1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
/*
// ALGORITHM DESCRIPTION:
//
// HIGH LEVEL OVERVIEW
// Here we use polynomial and reciprocal calculation for 32 subintervals
// at reduction interval.
//
// For large arguments ( |a[i]| >= LARGE_ARG_HIBITS,
// ( where LARGE_ARG_HIBITS = 16 high bits of 12800.0 value )
// the Payne/Hanek "pre-reduction" performed. Result of this routine
// becomes argument for regular reduction.
//
// The regular range reduction scheme is:
//
// a[i] = N * pi/2^R + z
// where R = 5 for this implementation - reduction value (2^R = 32),
// and |z| <= pi/(2*2^R)) - this is reduced argument.
//
// Also alternative reduction performed in parallel:
//
// a[i] = NN * pi/2 + zz,
// (NN = N mod 16)
//
// The reason is getting remainder modulo Pi/2. The value zz is used
// for reciprocal calculation.
//
// Futher tan calculation performed by this way:
//
// r[i] := TAU * 1/zz + C0 + C1*r + C1*c + C2*r^2 + ... + C15*r^15
//
// (TAU - multiplier for the reciprocal 1/zz,
// and always -1 or 0 depending on subinterval)
//
// For tiny arguments ( |a[i]| < 2^TINY_ARG_EXP )
// the simple separate branch used:
//
// r[i] = a[i]
//
// IEEE SPECIAL CONDITIONS:
// a[i] = +/-Inf, r[i] = QNaN
// a[i] = +/-0, r[i] = +/-0
// a[i] = QNaN, r[i] = QNaN
// a[i] = SNaN, r[i] = QNaN
//
//
// ALGORITHM DETAILS
// Executable parts:
//
// 1) a[i] = +/-Inf
// Return r[i] := a[i]*0.0
// and error handler called with IML_STATUS_ERRDOM error code
//
// 2) a[i] = NaN
// Return r[i] := a[i] * a[i]
//
// 3) Tiny arguments path
// |a[i]| < 2^TINY_ARG_EXP,
// where TINY_ARG_EXP = -252
//
// 3.1) a[i] = 0.0
// Return r[i] := a[i]
//
// 3.2) 0 < |a[i]| < 2^TINY_ARG_EXP
// Return r[i] := TWOp55 * ( TWOpM55*a[i] - a[i] ),
// where TWOp55 = 2^55, TWOpM55 = 2^-55
//
// Here is path where underflow or denormal exceptions can happen
// during intermediate computations.
// For correct work in all rounding modes we need to
// return a[i] - TWOpM55 * a[i]
// To avoid disappearing of second term we using scaling
// like this TWOp55 * ( TWOpM55*a[i] - a[i] )
//
//
// 4) Main path (the most frequently used and the most wide)
// 2^TINY_ARG_EXP <= |a[i]| < LARGE_ARG_HIBITS
//
// a) Pre-reduction.
//
// For large arguments |a[i]| >= LARGE_ARG_HIBITS
// special argument pre-range-reduction routine is called:
// NR := _vml_reduce_pio2d( a[i], rr ),
// where NR - number of octants of pre-reduction,
// rr[0], rr[1] - high and low parts of pre-reduced argument.
// The Payne/Hanek algorithm is used there (not described).
// Assign x := rr[0]
// In case of no pre-reduction x := a[i]
//
// b) Main reduction.
//
// The standard range reduction scheme is
// zc := x - N * (PIo32_HI + PIo32_LO + PIo32_TAIL)
// zc - reduced argument
//
// Integer N obtained by famous "right-shifter" technique -
// add and subtract RS = 2^52+2^51 value.
//
// After that we add N := N + NR*(2^(R-1))
// if large arguments pre-reduction
// routine called. NR = result octant number of Pi/2
// pre-reduction.
// For a[i] < LARGE_ARG_HIBITS the NR = 0 and N is unchanged.
//
// PIo32_HI and PIo32_LO are 32-bit numbers (so multiplication
// by N is exact) and PIo32_TAIL is a 53-bit number. Together, these
// approximate pi well enough for all cases in this restricted
// range. Reduction performed in accurate way with low part (c) of
// result correct processing.
// For large arguments added c = c + rr[1].
// Finally we have zc = z + c multiprecision value.
//
// In parallel we are doing another reduction for
// getting remainder modulo Pi/2. Here we perform
// a sort of "more rounding".
// It means have the same computation sequences but using N = (N mod
16)
// that is also obtained by "right shifter" technique,
// where right shifter value is (2^55+2^56) instead of usual
(2^51+2^52)
// Pi values presented by 38+38+53 form for accurate multiplication
by
// 14-bit of (N mod 16).
// The result is zzc = zz+cc multiprecision value.
//
// For existing large arguments reduction we need to add
// extra low part rr[1] to c and cc correction terms.
// c := c + rr[1], cc := cc + rr[1]
// but it is necessary to resplit z+c and zz + cc values
// to preserve proportions betwee high and low parts.
// Doing it this way:
//
// v1 := z + c; v2 := z - v1; c := v2 + c; z := v1;
// v1 := zz + cc; v2 := zz - v1; cc := v2 + cc; zz := v1;
//
// c) General computations.
