1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "../Languages/OpenCL/IBiF_SPIRV_Utils.cl"
// EmitVISAPass support for __builtin_IB_memfence/__builtin_IB_typedmemfence requires some arguments to
// be constants as those are used to prepare a message descriptor, so must be known at compile time.
// To assure that all the arguments are constants for O0 path, there is a special function
// marked with __attribute__((optnone)) which implements seperate call instruction created for each
// arguments configuration.
// MEMFENCE IMPLEMENTATION
// Below choice of some HW scopes is explained.
// 1. TODO: CrossDevice should be mapped to LSC_FS_SYSTEM_RELEASE or LSC_FS_SYSTEM_ACQUIRE.
// sycl::memory_scope::system and OpenCL's memory_scope_all_svm_devices are
// lowered to SPIR-V CrossDevice. SYCL SPEC 2020 for system scope:
// "applies to any work-item or host thread in the system that is currently permitted to access
// the memory allocation containing the referenced object".
// 2. Subgroup and Invocation --> LSC_FS_THREAD_GROUP:
// our HW spec doesn’t have corresponding scope for Invocation or Subgroup, hence mapping to
// lowest possible scope
#define CONVERT_SCOPE_SPIRV_TO_VISA(scope) \
((scope) == CrossDevice ? LSC_FS_GPU : \
(scope) == Device ? LSC_FS_GPU : \
LSC_FS_THREAD_GROUP)
// Adding scope parameter to 'MEMFENCE_IF' macro causes huge compilation time increase
// due to number of calls to __builtin_IB_memfence inside __intel_memfence_optnone increases from
// 16 (2 * 2 * 2 * 2) to <number of possible scope values> * 16.
// So for optnone version keep old behavior: use GPU scope for global memory fence
// and GROUP scope for local memory fence.
void OPTNONE __intel_memfence_optnone(bool flushRW, bool isGlobal, bool invalidateL1, bool evictL1)
{
#define MEMFENCE_IF(V1, V5, V6, V7) \
if (flushRW == V1 && isGlobal == V5 && invalidateL1 == V6 && evictL1 == V7) \
{ \
LSC_FS lsc_scope = (V5 ? LSC_FS_GPU : LSC_FS_THREAD_GROUP); \
__builtin_IB_memfence(true, V1, false, false, false, V5, V6, V7, lsc_scope); \
} else
// Generate combinations for all MEMFENCE_IF cases, e.g.:
// true, true, true
// true, true, false etc.
#define MF_L3(...) MF_L2(__VA_ARGS__,false) MF_L2(__VA_ARGS__,true)
#define MF_L2(...) MF_L1(__VA_ARGS__,false) MF_L1(__VA_ARGS__,true)
#define MF_L1(...) MEMFENCE_IF(__VA_ARGS__,false) MEMFENCE_IF(__VA_ARGS__,true)
MF_L3(false)
MF_L3(true) {}
#undef MEMFENCE_IF
#undef MF_L3
#undef MF_L2
#undef MF_L1
}
void __intel_memfence(bool flushRW, bool isGlobal, bool invalidateL1, bool evictL1, Scope_t scope)
{
LSC_FS lsc_scope = CONVERT_SCOPE_SPIRV_TO_VISA(scope);
__builtin_IB_memfence(true, flushRW, false, false, false, isGlobal, invalidateL1, evictL1, lsc_scope);
}
void __intel_memfence_handler(bool flushRW, bool isGlobal, bool invalidateL1, bool evictL1, Scope_t scope)
{
if (BIF_FLAG_CTRL_GET(OptDisable))
__intel_memfence_optnone(flushRW, isGlobal, invalidateL1, evictL1);
else
__intel_memfence(flushRW, isGlobal, invalidateL1, evictL1, scope);
}
// TYPEDMEMFENCE IMPLEMENTATION
void OPTNONE __intel_typedmemfence_optnone(bool invalidateL1)
{
if (invalidateL1)
__builtin_IB_typedmemfence(true);
else
__builtin_IB_typedmemfence(false);
}
void __intel_typedmemfence(bool invalidateL1)
{
__builtin_IB_typedmemfence(invalidateL1);
}
void __intel_typedmemfence_handler(bool invalidateL1)
{
if (BIF_FLAG_CTRL_GET(OptDisable))
__intel_typedmemfence_optnone(invalidateL1);
else
