File: tan_s_ha.cl

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (455 lines) | stat: -rw-r--r-- 16,049 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/
/*
// ALGORITHM DESCRIPTION:
//
//      HIGH LEVEL OVERVIEW
//      Here we use polynomial and reciprocal calculation for 32 subintervals
//      at reduction interval.
//
//      For large arguments ( |a[i]| >= LARGE_ARG_HIBITS,
//      ( where LARGE_ARG_HIBITS = 16 high bits of 12800.0 value )
//      the Payne/Hanek "pre-reduction" performed. Result of this routine
//      becomes argument for regular reduction.
//
//      The regular range reduction scheme is:
//
//          a[i] = N * pi/2^R + z
//          where R = 5 for this implementation - reduction value (2^R = 32),
//          and |z| <= pi/(2*2^R)) - this is reduced argument.
//
//      Also alternative reduction performed in parallel:
//
//          a[i] = NN * pi/2 + zz,
//          (NN = N mod 16)
//
//      The reason is getting remainder modulo Pi/2. The value zz is used
//      for reciprocal calculation.
//
//      Futher tan calculation performed by this way:
//
//         r[i] := TAU * 1/zz + C0 + C1*r + C1*c + C2*r^2 + ... + C15*r^15
//
//         (TAU - multiplier for the reciprocal 1/zz,
//         and always -1 or 0 depending on subinterval)
//
//      For tiny arguments ( |a[i]| < 2^TINY_ARG_EXP )
//      the simple separate branch used:
//
//          r[i] = a[i]
//
//      IEEE SPECIAL CONDITIONS:
//      a[i] = +/-Inf, r[i] = QNaN
//      a[i] = +/-0,   r[i] = +/-0
//      a[i] = QNaN,   r[i] = QNaN
//      a[i] = SNaN,   r[i] = QNaN
//
//
//      ALGORITHM DETAILS
//      Executable parts:
//
//      1) a[i]  = +/-Inf
//         Return r[i] := a[i]*0.0
//         and error handler called with IML_STATUS_ERRDOM error code
//
//      2) a[i]  = NaN
//         Return r[i] := a[i] * a[i]
//
//      3) Tiny arguments path
//         |a[i]| < 2^TINY_ARG_EXP,
//         where TINY_ARG_EXP = -252
//
//         3.1) a[i]  = 0.0
//              Return r[i] := a[i]
//
//         3.2) 0 < |a[i]| < 2^TINY_ARG_EXP
//              Return r[i] := TWOp55 * ( TWOpM55*a[i] - a[i] ),
//              where TWOp55 = 2^55, TWOpM55 = 2^-55
//
//              Here is path where underflow or denormal exceptions can happen
//              during intermediate computations.
//              For correct work in all rounding modes we need to
//              return a[i] - TWOpM55 * a[i]
//              To avoid disappearing of second term we using scaling
//              like this TWOp55 * ( TWOpM55*a[i] - a[i] )
//
//
//      4) Main path (the most frequently used and the most wide)
//         2^TINY_ARG_EXP <= |a[i]| < LARGE_ARG_HIBITS
//
//         a) Pre-reduction.
//
//            For large arguments |a[i]| >= LARGE_ARG_HIBITS
//            special argument pre-range-reduction routine is called:
//            NR := _vml_reduce_pio2d( a[i], rr ),
//            where NR - number of octants of pre-reduction,
//            rr[0], rr[1] - high and low parts of pre-reduced argument.
//            The Payne/Hanek algorithm is used there (not described).
//            Assign   x := rr[0]
//            In case of no pre-reduction   x := a[i]
//
//         b) Main reduction.
//
//            The standard range reduction scheme is
//            zc := x - N * (PIo32_HI + PIo32_LO + PIo32_TAIL)
//            zc - reduced argument
//
//            Integer N obtained by famous "right-shifter" technique -
//            add and subtract RS = 2^52+2^51 value.
//
//            After that we add N := N + NR*(2^(R-1))
//            if large arguments pre-reduction
//            routine called.  NR = result octant number of Pi/2
//            pre-reduction.
