1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
/*
// ALGORITHM DESCRIPTION:
//
// CONVENTIONS
// A = B denotes that A is equal to B.
// A := B denotes assignment of a value of the expression B to
// the variable A. All operations and roundings in B are considered
// to be in the target precision.
// <A> denotes the rounding the IEEE-754 floating-point value A to the
// target precision.
// {A} denotes the rounding the IEEE-754 floating-point value A to the
// nearest integer.
//
// HIGH LEVEL OVERVIEW
// *a = Sign * x, where x = |*a|, Sign = sign(*a).
// Hence, acos(*a) = Pi/2 - Sign * asin(x)
//
// x in [0,1/2) interval.
// On [0,1/2) interval arcsine is approximated by a polynomial:
//
// asin(x) ~= x + a0*x^3 + a1*x^5 + x^7*P0(x^2).
//
// x in [1/2,1] interval.
// On [1/2,1) interval acos(x) can be rewritten as follows:
//
// asin(x) = Pi/2 - 2*asin( sqrt(y/2) ),
//
// where y = 1-x. In turn, 2*asin(sqrt(y/2)) is approximated as follows:
//
// 2*asin(sqrt(y/2)) ~= sqrt(y/2) * (b0 + b1*y + b2*y^2 + y^3*P1(y)),
//
// where b0 + b1*y + b2*y^2 + y^3*P1(y) - polynomial approximation of
// 2*asin(sqrt(y/2)) / sqrt(y/2) on [0,1/2] interval.
//
// IEEE SPECIAL CONDITIONS
// |*a| > 1, *r = QNaN
// *a = +/-Inf, *r = QNaN
// *a = QNaN, *r = QNaN
// *a = SNaN, *r = QNaN
//
// ALGORITHM DETAILS
// A careful algorithm must be used to realize mathematical ideas accurately.
// In addition a number of execution paths required to handle special and
// subtle cases. Below we describe each execution path assuming *a = Sign*x.
//
// 1) *a = [Q,S]NaN
// *r := *a / *a
//
// 2) *a = [+,-]Inf
// *r := *a / *a
// Error handler routine is called with IML_STATUS_ERRDOM status code.
//
// 3) |*a| > 1
// *r := (*a-*a)/(*a-*a)
// Error handler routine is called with IML_STATUS_ERRDOM status code.
//
// 4) 0 <= *a < 1/2
// 4.1) "Near 0" path
// 0 <= *a < NEAR0_BOUND_U, where NEAR0_BOUND_U = 2^(-53) in this
// implementation.
//
// On this path acos(x) is approximated as Pi/2-x. This subtle case
// is used to avoid raising underflow on the main path.
//
// dbResLo := PI2_LO - x * (1+x)
// *r := PI2_HI - dbResLo
//
// 4.2) Main path
// NEAR0_BOUND_U <= *a < 1/2, where NEAR0_BOUND_U = 2^(-53) in this
// implementation.
//
// Arcsine function is approximated by a polynomial of the form
//
// asin(x) ~= x + (A0+A0L)*x^3 + (A1+A1L)*x^5 + x^7*P0(x^2),
//
// where A0 and A0L, A1 and A1L represent a0, a1 with accuracy wider
// than target precision.To ensure acceptable accuracy we perform
// all multiplications and additions for terms of order up to x^5 in
// multiprecision while for rest terms it is sufficient to perform
// calculations in target precision.
//
// To perform multiplication c=a*b accurately enough we split a and b
// into high and low parts ah, al (a=ah+al) and bh, bl (b=bh+bl).
// We split a and b so that ah*bh is exactly representable in target
// precision. IML_SPLIT() macro is used for that purpose. Result of
// multiplication c=a*b is represented by two numbers ch and cl, which
// are calculated as follows:
//
// ch := ah*bh
// cl := al*b + ah*bl
//
// To perform addition d = e+f (|e|>|f|) accurately IML_ADD_HL() macro
// is used. Result of the summation is two numbers dh and dl
// accurately representing d in target precision.
//
// NOTE: See IML_SPLIT() and IML_ADD_HL() macro descriptions for
// further details.
//
// Series of splittings, multiplications and accurate summations is
// used for the terms x, (A0+A0L)*x^3 and (A1+A1L)*x^5. Final result
// is represented as two parts: dbResHi and dbResLo. dbResHi is
// calculated so that all its bits are significant. dbResLo is a sum
// of low parts (tails) accurately taken into account performing
// intermediate calculations.
//
// Let us illustrate above ideas in more details.
//
// (1) Split x (dbAbsX variable in the program code) into dbXHi
// and dbXLo using IML_SPLIT() macro.
