_int = 1;
        // set sign for odd integers
        sgn_x = mi_y << 31;
      }
    }
  }
  // +/-zero?
  if (!(xin + xin)) {
    if (!sgn_y)
      return 0;
    sgn_x &= xin;
    res = sgn_x | 0x7f800000;
    *errcode = 1;
    return res; // goto POWF_ERRCALL;
  }
  // negative?
  if (((int)xin) < 0) {
    if (xin == 0xff800000)
      return (sgn_y ? sgn_x : (sgn_x | 0x7f800000));
    if (!is_int) {
      *errcode = 1;
      res = 0xffc00000;
      return res; // goto POWF_ERRCALL;
    }
    expon -= 0x100;
    if (xin == 0xbf800000)
      return sgn_x | 0x3f800000;
    if (expon >= -126)
      goto LOGF_MAIN;
    goto DENORM_X;
  }
  return xin;
}
static __constant int_float __spow_ha_c4 = {0xbeb8aa69u};
static __constant int_float __spow_ha_c3 = {0x3ef63874u};
static __constant int_float __spow_ha_c2 = {0xbf38aa3bu};
static __constant int_float __spow_ha_c1 = {0x32a56f38u};
static __constant int_float __spow_ha_c1h = {0x3fb8aa3bu};
// Th, Tl
static __constant int_float __spow_ha_log_tbl[] = {
    0xc2fc0000u, 0x00000000u, 0xc2fc02e2u, 0x36c77251u, 0xc2fc05c0u,
    0x3657a488u, 0xc2fc089cu, 0x36e7742bu, 0xc2fc0b74u, 0x35d2f47au,
    0xc2fc0e4au, 0x361c457bu, 0xc2fc111cu, 0xb6d1d513u, 0xc2fc13eeu,
    0x36cf6b98u, 0xc2fc16bau, 0xb6d3758fu, 0xc2fc1986u, 0x3600796du,
    0xc2fc1c4eu, 0x3428deabu, 0xc2fc1f14u, 0x366cf99bu, 0xc2fc21d6u,
    0xb6627e8au, 0xc2fc2496u, 0xb6b6fc27u, 0xc2fc2754u, 0xb63f74a0u,
    0xc2fc2a10u, 0x368f93fau, 0xc2fc2cc8u, 0x3510536fu, 0xc2fc2f7eu,
    0x358b4a3bu, 0xc2fc3232u, 0x36bd2374u, 0xc2fc34e2u, 0xb58ef9a4u,
    0xc2fc3790u, 0xb684815bu, 0xc2fc3a3cu, 0xb6538d6eu, 0xc2fc3ce6u,
    0x359f7403u, 0xc2fc3f8cu, 0xb6d41e16u, 0xc2fc4232u, 0x369dcc96u,
    0xc2fc44d4u, 0x36725bb8u, 0xc2fc4774u, 0x36b9a2abu, 0xc2fc4a10u,
    0xb6a52c1fu, 0xc2fc4cacu, 0x3630ec3bu, 0xc2fc4f44u, 0xb6236cd4u,
    0xc2fc51dau, 0xb6a7e610u, 0xc2fc546eu, 0xb6ae41e9u, 0xc2fc5700u,
    0xb651cfdfu, 0xc2fc5990u, 0x3590536fu, 0xc2fc5c1eu, 0x36f4ac44u,
    0xc2fc5ea8u, 0x341c17d1u, 0xc2fc6130u, 0xb6af40bcu, 0xc2fc63b8u,
    0x36d45f2bu, 0xc2fc663cu, 0x368be206u, 0xc2fc68beu, 0x3666e6fau,
    0xc2fc6b3eu, 0x3687492cu, 0xc2fc6dbcu, 0x36c3a282u, 0xc2fc7036u,
    0xb6db3765u, 0xc2fc72b0u, 0xb631e3b8u, 0xc2fc7528u, 0x360d9e6du,
    0xc2fc779cu, 0xb6ff8ec5u, 0xc2fc7a10u, 0xb5be74e7u, 0xc2fc7c82u,