//
// The whole computation range (Pi/2) is splitted to
// 32 even ranges and for each breakpoint we have
// unique set of coefficients stored as table.
// The table lookup performed by index that is 5 least
// significant bits of integer N (octant number) value.
//
// The constants are:
// 1) C2 ... C15 polynomial coefficients for r^2 ... r^15
// 2) C0_HI + C0_LO - accurate constant C0 term in power series
// 3) C1_HI + C1_LO - accurate coefficient C1 of r in power series
// 4) TAU - multiplier for the reciprocal, always -1 or 0
// 5) MSK - 35 significant bit mask for the reciprocal
//
//
// The basic reconstruction formula using these constants is:
//
// High := TAU*recip_hi + C0_HI
// Med + Low := C1_HI*r + C1_LO*r (accurate sum)
// Low := Low + TAU*recip_lo + C0_LO + (C1_LO+C1_HI)*c + pol,
// where pol := C2*r^2 + ... + C15*r^15
//
// The recip_hi + recip_lo is an accurate reciprocal of the remainder
// modulo pi/2 = 1/zz
// Finally we doing a compensated sum High + Med + Low:
//
// Return r[i] := (High + (Med + Low))
// --
//
*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
#pragma float_control(precise, on)
static __constant int __stan_ha___ip_h = 0x0517CC1B;
static __constant int __stan_ha___ip_m = 0x727220A9;
static __constant int __stan_ha___ip_l = 0x28;
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cc4 = {0x3e6ce1b2u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cc3 = {0xbfaae2beu};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cc2 = {0x4081e0eeu};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cc1 = {0xc09de9e6u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cc1l = {0xb3e646a5u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cc0 = {0x3f800000u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs4 = {0x3da5e12bu};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs4l = {0xb10bc3e3u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs3 = {0xbf196543u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs3l = {0x32b355c6u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs2 = {0x402335ddu};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs2l = {0x338bfbf6u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs1 = {0xc0a55de7u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs1l = {0xb3ac99b0u};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs0 = {0x40490fdbu};
static __constant union {
unsigned int w;
float f;
int i;
} __stan_ha___cs0l = {0xb3bbc50au};
static __constant unsigned int __stan_ha_invpi_tbl[] = {
0, 0x28BE60DB, 0x9391054A, 0x7F09D5F4,
0x7D4D3770, 0x36D8A566, 0x4F10E410, 0x7F9458EA};
__attribute__((always_inline)) inline int
__ocl_svml_internal_stan_ha(float *a, float *pres) {
int nRet = 0;
float xin = *a;
unsigned long IP, IP2;
long IP_s, IP2_s;
int ip_low_s;
unsigned int ip_low;
union {
unsigned int w;
float f;
int i;
} x, Rh, Rl, res, scale, cres, sres, spoly, cpoly, cpoly_l;
int mx, sgn_x, ex, ip_h, shift, index, j, sgn_p, sgn_xp;
float High, Low, R2h, R2l, Ph, Pl, eps;
union {
unsigned int w;
float f;
int i;
} cpoly1, spoly1, spoly_l, cres_l, sres_l, tres;
x.f = xin;
mx = (x.w & 0x007fffff) | 0x00800000;
sgn_x = x.w & 0x80000000;
ex = ((x.w ^ sgn_x) >> 23);
// redirect large or very small inputs
if (__builtin_expect(((unsigned)(ex - 0x7f + 12)) > (20 + 12), (0 == 1))) {
// small input
if (__builtin_expect((ex < 0x7f - 11), (1 == 1))) {
*pres = xin;
return nRet;
}
// Inf/NaN
if (ex == 0xff) {
nRet = ((x.w << 1) == 0xff000000) ? 1 : nRet;
x.w |= 0x00400000;
*pres = x.f;
return nRet;
}
ex = ex - 0x7f - 23;
index = 1 + (ex >> 5);
// expon % 32
j = ex & 0x1f;
// x/Pi, scaled by 2^(63-j)
ip_low = (((unsigned int)__stan_ha_invpi_tbl[index]) * ((unsigned int)mx));
IP = (((unsigned long)((unsigned int)(__stan_ha_invpi_tbl[index + 1]))) *
((unsigned int)(mx))) +
(((unsigned long)ip_low) << 32);
// scaled by 2^(95-j)
IP2 = (((unsigned long)((unsigned int)(__stan_ha_invpi_tbl[index + 2]))) *
((unsigned int)(mx))) +
((((unsigned long)((unsigned int)(__stan_ha_invpi_tbl[index + 3]))) *
((unsigned int)(mx))) >>
32);
IP = IP + (IP2 >> 32);
// scale 2^63
IP <<= j;
// shift low part by 32-j, j in [0,31]
ip_low = (unsigned int)IP2;
ip_low >>= (31 - j);
ip_low >>= 1;
IP |= (unsigned long)ip_low;
} else // main path
{
// products are really unsigned; operands are small enough so that signed
// MuL works as well x*(23-ex)*(1/Pi)*2^28 p[k] products fit in 31 bits each
IP_s = (((long)((int)(mx))) * ((int)(__stan_ha___ip_h)));
IP = (unsigned long)IP_s;
IP2_s = (((long)((int)(mx))) * ((int)(__stan_ha___ip_m)));
IP2 = (unsigned long)IP2_s;
// scale (23-ex)*2^(28+32+7)
