1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2022 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "AtomicOptPass.hpp"
#include "CodeGenPublicEnums.h"
#include "IGCIRBuilder.h"
#include <llvm/IR/Function.h>
#include <llvmWrapper/IR/PatternMatch.h>
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/helper.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "common/LLVMWarningsPush.hpp"
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
using namespace llvm::PatternMatch;
char AtomicOptPass::ID = 0;
#define PASS_FLAG "opt-atomics-pass"
#define PASS_DESCRIPTION "Optimization of atomic instructions that write to the same memory"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(AtomicOptPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_END(AtomicOptPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
AtomicOptPass::AtomicOptPass() : FunctionPass(ID) {
initializeAtomicOptPassPass(*PassRegistry::getPassRegistry());
}
//This function creates GenISA.WaveAll intrinsic before the Pos instruction.
//This function uses the arguments of an atomic operation.
Instruction *AtomicOptPass::createReduce(Instruction *Pos, Value *ValueForReduce) {
IRBuilder<> Builder(Pos);
Value *OpVal = Builder.getInt8((uint8_t)WaveOps::FSUM);
Value *Args[3] = {ValueForReduce, OpVal, Builder.getInt32(0)};
Function *WaveAll = GenISAIntrinsic::getDeclaration(M,
GenISAIntrinsic::GenISA_WaveAll,
ValueForReduce->getType());
Value *WaveCall = Builder.CreateCall(WaveAll, Args);
return cast<Instruction>(WaveCall);
}
//This function checks the atomic emulation pattern:
//
//%call1 = call i32 @llvm.genx.GenISA.intatomicrawA64.i32.p1i32.p1i32(i32 addrspace(1)* %1, i32 addrspace(1)* %1, i32 0, i32 9)
//%bc1 = bitcast i32 %call1 to float
//%operation = fadd float %bc1, -2.000000e+00
//%bc2 = bitcast float %operation to i32
//%call2 = call i32 @llvm.genx.GenISA.icmpxchgatomicrawA64.i32.p1i32.p1i32(i32 addrspace(1)* %1, i32 addrspace(1)* %1, i32 %call1, i32 %bc2)
//%cmp = icmp eq i32 %call1, %call2
//br i1 %cmp, label %exit, label %back
bool AtomicOptPass::checkFloatAtomicEmulation(Instruction *Inst, size_t &OperandPos) {
GenIntrinsicInst *GInst = cast<GenIntrinsicInst>(Inst);
if (GInst->getIntrinsicID() != GenISAIntrinsic::GenISA_intatomicrawA64)
return false;
ConstantInt *Op = dyn_cast<ConstantInt>(Inst->getOperand(3));
ConstantInt *AtomVal = dyn_cast<ConstantInt>(Inst->getOperand(2));
if (!Op || !AtomVal)
return false;
if ((Op->getSExtValue() != AtomicOp::EATOMIC_OR) || (AtomVal->getSExtValue() != 0))
return false;
BasicBlock *BbWithAtomic = GInst->getParent();
if (BbWithAtomic->hasNPredecessorsOrMore(3))
return false;
BitCastInst *FirstBitcastInstr = dyn_cast<BitCastInst>(GInst->getNextNonDebugInstruction());
if (!FirstBitcastInstr)
return false;
Instruction *OpInstr = FirstBitcastInstr->getNextNonDebugInstruction();
if (!OpInstr || !OpInstr->isFast())
return false;
BitCastInst *SecondBitcastInstr = dyn_cast<BitCastInst>(OpInstr->getNextNonDebugInstruction());
if (!SecondBitcastInstr)
return false;
GenIntrinsicInst *AtomicFinishInstr = dyn_cast<GenIntrinsicInst>(SecondBitcastInstr->getNextNonDebugInstruction());
if (!AtomicFinishInstr)
return false;
if (AtomicFinishInstr->getIntrinsicID() != GenISAIntrinsic::GenISA_icmpxchgatomicrawA64)
return false;
CmpInst *CmpInstr = dyn_cast<CmpInst>(AtomicFinishInstr->getNextNonDebugInstruction());
if (!CmpInstr)
return false;
auto BitCastPat1 = m_BitCast(m_FAdd(m_BitCast(m_Instruction(Inst)), m_Value()));
auto BitCastPat2 = m_BitCast(m_FAdd(m_Value(), m_BitCast(m_Instruction(Inst))));
if (match(cast<Value>(SecondBitcastInstr), BitCastPat1))
OperandPos = 1;
else if (match(cast<Value>(SecondBitcastInstr), BitCastPat2))