    0x36b31b7eu, 0xc2fc7ef0u, 0xb635c813u, 0xc2fc815eu, 0x36a2ed98u,
    0xc2fc83c8u, 0xb62dbb03u, 0xc2fc8632u, 0x36b4555fu, 0xc2fc8898u,
    0xb5fb5a61u, 0xc2fc8afeu, 0x36cc4a28u, 0xc2fc8d60u, 0xb5b6523eu,
    0xc2fc8fc2u, 0x36d0493cu, 0xc2fc9220u, 0xb5f561c1u, 0xc2fc947eu,
    0x36a65267u, 0xc2fc96d8u, 0xb687e26du, 0xc2fc9932u, 0x35d3929bu,
    0xc2fc9b8au, 0x36d98adau, 0xc2fc9ddeu, 0xb69d050fu, 0xc2fca032u,
    0xb5c76361u, 0xc2fca284u, 0x354048acu, 0xc2fca4d4u, 0x35f6865du,
    0xc2fca722u, 0x35efe2e1u, 0xc2fca96eu, 0x3500ecdau, 0xc2fcabb8u,
    0xb611b338u, 0xc2fcae00u, 0xb6d1cfdfu, 0xc2fcb048u, 0x3664bd6bu,
    0xc2fcb28cu, 0xb67e4678u, 0xc2fcb4d0u, 0x362db733u, 0xc2fcb712u,
    0x36f19318u, 0xc2fcb950u, 0xb6b1be5eu, 0xc2fcbb8eu, 0xb695d3f8u,
    0xc2fcbdcau, 0xb6bd628du, 0xc2fcc006u, 0x36d4e74fu, 0xc2fcc23eu,
    0x357309e8u, 0xc2fcc474u, 0xb6e39706u, 0xc2fcc6aau, 0xb5ce76b8u,
    0xc2fcc8deu, 0x35aedc1du, 0xc2fccb10u, 0x35df5b18u, 0xc2fccd40u,
    0xb50e4789u, 0xc2fccf6eu, 0xb6b3acd9u, 0xc2fcd19cu, 0x361f580au,
    0xc2fcd3c8u, 0x36f5c842u, 0xc2fcd5f0u, 0xb6c3cbf9u, 0xc2fcd818u,
    0xb6df7f03u, 0xc2fcda40u, 0x36a0463cu, 0xc2fcdc64u, 0xb60dbf88u,
    0xc2fcde88u, 0x36516187u, 0xc2fce0aau, 0x36ac9edau, 0xc2fce2cau,
    0x368296b5u, 0xc2fce4e8u, 0xb53db292u, 0xc2fce706u, 0x36db6e2du,
    0xc2fce920u, 0xb6a64060u, 0xc2fceb3au, 0xb69f0197u, 0xc2fced54u,
    0x36eeefceu, 0xc2fcef6au, 0x332ef727u, 0xc2fcf180u, 0x369617b4u,
    0xc2fcf394u, 0x36aaf0c5u, 0xc2fcf5a6u, 0x35f705d5u, 0xc2fcf7b6u,
    0xb6b39947u, 0xc2fcf9c6u, 0xb5acf799u, 0xc2fcfbd4u, 0xb5ad1961u,
    0xc2fcfde0u, 0xb6b5c813u, 0xc2fcffecu, 0x35ccaf80u, 0xc2fd01f6u,
    0x368d88dau, 0xc2fd03feu, 0x362e8d0du, 0xc2fd0604u, 0xb6633e4au,
    0xc2fd080au, 0x35c36024u, 0xc2fd0a0eu, 0x35f2c1c8u, 0xc2fd0c10u,
    0xb6201ac7u, 0xc2fd0e12u, 0x3688ab28u, 0xc2fd1012u, 0x36c4eac3u,
    0xc2fd1210u, 0x36458c3du, 0xc2fd140cu, 0xb69faa1eu, 0xc2fd1608u,
    0xb60892bcu, 0xc2fd1802u, 0xb68cf729u, 0xc2fd19fcu, 0x368470ceu,
    0xc2fd1bf4u, 0x36ee16a3u, 0xc2fd1deau, 0x36ae2634u, 0xc2fd1fdeu,
    0xb5f4c3a0u, 0xc2fd21d2u, 0x35a9124bu, 0xc2fd23c4u, 0xb56a1394u,
    0xc2fd25b6u, 0x36ea748cu, 0xc2fd27a4u, 0xb6c0585du, 0xc2fd2994u,
    0x36e0986fu, 0xc2fd2b80u, 0xb5d1cfdfu, 0xc2fd2d6cu, 0xb31a809cu,
    0xc2fd2f56u, 0xb6875eb4u, 0xc2fd3140u, 0x35dd7932u, 0xc2fd3328u,
    0x35e552d9u, 0xc2fd350eu, 0xb6832570u, 0xc2fd36f4u, 0x32124dd4u,