__intel_typedmemfence(invalidateL1);
}
// Barrier Instructions
static void __intel_atomic_work_item_fence( Scope_t Memory, uint Semantics )
{
bool fence = Semantics & ( Acquire | Release | AcquireRelease | SequentiallyConsistent );
bool invalidateL1 = Semantics & ( Acquire | AcquireRelease | SequentiallyConsistent );
bool evictL1 = Semantics & ( Release | AcquireRelease | SequentiallyConsistent );
// We always need to 'fence' image memory (aka, flush caches, drain pipelines)
fence |= ( Semantics & ImageMemory );
if (fence)
{
if (Semantics & ImageMemory)
{
// An image fence requires a fence with R/W invalidate (L3 flush) + a flush
// of the sampler cache
__intel_typedmemfence_handler(invalidateL1);
}
// A global/local memory fence requires a hardware fence in general,
// although on some platforms they may be elided; platform-specific checks are performed in codegen
if (Semantics & WorkgroupMemory)
{
__intel_memfence_handler(false, false, false, false, Memory);
}
if (Semantics & CrossWorkgroupMemory)
{
if (Memory == Device || Memory == CrossDevice)
{
__intel_memfence_handler(true, true, invalidateL1, evictL1, Memory);
}
else
{
// Single workgroup executes on one DSS and shares the same L1 cache.
// If scope doesn't reach outside of workgroup, L1 flush can be skipped.
__intel_memfence_handler(false, true, false, false, Memory);
}
}
}
}
void __intel_workgroup_barrier(int Memory, int Semantics)
{
__intel_atomic_work_item_fence( Memory, Semantics );
__builtin_IB_thread_group_barrier();
}
void SPIRV_OVERLOADABLE SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )(int Execution, int Memory, int Semantics)
{
if (Execution == Device)
{
global_barrier();
}
else if( Execution == Subgroup )
{
// nothing will be emited but we need to prevent optimization splitting control flow
__builtin_IB_sub_group_barrier();
}
else if( Execution <= Workgroup )
{
__intel_workgroup_barrier(Memory, Semantics);
}
}
void SPIRV_OVERLOADABLE SPIRV_BUILTIN(ControlBarrierArriveINTEL, _i32_i32_i32, )(int Execution, int Memory, int Semantics)
{
if( Execution == Workgroup )
{
__intel_atomic_work_item_fence( Memory, Semantics );
__builtin_IB_thread_group_barrier_signal();
}
}
void SPIRV_OVERLOADABLE SPIRV_BUILTIN(ControlBarrierWaitINTEL, _i32_i32_i32, )(int Execution, int Memory, int Semantics)
{
if( Execution == Workgroup )
{
__intel_atomic_work_item_fence( Memory, Semantics );
__builtin_IB_thread_group_barrier_wait();
}
}
void SPIRV_OVERLOADABLE SPIRV_BUILTIN(MemoryBarrier, _i32_i32, )(int Memory, int Semantics)
{
__intel_atomic_work_item_fence( Memory, Semantics );
}
// Named Barrier
void __intel_getInitializedNamedBarrierArray(local uint* id)
{
*id = 0;
SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )( Workgroup, 0, SequentiallyConsistent | WorkgroupMemory );
}
bool __intel_is_first_work_group_item( void );
local __namedBarrier* __builtin_spirv_OpNamedBarrierInitialize_i32_p3__namedBarrier_p3i32(int SubGroupCount, local __namedBarrier* nb_array, local uint* id)
{
local __namedBarrier* NB = &nb_array[*id];
NB->count = SubGroupCount;
NB->orig_count = SubGroupCount;
NB->inc = 0;
SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )( Workgroup, 0, SequentiallyConsistent | WorkgroupMemory );
if (__intel_is_first_work_group_item())
{
(*id)++;
}
SPIRV_BUILTIN(ControlBarrier, _i32_i32_i32, )( Workgroup, 0, SequentiallyConsistent | WorkgroupMemory );
return NB;
}
static INLINE OVERLOADABLE