// (2) Calulate x^2 as sum of dbXXHi and dbXXLo:
//
// dbXXHi := dbXHi*dbXHi
// dbXXLo := (x + dbXHi)*dbXLo
//
// (3) Calculate P0(x2), where x2 is double precision approximation
// of x^2:
//
// x2 := dbXXHi+dbXXLo
//
// (4) Split dbXXHi into dbYHi and dbYLo using IML_SPLIT() macro.
// (5) Calculate x^3 as sum of dbZHi and dbZLo:
//
// dbZHi := dbYHi*dbXHi
// dbZLo := (dbYLo+dbXXLo)*x + dbYHi*dbXLo
//
// (6) Split dbZHi into dbWHi and dbWLo using IML_SPLIT() macro.
// (7) Calculate x^5 as sum of dbVHi and dbVLo:
//
// dbVHi := dbWHi*dbYHi
// dbVLo := (dbWLo+dbZLo)*dbYHi + (dbYLo+dbXXLo)*(dbZHi+dbZLo)
//
// (8) Split dbVHi into dbUHi and dbuLo using IML_SPLIT() macro.
// (9) Calculate P0(x2)*x^7:
//
// dbP0 := P0(x2)*(dbVHi+dbVLo)*x2
//
// (10) Calculate A0L*x^3 + A1L*x^5 + dbP0 in dbResLo
//
// dbResLo := A0L*(dbZHi+dbZLo) + A1L*(dbVHi+dbVLo) + dbP0
//
// (11) Add small term dbZLo*A0 - part of multiprecision calculation
of
// (A0+A0L)*x^3:
//
// dbResLo := dbResLo + dbZLo*A0
//
// (12) Calculate high part of multiprecision multiplication
// (A0+A0L)*x^3 in dbT1, and add another small term to dbResLo:
//
// dbT1 := dbWHi*A0
// dbResLo := dbResLo + dbWLo*A0
//
// (13) Calculate x+dbT1 exactly in target precision as sum of high
and
// low parts, dbR1 and dbS1 respectively using IML_ADD_HL() macro.
// Low part dbS1 is added to dbResLo.
// (14) Add small term dbVLo*A1 to dbResLo - part of multiprecision
// calculation of (A1+A1L)*x^5:
//
// dbResLo := dbResLo + dbVLo*A1
//
// (15) Calculate high part of multiprecision multiplication
// (A1+A1L)*x^5 in dbT2, and add another small term to dbResLo
//
// dbT2 := dbUHi*A1
// dbResLo = dbResLo + dbuLo*A1
//
// (16) Calculate dbR1+dbT2 exactly in target precision as sum of high
// and low parts, dbR2 and dbS2 respectively, using IML_ADD_HL()
// macro. Low part is added to dbResLo. High part is in dbResHi.
//
// dbResHi := dbR2
// dbResLo := dbResLo + dbS2
//
// (17) Calculate final result as sum of dbResHi and dbResLo
//
// dbRes := dbResHi + dbResLo
// *r := Sign*dbRes
//
// 5) 1/2 <= |*a| <= 1
// On this path asin(x) can be rewritten as follows:
//
// asin(x) = Pi/2 - 2*asin( sqrt(y/2) ),
//
// where y = 1-x. In turn, 2*asin(sqrt(y/2)) is approximated as follows:
//
// 2*asin(sqrt(y/2)) ~= sqrt(y/2) * (b0 + b1*y + b2*y^2 + y^3*P1(y)),
//
// where b0 + b1*y + b2*y^2 + y^3*P1(y) - polynomial approximation of
// 2*asin(sqrt(y/2)) / sqrt(y/2) on [0,1/2] interval.
//
// Square root sqrt(y/2) is calculated with accuracy wider than target
// precision as a pair: dbSqrtHi and dbSqrtLo.
//
// Polynomial terms b0, b1*y, b2*y^2 are calculated in multiprecision.
// For this purpose a number of splittings, multiprecision multiplications,
// and accurate summations are used. Coefficients b0, b1 and b2 are
// represented by pairs of high and low parts, B0 and B0L, _B1 and B1L,
// _B2 and B2L respectively.
//
// Final substraction is also performed in multiprecision. For this purpose
// constant Pi/2 is presented as high and low part, PI2_HI and PI2_LO
// respectively:
//
// PI2_HI = <Pi/2>
// PI2_LO = <Pi/2 - PI2_HI>
//
// Below we describe above ideas in more details.
//
// 5.1) Calculating s=sqrt(y2) in multiprecision, where y2=y/2.
// Let y2=M*2^(2*iN), where iN is an integer, 1<=M<4.
//
// sqrt(y2) = 2^iN * sqrt(M),
//
// where sqrt(M) is computed using equality
//
// sqrt(M) = M * 1/sqrt(M).
//
// Let s0 be approximation to 1/sqrt(M) stored in a table.