    0xc2fd38d8u, 0xb5f80bd7u, 0xc2fd3abcu, 0x36c055feu, 0xc2fd3c9eu,
    0x36f9b6f5u, 0xc2fd3e7eu, 0x36590c12u, 0xc2fd405cu, 0xb6e8d38fu,
    0xc2fd423cu, 0x36f81679u, 0xc2fd4418u, 0x34db37dfu, 0xc2fd45f4u,
    0x362cebbfu, 0xc2fd47ceu, 0xb5bcb409u, 0xc2fd49a8u, 0x3676865du,
    0xc2fd4b80u, 0x3628836du, 0xc2fd4d56u, 0xb6a5b33du, 0xc2fd4f2cu,
    0xb668353eu, 0xc2fd5102u, 0x36e78f75u, 0xc2fd52d4u, 0xb6942e48u,
    0xc2fd54a6u, 0xb6e8ca54u, 0xc2fd5678u, 0xb53dc358u, 0xc2fd5848u,
    0xb589a627u, 0xc2fd5a18u, 0x36f5b407u, 0xc2fd5be4u, 0xb6d0cb51u,
    0xc2fd5db2u, 0x3688af7cu, 0xc2fd5f7cu, 0xb6ff41e1u, 0xc2fd6148u,
    0x3695fce5u, 0xc2fd6310u, 0xb6b8f553u, 0xc2fd64d8u, 0xb6ed771au,
    0xc2fd66a0u, 0xb48e4789u, 0xc2fd6866u, 0xb4c96f70u, 0xc2fd6a2au,
    0xb6f9e5a1u, 0xc2fd6beeu, 0xb6d2250du, 0xc2fd6db2u, 0x3652b13du,
    0xc2fd6f74u, 0x36b743a4u, 0xc2fd7134u, 0x3532754au, 0xc2fd72f4u,
    0x36852eb4u, 0xc2fd74b2u, 0x33a6c7e3u, 0xc2fd7670u, 0x368d4d9cu,
    0xc2fd782cu, 0x35900896u, 0xc2fd79e8u, 0x36c57700u, 0xc2fd7ba2u,
    0x3660d960u, 0xc2fd7d5au, 0xb6dc5a08u, 0xc2fd7f14u, 0x36dde7d3u,
    0xc2fd80cau, 0xb6440d2au, 0xc2fd8280u, 0xb69d5be7u, 0xc2fd8436u,
    0x35aacd72u, 0xc2fd85eau, 0xb4b0b27bu, 0xc2fd879eu, 0x36c0384cu,
    0xc2fd8950u, 0x368b4f91u, 0xc2fd8b00u, 0xb6aaf16du, 0xc2fd8cb0u,
    0xb6e3b4b4u, 0xc2fd8e60u, 0xb58088f6u, 0xc2fd900eu, 0xb642c000u,
    0xc2fd91bcu, 0x362edc1du, 0xc2fd9368u, 0x34925f55u, 0xc2fd9514u,
    0x36b2a7b2u, 0xc2fd96beu, 0x3625aa69u, 0xc2fd9868u, 0x36e8925cu,
    0xc2fd9a10u, 0x366589e4u, 0xc2fd9bb8u, 0x36f054a3u, 0xc2fd9d5eu,
    0x364055feu, 0xc2fd9f04u, 0x36c13371u, 0xc2fda0a8u, 0x3512d9f7u,
    0xc2fda24cu, 0x36252301u, 0xc2fda3eeu, 0xb67e71c3u, 0xc2fda590u,
    0xb6482263u, 0xc2fda732u, 0x36a2fd0eu, 0xc2fda8d2u, 0x3694e81eu,
    0xc2fdaa70u, 0xb68f5801u, 0xc2fdac0eu, 0xb6cac991u, 0xc2fdadacu,
    0xb57388e4u, 0xc2fdaf48u, 0xb68b5179u, 0xc2fdb0e4u, 0xb5135e64u,
    0xc2fdb27eu, 0xb6b4bf8fu, 0xc2fdb418u, 0xb6669520u, 0xc2fdb5b2u,
    0x36b0f707u, 0xc2fdb74au, 0x36b70aadu, 0xc2fdb8e0u, 0xb644110eu,
    0xc2fdba76u, 0xb69b39e5u, 0xc2fdbc0cu, 0x34a80dcau, 0xc2fdbda0u,
    0xb66398d0u, 0xc2fdbf34u, 0xb508a232u, 0xc2fdc0c6u, 0xb6d447c6u,
    0xc2fdc258u, 0xb6bc5665u, 0xc2fdc3eau, 0x35d74798u, 0xc2fdc57au,
    0x3322524du, 0xc2fdc70au, 0x36a516e2u, 0xc2fdc898u, 0x35817c93u,
