1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
/*========================== begin_copyright_notice ============================
This file is distributed under the University of Illinois Open Source License.
See LICENSE.TXT for details.
============================= end_copyright_notice ===========================*/
#include <fstream>
#include "common/debug/Debug.hpp"
#include "common/debug/Dump.hpp"
#include "common/Stats.hpp"
#include "common/LLVMUtils.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Verifier.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvmWrapper/IR/Function.h"
#include "llvmWrapper/IR/Value.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include <llvmWrapper/Analysis/TargetLibraryInfo.h>
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/CISACodeGen/CodeSinking.hpp"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC::Debug;
namespace IGC {
/// ================================= ///
/// Common functions for code sinking ///
/// ================================= ///
// Move referenced DbgValueInst intrinsics calls after defining instructions
// it is required for correct work of LiveVariables analysis and other
static void ProcessDbgValueInst(BasicBlock& blk, DominatorTree *DT)
{
BasicBlock::iterator I = blk.end();
--I;
bool processedBegin = false;
do {
Instruction* inst = cast<Instruction>(I);
processedBegin = (I == blk.begin());
if (!processedBegin)
--I;
if (auto* DVI = dyn_cast<DbgValueInst>(inst))
{
// As debug intrinsics are not specified as users of an llvm instructions,
// it may happen during transformation/optimization the first argument is
// malformed (actually is dead). Not to chase each possible optimzation
// let's do a general check here.
if (DVI->getValue() != nullptr) {
if (auto* def = dyn_cast<Instruction>(DVI->getValue()))
{
if (!DT->dominates(def, inst))
{
auto* instClone = inst->clone();
instClone->insertAfter(def);
Value* undef = UndefValue::get(def->getType());
MetadataAsValue* MAV = MetadataAsValue::get(inst->getContext(), ValueAsMetadata::get(undef));
cast<CallInst>(inst)->setArgOperand(0, MAV);
}
}
}
else {
// The intrinsic is actually unneeded and will be removed later. Thus the type of the
// first argument is not important now.
Value* undef = UndefValue::get(llvm::Type::getInt32Ty(inst->getContext()));
MetadataAsValue* MAV = MetadataAsValue::get(inst->getContext(), ValueAsMetadata::get(undef));
cast<CallInst>(inst)->setArgOperand(0, MAV);
}
}
} while (!processedBegin);
}
// Check if the instruction is a load or an allowed intrinsic that reads memory
static bool isAllowedLoad(Instruction *I)
{
if (isa<LoadInst>(I))
return true;
if (GenIntrinsicInst *Intr = dyn_cast<GenIntrinsicInst>(I))
{
switch (Intr->getIntrinsicID())
{
case GenISAIntrinsic::GenISA_LSC2DBlockRead:
case GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload:
return true;
default:
break;
}
}
return false;
}
// Find the BasicBlock to sink
// return nullptr if instruction cannot be moved to another block
static BasicBlock* findLowestSinkTarget(Instruction* inst,
SmallPtrSetImpl<Instruction*>& usesInBlk,
bool& outerLoop,
bool doLoopSink,
llvm::DominatorTree* DT,
llvm::LoopInfo* LI
)
{
usesInBlk.clear();
BasicBlock *tgtBlk = nullptr;
outerLoop = false;
for (Value::user_iterator I = inst->user_begin(), E = inst->user_end(); I != E; ++I)
{
// Determine the block of the use.
Instruction* useInst = cast<Instruction>(*I);
BasicBlock* useBlock = useInst->getParent();
if (PHINode * PN = dyn_cast<PHINode>(useInst))
{
// PHI nodes use the operand in the predecessor block,
// not the block with the PHI.
