File: BlockMemOpAddrScalarizationPass.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (323 lines) | stat: -rw-r--r-- 11,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*========================== begin_copyright_notice ============================

Copyright (C) 2023 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "BlockMemOpAddrScalarizationPass.hpp"
#include "CodeGenPublicEnums.h"
#include "IGCIRBuilder.h"
#include <llvm/IR/Function.h>

#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/helper.h"

#include "common/LLVMWarningsPush.hpp"
#include "common/LLVMWarningsPop.hpp"

using namespace llvm;
using namespace IGC;

char BlockMemOpAddrScalarizationPass::ID = 0;

#define PASS_FLAG "block-memop-addr-scalar"
#define PASS_DESCRIPTION "Scalarization of address calculations for block memory operations."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(BlockMemOpAddrScalarizationPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_END(BlockMemOpAddrScalarizationPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

BlockMemOpAddrScalarizationPass::BlockMemOpAddrScalarizationPass() : FunctionPass(ID) {
    initializeBlockMemOpAddrScalarizationPassPass(*PassRegistry::getPassRegistry());
}

bool BlockMemOpAddrScalarizationPass::runOnFunction(Function &F) {
    Changed = false;
    WI = &getAnalysis<WIAnalysis>();
    visit(F);
    InstCanBeScalarized.clear();
    ExistingBroadcasts.clear();
    return Changed;
}

void BlockMemOpAddrScalarizationPass::visitCallInst(CallInst& C) {
    if (GenIntrinsicInst *I = dyn_cast<GenIntrinsicInst>(&C)) {
        GenISAIntrinsic::ID id = I->getIntrinsicID();
        if (id == GenISAIntrinsic::GenISA_simdBlockRead || id == GenISAIntrinsic::GenISA_simdBlockWrite)
            scalarizeAddrArithmForBlockRdWr(I);
    }
}

// This function checks if InstForCheck can be scalarized.
bool BlockMemOpAddrScalarizationPass::canInstBeScalarized(Instruction *InstForCheck, Instruction *Root) {
    if (checkInst(InstForCheck) != InstType::CanBeScalar)
        return false;

    bool GotFinalInst = false;
    for (auto Op = InstForCheck->op_begin(), E = InstForCheck->op_end(); Op != E; Op++) {
        if (Instruction *IOp = dyn_cast<Instruction>(Op)) {
            GotFinalInst = true;
            // Don't process any vector instructions.
            if (IOp->getType()->isVectorTy())
                return false;
        }
    }

    // If InstForCheck does not have any instruction operands, scalarize its result which is used in Root instruction.
    if (!GotFinalInst)
        return false;

    // This check showes that InstForCheck is used only the address calculation chain.
    if (InstForCheck->hasOneUse())
        return true;

    SmallVector<std::tuple<Instruction*, Instruction*, bool>, 32> UseStack;
    SmallVector<Instruction*, 32> Steps;
    Steps.push_back(InstForCheck);
    for (auto U : InstForCheck->users()) {
        if (Instruction *I = dyn_cast<Instruction>(U)) {
            if (I != Root) {
                UseStack.push_back({I, InstForCheck, false});
            }
        }
    }

    while (UseStack.size()) {
        auto &[CurrUse, CurrRoot, Analized] = UseStack.back();

        if (Steps.back() != CurrRoot)
            Steps.pop_back();

        // If we have already analyzed this instruction.
        if (Analized) {
            UseStack.pop_back();
            continue;
        }

        // Mark use as visited.
        Analized = true;