uint AtomicCompareExchange(local uint *Pointer, uint Scope, uint Equal, uint Unequal, uint Value, uint Comparator)
{
return SPIRV_BUILTIN(AtomicCompareExchange, _p3i32_i32_i32_i32_i32_i32, )((local int*)Pointer, Scope, Equal, Unequal, Value, Comparator);
}
static INLINE
uint SubgroupLocalId()
{
return SPIRV_BUILTIN_NO_OP(BuiltInSubgroupLocalInvocationId, , )();
}
static INLINE OVERLOADABLE
uint AtomicLoad(local uint *Pointer, uint Scope, uint Semantics)
{
return SPIRV_BUILTIN(AtomicLoad, _p3i32_i32_i32, )((local int*)Pointer, Scope, Semantics);
}
static INLINE OVERLOADABLE
void AtomicStore(local uint *Pointer, uint Scope, uint Semantics, uint Value)
{
SPIRV_BUILTIN(AtomicStore, _p3i32_i32_i32_i32, )((local int*)Pointer, Scope, Semantics, Value);
}
static INLINE OVERLOADABLE
uint AtomicInc(local uint *Pointer, uint Scope, uint Semantics)
{
return SPIRV_BUILTIN(AtomicIIncrement, _p3i32_i32_i32, )((local int*)Pointer, Scope, Semantics);
}
static INLINE
uint Broadcast(uint Execution, uint Value, uint3 LocalId)
{
return SPIRV_BUILTIN(GroupBroadcast, _i32_i32_v3i32, )(Execution, as_int(Value), as_int3(LocalId));
}
static INLINE OVERLOADABLE
uint SubgroupAtomicCompareExchange(local uint *Pointer, uint Scope, uint Equal, uint Unequal, uint Value, uint Comparator)
{
uint result = 0;
if (SubgroupLocalId() == 0)
result = AtomicCompareExchange((volatile local uint*)Pointer, Scope, Equal, Unequal, Value, Comparator);
result = Broadcast(Subgroup, result, (uint3)0);
return result;
}
static INLINE OVERLOADABLE
uint SubgroupAtomicInc(local uint *Pointer, uint Scope, uint Semantics)
{
uint result = 0;
if (SubgroupLocalId() == 0)
result = AtomicInc((volatile local uint*)Pointer, Scope, Semantics);
result = Broadcast(Subgroup, result, (uint3)0);
return result;
}
static void MemoryBarrier(Scope_t Memory, uint Semantics)
{
SPIRV_BUILTIN(MemoryBarrier, _i32_i32, )(Memory, Semantics);
}
void __builtin_spirv_OpMemoryNamedBarrier_p3__namedBarrier_i32_i32(local __namedBarrier* NB,Scope_t Memory, uint Semantics)
{
const uint AtomSema = SequentiallyConsistent | WorkgroupMemory;
while (1)
{
const uint cnt = AtomicLoad(&NB->count, Workgroup, AtomSema);
if (cnt > 0)
{
uint before = SubgroupAtomicCompareExchange(&NB->count, Workgroup, AtomSema, AtomSema, cnt - 1, cnt);
if (before == cnt)
{
break;
}
}
}
while(AtomicLoad(&NB->count, Workgroup, AtomSema) > 0);
MemoryBarrier(Memory, Semantics);
uint inc = SubgroupAtomicInc(&NB->inc, Workgroup, AtomSema);
if(inc == ((NB->orig_count) - 1))
{
AtomicStore(&NB->inc, Workgroup, AtomSema, 0);
AtomicStore(&NB->count, Workgroup, AtomSema, NB->orig_count);
}
}
void __builtin_spirv_OpMemoryNamedBarrierWrapperOCL_p3__namedBarrier_i32(local __namedBarrier* barrier, cl_mem_fence_flags flags)
{
__builtin_spirv_OpMemoryNamedBarrier_p3__namedBarrier_i32_i32(barrier, Workgroup, AcquireRelease | get_spirv_mem_fence(flags));
}
void __builtin_spirv_OpMemoryNamedBarrierWrapperOCL_p3__namedBarrier_i32_i32(local __namedBarrier* barrier, cl_mem_fence_flags flags, memory_scope scope)
{
__builtin_spirv_OpMemoryNamedBarrier_p3__namedBarrier_i32_i32(barrier, get_spirv_mem_scope(scope), AcquireRelease | get_spirv_mem_fence(flags));
}
__global volatile uchar* __builtin_IB_get_sync_buffer();
uint __intel_get_local_linear_id( void );
uint __intel_get_global_linear_id( void );
uint __intel_get_local_size( void );
// Implementation of global_barrier using atomic instructions.