    0xc2fdca26u, 0x36646adau, 0xc2fdcbb2u, 0xb64c99a0u, 0xc2fdcd3eu,
    0xb6541951u, 0xc2fdcecau, 0x364c2476u, 0xc2fdd054u, 0x3492d9f7u,
    0xc2fdd1deu, 0x367cc968u, 0xc2fdd366u, 0xb5ec9fccu, 0xc2fdd4eeu,
    0xb5915972u, 0xc2fdd676u, 0x36c1fcd1u, 0xc2fdd7fcu, 0x366dec9bu,
    0xc2fdd982u, 0x36f9bc2au, 0xc2fddb06u, 0x3612eba1u, 0xc2fddc8au,
    0x364a9801u, 0xc2fdde0cu, 0xb6b39734u, 0xc2fddf90u, 0x36fdf795u,
    0xc2fde110u, 0xb686daf7u, 0xc2fde292u, 0x36bd1f20u, 0xc2fde412u,
    0x36c9151bu, 0xc2fde590u, 0xb6479104u, 0xc2fde70eu, 0xb6ca47f0u,
    0xc2fde88cu, 0xb6566c4du, 0xc2fdea0au, 0x36b8a11cu, 0xc2fdeb86u,
    0x36a07357u, 0xc2fded00u, 0xb6b488bfu, 0xc2fdee7cu, 0x36b8e4c5u,
    0xc2fdeff6u, 0x36e7f503u, 0xc2fdf16eu, 0xb5a076deu, 0xc2fdf2e6u,
    0xb6702fd7u, 0xc2fdf45eu, 0xb48bcf06u, 0xc2fdf5d4u, 0xb6dacef3u,
    0xc2fdf74au, 0xb6ef0efbu, 0xc2fdf8c0u, 0xb60c79d2u, 0xc2fdfa34u,
    0xb6e1177cu, 0xc2fdfba8u, 0xb6c05c54u, 0xc2fdfd1cu, 0x3559c06bu,
    0xc2fdfe8eu, 0xb61e2b7au, 0xc2fe0000u, 0x80000000u,
};
static __constant int_float __spow_ha_ec6 = {0x39224c80u};
static __constant int_float __spow_ha_ec5 = {0x3aafa463u};
static __constant int_float __spow_ha_ec4 = {0x3c1d94cbu};
static __constant int_float __spow_ha_ec3 = {0x3d635766u};
static __constant int_float __spow_ha_ec2 = {0x3e75fdf1u};
static __constant int_float __spow_ha_ec1 = {0x3e45c862u};
__attribute__((always_inline)) inline int
__ocl_svml_internal_spow_ha(float *pxin, float *pyin, float *pres) {
  int nRet = 0;
  float xin = *pxin, yin = *pyin;
  int_float x, y, mant_x, rcp, iylx, Th, Tl;
  int index;
  float High, High2, ylx_h;
  float R, expon_x, poly, Low, c1hR_h, c1hR_l;
  float ylx_l, poly_h;
  float fN, Re, Rh, Rl;
  int sN;
  unsigned int N, iexpon_x, iexpon_ylx;
  int_float T, res;
  x.f = xin;
  y.f = yin;
  // 2^(-9)*mantissa
  mant_x.w = (x.w & 0x007fffffu) | 0x3b000000u;
  // extract exponent(x)
  iexpon_x = x.w >> 23;
  expon_x = (float)(iexpon_x);
  rcp.f = 1.0f / (mant_x.f);
  // round to rcp to 1+5 mantissa bits
  rcp.f = SPIRV_OCL_BUILTIN(rint, _f32, )(rcp.f);
  // table index
  index = ((rcp.w >> (23 - 8 - 1)) + 0x200) & 0x3fe;
  // reduced argument
  R = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(rcp.f, mant_x.f, (-1.0f));
  // expon_x + Th, exact
  Th.w = __spow_ha_log_tbl[index].w;
  Th.f += expon_x;