        InstType Res = checkInst(CurrUse);
        if (Res == InstType::BlcokMemOp) {
            Instruction *Op0 = dyn_cast<Instruction>(CurrUse->getOperand(0));
            if (Op0 == CurrRoot) {
                UseStack.pop_back();
                continue;
            }
        } else if (Res == InstType::PreventScalar) {
            return false;
        }

        if (!CurrUse->use_empty()) {
            Steps.push_back(CurrUse);
            for (auto U : CurrUse->users()) {
                if (Instruction *I = dyn_cast<Instruction>(U)) {
                    // This check helps to avoid hanging in the following example:
                    //  entry:
                    //    ...
                    //    br label bb1
                    //  bb1:
                    //    %phires = phi i32 [ %0, %entry ], [ %sum, %bb2 ]
                    //    %cmp = icmp ult i32 %phires, 20
                    //    br i1 %cmp, label %bb2, label %bb3
                    //  bb2:
                    //    %sum = add i32 %%phires, 1
                    //  bb3:
                    //    ...
                    if (std::find(Steps.begin(), Steps.end(), I) != Steps.end())
                        continue;

                    UseStack.push_back({I, CurrUse, false});
                }
            }
        } else {
            UseStack.pop_back();
        }
    }

    return true;
}

InstType BlockMemOpAddrScalarizationPass::checkInst(Instruction *I) {
    bool Check = false;
    // If this I instruction is BlockRead/BlockWrite then return true for current user.
    if (GenIntrinsicInst *GenInst = dyn_cast<GenIntrinsicInst>(I)) {
        GenISAIntrinsic::ID Id = GenInst->getIntrinsicID();
        if (Id == GenISAIntrinsic::GenISA_simdBlockRead || Id == GenISAIntrinsic::GenISA_simdBlockWrite)
            return InstType::BlcokMemOp;
    }

    if (I->isBinaryOp())
        Check = true;

    if (I->isCast())
        Check = true;

    if (isa<GetElementPtrInst>(I))
        Check = true;

    if (isa<PHINode>(I))
        Check = true;

    // Skip intrinsics that don't actually represent code after lowering.
    auto canSkipCall = [](Instruction *I) {
        if (IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(I)) {
            switch (Intr->getIntrinsicID()) {
                default:
                    break;
                case Intrinsic::assume:
                case Intrinsic::dbg_declare:
                case Intrinsic::dbg_value:
                case Intrinsic::dbg_label:
                case Intrinsic::lifetime_start:
                case Intrinsic::lifetime_end:
                    return true;
            }
        }
        return false;
    };

    if (canSkipCall(I))
        Check = true;

    if (!Check)
        return InstType::PreventScalar;

    return InstType::CanBeScalar;
}

Value *BlockMemOpAddrScalarizationPass::insertBroadcast(Instruction *InstForBroadcast) {
    Value *ShuffleRes = nullptr;
    Instruction *PlaceForInsert = nullptr;

    if (isa<PHINode>(InstForBroadcast))
        PlaceForInsert = InstForBroadcast->getParent()->getFirstNonPHI();
    else
        PlaceForInsert = InstForBroadcast->getNextNonDebugInstruction();

    IRBuilder<> Builder(PlaceForInsert);

    if (ExistingBroadcasts.count(InstForBroadcast)) {
        // If broadcast was created before.
        ShuffleRes = ExistingBroadcasts[InstForBroadcast];
    } else {
        Type *CurType = InstForBroadcast->getType();
        Value *ValForShuffle = nullptr;

        if (CurType->getScalarSizeInBits() == 1)
            ValForShuffle = Builder.CreateZExtOrTrunc(InstForBroadcast, Builder.getInt8Ty());
        else if (CurType->isPointerTy())
            ValForShuffle = Builder.CreatePtrToInt(InstForBroadcast, Builder.getInt64Ty());
        else
            ValForShuffle = cast<Value>(InstForBroadcast);