// First two integers in the sync buffer are used for global synchronization, they are used interchangeably:
// first call to global_barrier() will use syncBuffer + 0, second call will use syncBuffer + 1, third call will use syncBuffer + 0 again, etc.
// This is to prevent a race condition, where one of the workgroups returned from the barrier and some other still wait for the value of the synchronization variable.
void __global_barrier_atomic()
{
__intel_workgroup_barrier(Device, AcquireRelease | CrossWorkgroupMemory);
bool firstThreadPerWg = (__builtin_IB_get_local_id_x() == 0) && (__builtin_IB_get_local_id_y() == 0) && (__builtin_IB_get_local_id_z() == 0);
size_t numGroups = __builtin_IB_get_num_groups(0) * __builtin_IB_get_num_groups(1) * __builtin_IB_get_num_groups(2);
__global volatile int* syncBuffer = (__global volatile int*)__builtin_IB_get_sync_buffer();
__global volatile int* offsetVar = syncBuffer + 2;
if (firstThreadPerWg)
{
int offset = atomic_or(offsetVar, 0);
__global volatile int* syncVar = syncBuffer + offset;
if (__intel_get_global_linear_id() == 0)
{
atomic_sub(syncVar, numGroups-1);
}
else
{
atomic_inc(syncVar);
}
while (atomic_or(syncVar, 0) != 0) {}
if (offset) {
atomic_and(offsetVar, 0);
} else {
atomic_or(offsetVar, 1);
}
}
__intel_workgroup_barrier(Device, AcquireRelease | CrossWorkgroupMemory);
}
// Implementation of global_barrier without using atomic instructions except for fences.
void __global_barrier_nonatomic()
{
//Make sure each WKG item hit the barrier.
__intel_workgroup_barrier(Device, AcquireRelease | CrossWorkgroupMemory);
__global volatile uchar* syncBuffer = __builtin_IB_get_sync_buffer();
bool firstThreadPerWg = __intel_is_first_work_group_item();
uint groupLinearId = (__builtin_IB_get_group_id(2) * __builtin_IB_get_num_groups(1) * __builtin_IB_get_num_groups(0)) + (__builtin_IB_get_group_id(1) * __builtin_IB_get_num_groups(0)) + __builtin_IB_get_group_id(0);
//Now first thread of each wkg writes to designated place in syncBuffer
if (firstThreadPerWg)
{
syncBuffer[groupLinearId] = 1;
atomic_work_item_fence(CLK_GLOBAL_MEM_FENCE, memory_order_release, memory_scope_device); // == write_mem_fence(CLK_GLOBAL_MEM_FENCE);
}
uint numGroups = __builtin_IB_get_num_groups(0) * __builtin_IB_get_num_groups(1) * __builtin_IB_get_num_groups(2);
//Higher wkg ids tend to not have work to do in all cases, therefore I choose last wkg to wait for the others, as it is most likely it will hit this code sooner.
if (groupLinearId == (numGroups - 1))
{
uint localSize = __intel_get_local_size();
//24 -48 case
volatile uchar Value;
do
{
atomic_work_item_fence(CLK_GLOBAL_MEM_FENCE, memory_order_acquire, memory_scope_device); // == read_mem_fence(CLK_GLOBAL_MEM_FENCE);
Value = 1;
for (uint i = __intel_get_local_linear_id(); i < numGroups; i += localSize)
{
Value = Value & syncBuffer[i];
}
} while (Value == 0);
__intel_workgroup_barrier(Device, AcquireRelease | CrossWorkgroupMemory);
for (uint i = __intel_get_local_linear_id(); i < numGroups; i += localSize)
{
syncBuffer[i] = 0;
}
atomic_work_item_fence(CLK_GLOBAL_MEM_FENCE, memory_order_release, memory_scope_device); // == write_mem_fence(CLK_GLOBAL_MEM_FENCE);
}
if (firstThreadPerWg)
{
while (syncBuffer[groupLinearId] != 0) {
atomic_work_item_fence(CLK_GLOBAL_MEM_FENCE, memory_order_acquire, memory_scope_device); // == read_mem_fence(CLK_GLOBAL_MEM_FENCE);
};
}
__intel_workgroup_barrier(Device, AcquireRelease | CrossWorkgroupMemory);
}
void global_barrier() {
__global_barrier_nonatomic();
}
void system_memfence(char fence_typed_memory)
{
return __builtin_IB_system_memfence(fence_typed_memory);
}
|