  // Tl
  Tl.w = __spow_ha_log_tbl[index + 1].w;
  // polynomial + Tl
  poly =
      SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__spow_ha_c4.f, R, __spow_ha_c3.f);
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, R, __spow_ha_c2.f);
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, R, __spow_ha_c1.f);
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, R, Tl.f);
  // (Th+expon) + (c1h*R)_high
  High = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__spow_ha_c1h.f, R, Th.f);
  // (c1h*R)_high
  c1hR_h = High - Th.f;
  // (c1h*R)_low
  c1hR_l =
      SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__spow_ha_c1h.f, R, (-c1hR_h));
  High2 = poly + High;
  poly_h = High2 - High;
  poly = poly - poly_h;
  Low = poly + c1hR_l;
  // y*log2(x)
  iylx.f = ylx_h = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(y.f, High2, 0.0f);
  ylx_l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(y.f, High2, (-ylx_h));
  ylx_l += SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(y.f, Low, 0.0f);
  // redirect special cases
  iexpon_x--;
  iylx.w &= 0x7fffffffu;
  if ((iexpon_x >= 0xfe) || (iylx.w >= 0x42FB8000))
    goto POWF_SPECIAL;
  // exp2 computation
  fN = SPIRV_OCL_BUILTIN(rint, _f32, )(ylx_h);
  Re = ylx_h - fN;
  Re = Re + ylx_l;
  sN = (int)fN;
  // exponent
  N = sN;
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__spow_ha_ec6.f, Re,
                                                __spow_ha_ec5.f);
  // 1+0.5*Re
  High = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Re, 0.5f, 1.0f);
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, Re, __spow_ha_ec4.f);
  // (0.5*R)_high
  Rh = High - 1.0f;
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, Re, __spow_ha_ec3.f);
  // (0.5*R)_low
  Rl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Re, 0.5f, (-Rh));
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, Re, __spow_ha_ec2.f);
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, Re, __spow_ha_ec1.f);
  poly = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(poly, Re, Rl);
  res.f = High + poly;
  res.w += (N << 23);
  *pres = res.f;
  return nRet;
POWF_SPECIAL:
  res.w = __spow_ha_powf_cout(x.w, y.w, &nRet);
  *pres = res.f;
  return nRet;
}
float __ocl_svml_powf_ha(float x, float y) {
  float r;
  __ocl_svml_internal_spow_ha(&x, &y, &r);
  return r;
}