        Value *Args[3] = {ValForShuffle, Builder.getInt32(0), Builder.getInt32(0)};
        Type *Types[3] = {ValForShuffle->getType(), Builder.getInt32Ty(), Builder.getInt32Ty()};
        Function *BroadcastFunc = GenISAIntrinsic::getDeclaration(InstForBroadcast->getModule(),
            GenISAIntrinsic::GenISA_WaveShuffleIndex,
            Types);
        Value *BroadcastCall = Builder.CreateCall(BroadcastFunc, Args);

        if (CurType->getScalarSizeInBits() == 1)
            ShuffleRes = Builder.CreateZExtOrTrunc(BroadcastCall, CurType);
        else if (CurType->isPointerTy())
            ShuffleRes = Builder.CreateIntToPtr(BroadcastCall, CurType);
        else
            ShuffleRes = BroadcastCall;

        ExistingBroadcasts.insert({InstForBroadcast, ShuffleRes});
    }

    return ShuffleRes;
}

bool BlockMemOpAddrScalarizationPass::scalarizeAddrArithmForBlockRdWr(GenIntrinsicInst *BlockInstr)
{
    bool Scalarized = false;
    Instruction *AddrInstr = dyn_cast<Instruction>(BlockInstr->getOperand(0));
    if (!AddrInstr)
        return Scalarized;

    // This map will contain instructions (keys) that will be broadcast, and instructions (values) where the result of the broadcast will be used.
    DenseMap<Instruction*, SmallVector<Instruction*, 4>> InstForBrd;

    SmallVector<Instruction*, 2> V = {AddrInstr};
    // This vector contains the root instruction that was checked in previous steps and its operands that will be checked in the current step.
    SmallVector<std::tuple<Instruction*, SmallVector<Instruction*, 2>>, 2> InstrVector = {{BlockInstr, V}};
    while (InstrVector.size()) {
        // Data structure for further iterations.
        decltype(InstrVector) NewInstrVector;

        for (const auto& [Root, Insts] : InstrVector) {
            for (Instruction *I : Insts) {
                if (InstCanBeScalarized.count(I))
                    continue;

                // Check I instruction and its users.
                if (canInstBeScalarized(I, Root)) {
                    InstCanBeScalarized.insert(I);

                    // Now lets check its arguments.
                    SmallVector<Instruction*, 2> newInsts;
                    for (auto Op = I->op_begin(), E = I->op_end(); Op != E; Op++) {
                        if (Instruction *InOp = dyn_cast<Instruction>(*Op)) {
                            if (WI->isUniform(InOp))
                                continue;

                            newInsts.push_back(InOp);
                        }
                    }

                    NewInstrVector.emplace_back(I, newInsts);
                } else {
                    // Terminate the algorithm if the address is NOT used in any instructions other than BlockWrite/BlockRead.
                    if (I == BlockInstr->getOperand(0))
                        return Scalarized;

                    if (InstForBrd.count(I)) {
                        if (std::find(InstForBrd[I].begin(), InstForBrd[I].end(), Root) != InstForBrd[I].end())
                            continue;

                        InstForBrd[I].push_back(Root);
                    } else {
                        InstForBrd.insert({I, {Root}});
                    }
                }
            }
        }
        // Update instructions list for next check.
        InstrVector = std::move(NewInstrVector);
    }

    // Insert broadcast instructions
    for (const auto &Item : InstForBrd) {
        Instruction *InstForBrd = Item.first;

        if (GenIntrinsicInst *GenInst = dyn_cast<GenIntrinsicInst>(InstForBrd)) {
            GenISAIntrinsic::ID Id = GenInst->getIntrinsicID();
            if (Id == GenISAIntrinsic::GenISA_WaveShuffleIndex)
                continue;
        }

        Value *BroadcastInstr = insertBroadcast(InstForBrd);
        if (!BroadcastInstr)
            continue;
        Scalarized = true;

        for (auto Root : Item.second) {
            size_t ArgNum = 0;
            for (auto Op = Root->op_begin(), E = Root->op_end(); Op != E; Op++) {
                if (dyn_cast<Instruction>(Op) == InstForBrd) {
                    Root->setOperand(ArgNum, BroadcastInstr);
                    break;
                }
                ArgNum++;
            }
        }
    }

    return Scalarized;
}