//            For a[i] < LARGE_ARG_HIBITS the NR = 0 and N is unchanged.
//
//            PIo32_HI and PIo32_LO are 32-bit numbers (so multiplication
//            by N is exact) and PIo32_TAIL is a 53-bit number. Together, these
//            approximate pi well enough for all cases in this restricted
//            range. Reduction performed in accurate way with low part (c) of
//            result correct processing.
//            For large arguments added c = c + rr[1].
//            Finally we have zc = z + c multiprecision value.
//
//            In parallel we are doing another reduction for
//            getting remainder modulo Pi/2.  Here we perform
//            a sort of "more rounding".
//            It means have the same computation sequences but using N = (N mod
16)
//            that is also obtained by "right shifter" technique,
//            where right shifter value is (2^55+2^56) instead of usual
(2^51+2^52)
//            Pi values presented by 38+38+53 form for accurate multiplication
by
//            14-bit of (N mod 16).
//            The result is zzc = zz+cc multiprecision value.
//
//            For existing large arguments reduction we need to add
//            extra low part rr[1] to c and cc correction terms.
//            c := c + rr[1],  cc := cc + rr[1]
//            but it is necessary to resplit z+c and zz + cc values
//            to preserve proportions betwee high and low parts.
//            Doing it this way:
//
//               v1 := z + c;   v2 := z - v1;   c := v2 + c;   z := v1;
//               v1 := zz + cc; v2 := zz - v1;  cc := v2 + cc; zz := v1;
//
//         c) General computations.
//
//            The whole computation range (Pi/2) is splitted to
//            32 even ranges and for each breakpoint we have
//            unique set of coefficients stored as table.
//            The table lookup performed by index that is 5 least
//            significant bits of integer N (octant number) value.
//
//            The constants are:
//            1) C2 ... C15 polynomial coefficients for r^2 ... r^15
//            2) C0_HI + C0_LO - accurate constant C0 term in power series
//            3) C1_HI + C1_LO - accurate coefficient C1 of r in power series
//            4) TAU - multiplier for the reciprocal, always -1 or 0
//            5) MSK - 35 significant bit mask for the reciprocal
//
//
//            The basic reconstruction formula using these constants is:
//
//               High := TAU*recip_hi + C0_HI
//               Med + Low := C1_HI*r + C1_LO*r (accurate sum)
//               Low  := Low + TAU*recip_lo + C0_LO + (C1_LO+C1_HI)*c + pol,
//                 where pol := C2*r^2 + ... + C15*r^15
//
//            The recip_hi + recip_lo is an accurate reciprocal of the remainder
//            modulo pi/2 = 1/zz
//            Finally we doing a compensated sum High + Med + Low:
//
//            Return r[i] := (High + (Med + Low))
// --
//
*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
#pragma float_control(precise, on)
static __constant int __stan_ha___ip_h = 0x0517CC1B;
static __constant int __stan_ha___ip_m = 0x727220A9;
static __constant int __stan_ha___ip_l = 0x28;
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cc4 = {0x3e6ce1b2u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cc3 = {0xbfaae2beu};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cc2 = {0x4081e0eeu};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cc1 = {0xc09de9e6u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cc1l = {0xb3e646a5u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cc0 = {0x3f800000u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs4 = {0x3da5e12bu};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs4l = {0xb10bc3e3u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs3 = {0xbf196543u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs3l = {0x32b355c6u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs2 = {0x402335ddu};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs2l = {0x338bfbf6u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs1 = {0xc0a55de7u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs1l = {0xb3ac99b0u};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs0 = {0x40490fdbu};