// Let q=M*s0^2-1, then
//
// 1/sqrt(M) = s0 * 1/sqrt(1+q).
//
// Notice that q is small value (the better s0 approximates
// 1/sqrt(M), the smaller is |q|). Therefore we can approximate
// 1/sqrt(1+q) by a small-degree polynomial of q of the form:
//
// 1/sqrt(1+q) ~= 1 + q * P2(q).
//
// At last we have
//
// sqrt(y2) ~= 2^iN * M * (s0 + s0*q*P2(q)).
//
// Calculation of sqrt(y2) is performed in 3 steps:
//
// a) Range reduction
// Decompose y2 into y2=M1*2^iN1, where iN1 is an integer,
1<=M1<2.
// We obtain iN1 and M1 in the following way:
//
// iN1 := DP_EXPONENT(t) - DP_BIAS
// M1 := y2 / 2^iN1
//
// We need to decompose y2 into y2=M2*2^(2*iN), where iN is an
// integer, 1<=M2<4. Supposing iN1=2*iN+iL, where iL=0 or 1, we
// can obtain iN and M2 in the following way:
//
// iL := iN1 & 1
// iN := (iN1 - iL) >> 1
// M2 := M1 * 2^iL
//
// And then we split M2 into sum MHi+MLo so that
// s0*s0*MHi is exactly representable in target precision:
//
// Tmp1 := M2 * RSM
// Tmp2 := Tmp1 - M2
// MHi := Tmp1 - Tmp2
// Tmp1 := M2 - MHi
// MLo := Tmp1
//
// where RSM = 2^22+1 in this implementation.
//
// The index j of the reciprocal square root value s0, which is
// close to 1/sqrt(M), is obtained as follows:
//
// j1 := { (M1-1)*2^SQRT_K },
// j := j1 + iL * 2^SQRT_K
//
// where number of table entries is 2*2^SQRT_K+1 and
// 0<=j<=2*2^SQRT_K (iL=0 for 1<=M<2, iL=1 for 2<=M<4).
// In this implementation SQRT_K=8.
//
// Implementation note: instead of explicit conversion
// double->integer we use "right shifter" technique:
//
// TmpJ1 := <M1Hi + RSJ>,
//
// where RSJ = 2^44+1 in this implementation.
//
// The j1 is extracted from the SQRT_K+1 least significant bits
// of mantissa of TmpJ1.
//
// s0 := RSQRT(j)
//
// We obtain Q~=q in two steps:
//
// Q1 := (s0*s0)*MHi - 1
// Q := Q1 + (s0*s0)*MLo
//
// where Q1 is computed exactly because s0 and MHi are so that
// s0*s0*MHi is exactly represented in target precision
// and 1/2 < s0*s0*MHi < 2.
//
// b) Approximation
//
// P2(q) approximates (1/sqrt(1+q)-1)/q. In this implementation
// it is 6-th degree polynomial.
//
// c) Reconstruction
// We represent s=sqrt(y2) as sum of two variables
// dbSqrtHi+dbSqrtLo, where
//
// dbSqrtHi := 2^iN * (MHi * s0)
// dbSqrtLo := 2^iN * (MLo * s0 + (MHi+MLo)*s0*Q*SqrtPoly)
//
// 5.2) b0 + b1*y + b2*y^2 + y^3*P1(y) valuation
// (1) Calculate P1(y)*y*y*y in dbP1 variable.
// (2) Rebreak dbSqrtHi and dbSqrtLo so that dbSqrtHi has large enough
// least significant zero bits in mantissa to perform exact
// multiplication.
// (3) Calculate dbSqrtLo*dbP1 in dbT2 variable.
// (4) Split y into dbYHi and dbYLo using IML_SPLIT() macro.
// (5) Calculate y^2 as sum of dbZHi and dbZLo:
//
// dbZHi := dbYHi*dbYHi
// dbZLo := dbYLo*(dbYHi + y)
//
// (6) Split dbZHi into dbWHi and dbWLo using IML_SPLIT() macro.
// (7) Calculate high parts of (_B1+B1L)*y and (_B2+B2L)*y^2 and
perform
// accurate summation of these parts using IML_ADD_HL() macro.
// Result of summation is in dbS1 (high part) and dbS2 (low part).
// Notice that |_B2*dbWHi| < |_B1*dbYHi|
//
// dbTmp := _B1*dbYHi
// dbTmp1:= _B2*dbWHi
//
// (8) Calculate B0+dbS1 accurately using IML_ADD_HL() macro. Result
// is in dbR1 (high part) and dbR2 (low part).
// Notice that |dbS1| < |B0|.
// (9) Split dbR1 into dbVHi and dbVLo using IML_SPLIT() macro.