ip_low_s = (((int)mx) * ((int)__stan_ha___ip_l));
ip_low = (unsigned int)ip_low_s;
IP2 = (IP2 << 7) + ip_low;
// (x/Pi)*2^63
IP <<= (ex - 0x7f + 12);
// IP3 = IP2 << (37 -0x7f + ex);
IP2 >>= (27 + 0x7f - ex);
IP += IP2;
}
// return to 32-bit, scale 2^31
ip_h = IP >> 32;
// fix sign bit
sgn_xp = ((ip_h + 0x20000000) & 0xc0000000);
// reduced argument (signed, high-low), scale 2^32
ip_h <<= 2;
Rh.f = (float)ip_h;
// reduced argument will need to be normalized
shift = 2 + 30 + 0x7f - ((Rh.w >> 23) & 0xff);
// correction for shift=0
shift = (shift >= 2) ? shift : 2;
// normalize
IP <<= shift; // IP = (IP << shift) | (IP3 >> (64-shift));
ip_h = IP >> 32;
Rh.f = (float)ip_h;
ip_h -= ((int)Rh.f);
Rl.f = (float)ip_h;
// adjust scale
scale.w = (0x7f - 31 - shift) << 23;
Rh.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, scale.f, 0.0f);
Rl.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rl.f, scale.f, 0.0f);
// (Rh+Rl)^2
{
R2h = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, Rh.f, 0.0f);
R2l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, Rh.f, -R2h);
R2l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rl.f, Rh.f, R2l);
R2l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, Rl.f, R2l);
};
spoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__stan_ha___cs4.f, R2h,
__stan_ha___cs3.f);
cpoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__stan_ha___cc4.f, R2h,
__stan_ha___cc3.f);
spoly.f =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, R2h, __stan_ha___cs2.f);
cpoly1.f =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2h, __stan_ha___cc2.f);
cpoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly1.f, R2h, 0.0f);
cpoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly1.f, R2h, (-cpoly.f));
{
float __ph, __ahl, __ahh;
__ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f,
__stan_ha___cc1.f);
__ahh =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__ph, 1.0f, -__stan_ha___cc1.f);
__ahl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f, -__ahh);
cpoly_l.f = (cpoly_l.f + __stan_ha___cc1l.f) + __ahl;
cpoly.f = __ph;
};
{
float __ph, __phl;
__ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2h, 0.0f);
__phl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2h, -__ph);
cpoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly_l.f, R2h, __phl);
cpoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2l, cpoly_l.f);
cpoly.f = __ph;
};
{
float __ph, __ahl, __ahh;
__ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f,
__stan_ha___cc0.f);
__ahh =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__ph, 1.0f, -__stan_ha___cc0.f);
__ahl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f, -__ahh);
cpoly_l.f = cpoly_l.f + __ahl;
cpoly.f = __ph;
};
spoly1.f =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, R2h, __stan_ha___cs1.f);
spoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly1.f, R2h, 0.0f);
spoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly1.f, R2h, (-spoly.f));
{
float __ph, __ahl, __ahh;
__ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, 1.0f,
__stan_ha___cs0.f);
__ahh =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__ph, 1.0f, -__stan_ha___cs0.f);
__ahl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, 1.0f, -__ahh);
spoly_l.f = (spoly_l.f + __stan_ha___cs0l.f) + __ahl;
spoly.f = __ph;
};
{
float __ph, __phl;
__ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, Rh.f, 0.0f);
__phl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, Rh.f, -__ph);
spoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly_l.f, Rh.f, __phl);
spoly_l.f =
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, Rl.f, spoly_l.f);
spoly.f = __ph;
};
// adjust sign
sgn_p = (sgn_xp << 1);
spoly.w ^= sgn_p;
spoly_l.w ^= sgn_p;
sres.w = (sgn_xp & 0x40000000) ? cpoly.w : spoly.w;
cres.w = (sgn_xp & 0x40000000) ? spoly.w : cpoly.w;
sres_l.w = (sgn_xp & 0x40000000) ? cpoly_l.w : spoly_l.w;
cres_l.w = (sgn_xp & 0x40000000) ? spoly_l.w : cpoly_l.w;
// 1/(cres + cres_l)
Rh.f = 1.0f / (cres.f);
eps = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cres.f, -Rh.f, 1.0f);
eps = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cres_l.f, -Rh.f, eps);
Rl.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, eps, 0.0f);
tres.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(
sres.f, Rl.f,
SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sres_l.f, Rh.f, 0.0f));
tres.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sres.f, Rh.f, tres.f);
tres.w ^= sgn_x;
*pres = tres.f;
return nRet;
}
float __ocl_svml_tanf_ha(float x) {
float r;
__ocl_svml_internal_stan_ha(&x, &r);
return r;
}
|