static __constant union {
  unsigned int w;
  float f;
  int i;
} __stan_ha___cs0l = {0xb3bbc50au};
static __constant unsigned int __stan_ha_invpi_tbl[] = {
    0,          0x28BE60DB, 0x9391054A, 0x7F09D5F4,
    0x7D4D3770, 0x36D8A566, 0x4F10E410, 0x7F9458EA};
__attribute__((always_inline)) inline int
__ocl_svml_internal_stan_ha(float *a, float *pres) {
  int nRet = 0;
  float xin = *a;
  unsigned long IP, IP2;
  long IP_s, IP2_s;
  int ip_low_s;
  unsigned int ip_low;
  union {
    unsigned int w;
    float f;
    int i;
  } x, Rh, Rl, res, scale, cres, sres, spoly, cpoly, cpoly_l;
  int mx, sgn_x, ex, ip_h, shift, index, j, sgn_p, sgn_xp;
  float High, Low, R2h, R2l, Ph, Pl, eps;
  union {
    unsigned int w;
    float f;
    int i;
  } cpoly1, spoly1, spoly_l, cres_l, sres_l, tres;
  x.f = xin;
  mx = (x.w & 0x007fffff) | 0x00800000;
  sgn_x = x.w & 0x80000000;
  ex = ((x.w ^ sgn_x) >> 23);
  // redirect large or very small inputs
  if (__builtin_expect(((unsigned)(ex - 0x7f + 12)) > (20 + 12), (0 == 1))) {
    // small input
    if (__builtin_expect((ex < 0x7f - 11), (1 == 1))) {
      *pres = xin;
      return nRet;
    }
    // Inf/NaN
    if (ex == 0xff) {
      nRet = ((x.w << 1) == 0xff000000) ? 1 : nRet;
      x.w |= 0x00400000;
      *pres = x.f;
      return nRet;
    }
    ex = ex - 0x7f - 23;
    index = 1 + (ex >> 5);
    // expon % 32
    j = ex & 0x1f;
    // x/Pi, scaled by 2^(63-j)
    ip_low = (((unsigned int)__stan_ha_invpi_tbl[index]) * ((unsigned int)mx));
    IP = (((unsigned long)((unsigned int)(__stan_ha_invpi_tbl[index + 1]))) *
          ((unsigned int)(mx))) +
         (((unsigned long)ip_low) << 32);
    // scaled by 2^(95-j)
    IP2 = (((unsigned long)((unsigned int)(__stan_ha_invpi_tbl[index + 2]))) *
           ((unsigned int)(mx))) +
          ((((unsigned long)((unsigned int)(__stan_ha_invpi_tbl[index + 3]))) *
            ((unsigned int)(mx))) >>
           32);
    IP = IP + (IP2 >> 32);
    // scale 2^63
    IP <<= j;
    // shift low part by 32-j, j in [0,31]
    ip_low = (unsigned int)IP2;
    ip_low >>= (31 - j);
    ip_low >>= 1;
    IP |= (unsigned long)ip_low;
  } else // main path
  {
    // products are really unsigned; operands are small enough so that signed
    // MuL works as well x*(23-ex)*(1/Pi)*2^28 p[k] products fit in 31 bits each
    IP_s = (((long)((int)(mx))) * ((int)(__stan_ha___ip_h)));
    IP = (unsigned long)IP_s;
    IP2_s = (((long)((int)(mx))) * ((int)(__stan_ha___ip_m)));
    IP2 = (unsigned long)IP2_s;
    // scale (23-ex)*2^(28+32+7)
    ip_low_s = (((int)mx) * ((int)__stan_ha___ip_l));
    ip_low = (unsigned int)ip_low_s;
    IP2 = (IP2 << 7) + ip_low;
    // (x/Pi)*2^63
    IP <<= (ex - 0x7f + 12);
    // IP3 = IP2 << (37 -0x7f + ex);
    IP2 >>= (27 + 0x7f - ex);
    IP += IP2;
  }
  // return to 32-bit, scale 2^31
  ip_h = IP >> 32;
  // fix sign bit
  sgn_xp = ((ip_h + 0x20000000) & 0xc0000000);
  // reduced argument (signed, high-low), scale 2^32
  ip_h <<= 2;
  Rh.f = (float)ip_h;
  // reduced argument will need to be normalized
  shift = 2 + 30 + 0x7f - ((Rh.w >> 23) & 0xff);
  // correction for shift=0
  shift = (shift >= 2) ? shift : 2;
  // normalize
  IP <<= shift; // IP = (IP << shift) | (IP3 >> (64-shift));
  ip_h = IP >> 32;
  Rh.f = (float)ip_h;
  ip_h -= ((int)Rh.f);
  Rl.f = (float)ip_h;
  // adjust scale
  scale.w = (0x7f - 31 - shift) << 23;
  Rh.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, scale.f, 0.0f);
  Rl.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rl.f, scale.f, 0.0f);
  // (Rh+Rl)^2
  {
    R2h = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, Rh.f, 0.0f);
    R2l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, Rh.f, -R2h);
    R2l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rl.f, Rh.f, R2l);