// (10) Add low parts we got during accurate summation as well as
// during splitting dbR1:
//
// dbT2 := dbT2 + dbSqrtHi * ( dbVLo + dbS2 + dbR2 + _B1*dbYLo
// + _B2*(dbWLo+dbZLo) )
// dbT2 := dbT2 + dbSqrtHi * ( B0L + (B1L + B2L*y)*y + dbP1 )
//
// (11) Calculate dbSqrtHi * dbVHi in dbT1 variable. Notice that
// multiplication is exact.
// (12) Calculate PI2_HI-dbT1 accurately using IML_ADD_HL() macro.
// Rusult is stored into dbResHi (high part) and dbS0 (low part)
// variables. Notice that |PI2_HI| > |dbT1|.
// (13) Calculate PI2_HI-dbT2 into dbResLo variable.
// (14) Add low part dbS0 (we got during accurate summation) to
dbResLo
// (15) Final result:
//
// *r := Sign*(dbResHi+dbResLo)
// --
//
*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_c5 = {0x3fa5db80ed4c0893uL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_c4 = {0x3f98654d51d83552uL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_c3 = {0x3fa7535682d76f42uL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_c2 = {0x3fb32f82392c8a5fuL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_c1 = {0x3fc5555fdd993e8buL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_c0 = {0x3feffffffd9283aduL};
// pi/2
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_pi2h = {0x3ff921fb54442d18uL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_pi2l = {0x3c91a62633145c07uL};
// pi
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_pih = {0x400921fb54442d18uL};
static __constant union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} __dacos_ep_pil = {0x3ca1a62633145c07uL};
static __constant union {
unsigned int w;
float f;
int i;
} __dacos_ep_small_float = {0x01800000u};
__attribute__((always_inline)) inline int
__ocl_svml_internal_dacos_ep(double *pxin, double *pres) {
int nRet = 0;
double xin = *pxin;
union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} y, res;
// double acos(double xin)
{
union {
unsigned long w;
unsigned int w32[2];
int s32[2];
double f;
} x, xa, RS, Shh2, High, R0;
double R, E, poly, Sh;
unsigned long sgn_x;
float yf;
union {
unsigned int w;
float f;
int i;
} fcorr;
x.f = xin;
// absolute value
xa.f = SPIRV_OCL_BUILTIN(fabs,
_f64, )(x.f); // xa.w = x.w & 0x7fffffffffffffffuL;
// input sign
sgn_x = x.w ^ xa.w;
// (1-|x|)/2
y.f = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )((-0.5), xa.f, 0.5);
// prepare polynomial argument
R = xin * xin;
R = SPIRV_OCL_BUILTIN(fmin, _f64_f64, )(R, y.f);
High.f = sgn_x ? __dacos_ep_pih.f : 0;
High.f = (xa.f <= 0.5) ? __dacos_ep_pi2h.f : High.f;
// rsqrt((1-|x|)/2), ~23 bits
yf = (float)y.f;
// fixup for |x|<=0.5 (set RS=0)
// fixup for y.f==0
yf += __dacos_ep_small_float.f;
yf = 1.0f / SPIRV_OCL_BUILTIN(sqrt, _f32, )(yf);
RS.f = (double)(yf);
// set sign for later computation
RS.w |= sgn_x;
// Sh ~ sqrt((1-|x|)/2)
Sh = y.f * RS.f;
// -2* Sh
Shh2.f = -2.0 * Sh;
// E = 2*(0.5 - 0.5*RS.f*RS.f*y.f)
E = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )((-RS.f), Sh, 1.0);
// E*(c1+c2*E)
R0.f = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(0.375, E, 0.5);
R0.f *= E;
// Shh2 + Shh2*E*(c1+c2*E)
R0.f = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(R0.f, Shh2.f, Shh2.f);
// polynomial
poly = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(__dacos_ep_c5.f, R,
__dacos_ep_c4.f);
poly = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(poly, R, __dacos_ep_c3.f);
poly = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(poly, R, __dacos_ep_c2.f);
poly = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(poly, R, __dacos_ep_c1.f);
poly = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )(poly, R, __dacos_ep_c0.f);
// R0 = sel_mask? xa.f : Shh2.w
R0.f = (xa.f <= 0.5) ? x.f : R0.f; //((x.w - R0.w) & sel_mask) + R0.w;
// -poly*R0 + High
res.f = SPIRV_OCL_BUILTIN(fma, _f64_f64_f64, )((-poly), R0.f, High.f);
}
*pres = res.f;
nRet = (y.f >= 0) ? 0 : 1;
return nRet;
}
double __ocl_svml_acos_ep(double x) {
double r;
__ocl_svml_internal_dacos_ep(&x, &r);
return r;
}
|