OperandPos = 0;
else
return false;
CmpInst::Predicate Pred = CmpInst::Predicate::ICMP_EQ;
Instruction *FinishInstr = cast<Instruction>(AtomicFinishInstr);
auto CmpPattern = m_Cmp(Pred, m_Instruction(Inst), m_Instruction(FinishInstr));
if (!match(cast<Value>(CmpInstr), CmpPattern))
return false;
return true;
}
//Create Subgroup Local Id Built-in befor the instruction Pos
Value *AtomicOptPass::getSubgroupLocalIdBI(Instruction *Pos) {
IRBuilder<> Builder(Pos);
Function *simdLaneIdIntrinsic = GenISAIntrinsic::getDeclaration(
Pos->getModule(),
GenISAIntrinsic::GenISA_simdLaneId);
Value *subgroupLocalInvocationId = Builder.CreateZExtOrTrunc(
Builder.CreateCall(simdLaneIdIntrinsic),
Builder.getInt32Ty());
return subgroupLocalInvocationId;
}
bool AtomicOptPass::runOnFunction(Function &F)
{
Changed = false;
M = F.getParent();
llvm::SmallVector<std::tuple<Instruction*, BasicBlock*, BasicBlock*, Instruction*, size_t>, 32> AtomicsEmulationToProcess;
Wi = &getAnalysis<WIAnalysis>();
for (auto &B : F) {
for (auto &I : B) {
if (!isa<GenIntrinsicInst>(&I))
continue;
if (I.getNumOperands() == 0)
continue;
uint8_t DepType = Wi->whichDepend(I.getOperand(0));
if (DepType != IGC::WIBaseClass::WIDependancy::UNIFORM_GLOBAL &&
DepType != IGC::WIBaseClass::WIDependancy::UNIFORM_WORKGROUP &&
DepType != IGC::WIBaseClass::WIDependancy::UNIFORM_THREAD) {
continue;
}
size_t OperandPos = 0;
//Here we check if this is an atomic instruction emulation or not.
if (checkFloatAtomicEmulation(&I, OperandPos)) {
Instruction *FirstBitcastInstr = I.getNextNonDebugInstruction();
Instruction *MainInstr = FirstBitcastInstr->getNextNonDebugInstruction();
BasicBlock *BbWithAtomic = I.getParent();
BasicBlock *BackBb = nullptr;
BasicBlock *EntryBb = nullptr;
BasicBlock *ExitBb = nullptr;
//Here we are trying to determine the basic block from which we enter the emulation (EntryBb),
//the basic block, which brings us back to the emulation loop (BackBb) and
//the basic block that comes right after the emulation (ExitBb)
for (BasicBlock *Pred : predecessors(BbWithAtomic)) {
BasicBlock *PredBb = Pred->getSinglePredecessor();
if (Pred == BbWithAtomic)
BackBb = BbWithAtomic;
else if (PredBb != BbWithAtomic)
EntryBb = Pred;
else if (PredBb == BbWithAtomic)
BackBb = Pred;
}
if (!BackBb || !EntryBb)
continue;
if (Wi->insideDivergentCF(EntryBb->getTerminator()))
continue;
for (BasicBlock *Succ : successors(BbWithAtomic))
if (Succ != BackBb)
ExitBb = Succ;
if (!ExitBb)
continue;
std::tuple instrTuple = std::make_tuple(&I, BackBb, ExitBb, MainInstr, OperandPos);
AtomicsEmulationToProcess.push_back(instrTuple);
}
}
}
for (auto& [AtomicInstr, BackBb, FinishBb, AtomicMain, MainInstrArgPos] : AtomicsEmulationToProcess)
{
BasicBlock *Bb = AtomicInstr->getParent();
BasicBlock *Bb1 = Bb->splitBasicBlock(AtomicInstr);
Instruction *BbTerm = Bb->getTerminator();
Value *ReduceVal = AtomicMain->getOperand((unsigned int)MainInstrArgPos);
Instruction *NewReduce = createReduce(BbTerm, ReduceVal);
if (!NewReduce)
continue;
IRBuilder<> Builder(BbTerm);
AtomicMain->setOperand((unsigned int)MainInstrArgPos, NewReduce);
Value *Id = getSubgroupLocalIdBI(NewReduce);
Value *ConstInt = Builder.getInt32(0);
Value *Cmp = Builder.CreateICmpEQ(Id, ConstInt);
Builder.CreateCondBr(Cmp, Bb1, FinishBb);
BbTerm->eraseFromParent();
if (BackBb == Bb)
BackBb = Bb1;
BranchInst *BackBranch = cast<BranchInst>(BackBb->getTerminator());
if (BackBranch->isConditional()) {
if (BackBranch->getSuccessor(0) == Bb) {
BackBranch->setSuccessor(0, Bb1);
} else if (BackBranch->getSuccessor(1) == Bb) {
BackBranch->setSuccessor(1, Bb1);
}
} else {
BackBranch->setSuccessor(0, Bb1);
}
Changed = true;
}
return Changed;
}
|