    R2l = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, Rl.f, R2l);
  };
  spoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__stan_ha___cs4.f, R2h,
                                                   __stan_ha___cs3.f);
  cpoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__stan_ha___cc4.f, R2h,
                                                   __stan_ha___cc3.f);
  spoly.f =
      SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, R2h, __stan_ha___cs2.f);
  cpoly1.f =
      SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2h, __stan_ha___cc2.f);
  cpoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly1.f, R2h, 0.0f);
  cpoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly1.f, R2h, (-cpoly.f));
  {
    float __ph, __ahl, __ahh;
    __ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f,
                                                  __stan_ha___cc1.f);
    __ahh =
        SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__ph, 1.0f, -__stan_ha___cc1.f);
    __ahl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f, -__ahh);
    cpoly_l.f = (cpoly_l.f + __stan_ha___cc1l.f) + __ahl;
    cpoly.f = __ph;
  };
  {
    float __ph, __phl;
    __ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2h, 0.0f);
    __phl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2h, -__ph);
    cpoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly_l.f, R2h, __phl);
    cpoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, R2l, cpoly_l.f);
    cpoly.f = __ph;
  };
  {
    float __ph, __ahl, __ahh;
    __ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f,
                                                  __stan_ha___cc0.f);
    __ahh =
        SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__ph, 1.0f, -__stan_ha___cc0.f);
    __ahl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cpoly.f, 1.0f, -__ahh);
    cpoly_l.f = cpoly_l.f + __ahl;
    cpoly.f = __ph;
  };
  spoly1.f =
      SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, R2h, __stan_ha___cs1.f);
  spoly.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly1.f, R2h, 0.0f);
  spoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly1.f, R2h, (-spoly.f));
  {
    float __ph, __ahl, __ahh;
    __ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, 1.0f,
                                                  __stan_ha___cs0.f);
    __ahh =
        SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(__ph, 1.0f, -__stan_ha___cs0.f);
    __ahl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, 1.0f, -__ahh);
    spoly_l.f = (spoly_l.f + __stan_ha___cs0l.f) + __ahl;
    spoly.f = __ph;
  };
  {
    float __ph, __phl;
    __ph = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, Rh.f, 0.0f);
    __phl = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, Rh.f, -__ph);
    spoly_l.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly_l.f, Rh.f, __phl);
    spoly_l.f =
        SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(spoly.f, Rl.f, spoly_l.f);
    spoly.f = __ph;
  };
  // adjust sign
  sgn_p = (sgn_xp << 1);
  spoly.w ^= sgn_p;
  spoly_l.w ^= sgn_p;
  sres.w = (sgn_xp & 0x40000000) ? cpoly.w : spoly.w;
  cres.w = (sgn_xp & 0x40000000) ? spoly.w : cpoly.w;
  sres_l.w = (sgn_xp & 0x40000000) ? cpoly_l.w : spoly_l.w;
  cres_l.w = (sgn_xp & 0x40000000) ? spoly_l.w : cpoly_l.w;
  // 1/(cres + cres_l)
  Rh.f = 1.0f / (cres.f);
  eps = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cres.f, -Rh.f, 1.0f);
  eps = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(cres_l.f, -Rh.f, eps);
  Rl.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(Rh.f, eps, 0.0f);
  tres.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(
      sres.f, Rl.f,
      SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sres_l.f, Rh.f, 0.0f));
  tres.f = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, )(sres.f, Rh.f, tres.f);
  tres.w ^= sgn_x;
  *pres = tres.f;
  return nRet;
}
float __ocl_svml_tanf_ha(float x) {
  float r;
  __ocl_svml_internal_stan_ha(&x, &r);
  return r;
}