Use& U = I.getUse();
unsigned num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
useBlock = PN->getIncomingBlock(num);
}
else
{
if (useBlock == inst->getParent())
{
return nullptr;
}
}
if (tgtBlk == nullptr)
{
tgtBlk = useBlock;
}
else
{
tgtBlk = DT->findNearestCommonDominator(tgtBlk, useBlock);
if (tgtBlk == nullptr)
break;
}
}
BasicBlock* curBlk = inst->getParent();
Loop* curLoop = LI->getLoopFor(inst->getParent());
while (tgtBlk && tgtBlk != curBlk)
{
Loop* tgtLoop = LI->getLoopFor(tgtBlk);
EOPCODE intrinsic_name = GetOpCode(inst);
// sink the pln instructions in the loop to reduce pressure
// Sink instruction outside of loop into the loop if doLoopSink is true.
if (intrinsic_name == llvm_input ||
(!tgtLoop || tgtLoop->contains(curLoop)) ||
(doLoopSink && tgtLoop && (!curLoop || curLoop->contains(tgtLoop))))
{
for (Value::user_iterator I = inst->user_begin(), E = inst->user_end(); I != E; ++I)
{
// Determine the block of the use.
Instruction* useInst = cast<Instruction>(*I);
BasicBlock* useBlock = useInst->getParent();
if (useBlock == tgtBlk)
{
usesInBlk.insert(useInst);
}
}
outerLoop = (tgtLoop != curLoop);
return tgtBlk;
}
else
{
tgtBlk = DT->getNode(tgtBlk)->getIDom()->getBlock();
}
}
return nullptr;
}
static bool isCastInstrReducingPressure(Instruction* Inst, bool FlagPressureAware)
{
if (auto CI = dyn_cast<CastInst>(Inst))
{
unsigned SrcSize = (unsigned int)CI->getSrcTy()->getPrimitiveSizeInBits();
unsigned DstSize = (unsigned int)CI->getDestTy()->getPrimitiveSizeInBits();
if (SrcSize == 0 || DstSize == 0)
{
// Non-primitive types.
return false;
}
if (FlagPressureAware)
{
if (SrcSize == 1)
{
// i1 -> i32, reduces GRF pressure but increases flag pressure.
// Do not consider it as reduce.
return false;
}
else if (DstSize == 1)
{
// i32 -> i1, reduces flag pressure but increases grf pressure.
// Consider it as reduce.
return true;
}
if (SrcSize < DstSize)
{
// sext i32 to i64.
return true;
}
}
else
{
return SrcSize < DstSize;
}
}
return false;
}
// Number of instructions in the function
static unsigned numInsts(const Function& F)
{
return std::count_if(llvm::inst_begin(F), llvm::inst_end(F), [](const auto& I){ return !isDbgIntrinsic(&I); });
}
/// ===================== ///
/// Non-loop code sinking ///
/// ===================== ///
// Register pass to igc-opt
#define PASS_FLAG "igc-code-sinking"
#define PASS_DESCRIPTION "code sinking"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(CodeSinking, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(CodeSinking, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char CodeSinking::ID = 0;
CodeSinking::CodeSinking() : FunctionPass(ID) {
initializeCodeSinkingPass(*PassRegistry::getPassRegistry());
}
// Sink the code down the tree, but not in the loop
bool CodeSinking::treeSink(Function &F)
{
bool IterChanged, EverChanged = false;
totalGradientMoved = 0;
// even if we limit code-sinking to ps-input instructions, we still need to iterate through
// all the blocks because llvm-InstCombine may have sinked some ps-input instructions out of entry-block
do
{
IterChanged = false;
// Process all basic blocks in dominator-tree post-order
for (po_iterator<DomTreeNode*> domIter = po_begin(DT->getRootNode()),
domEnd = po_end(DT->getRootNode()); domIter != domEnd; ++domIter)
{
IterChanged |= processBlock(*(domIter->getBlock()));
}
} while (IterChanged);
EverChanged = IterChanged;
for (auto BI = LocalBlkSet.begin(), BE = LocalBlkSet.end(); BI != BE; BI++)
{
IterChanged = localSink(*BI);
EverChanged |= IterChanged;
}
LocalBlkSet.clear();
LocalInstSet.clear();
CTX->m_numGradientSinked = totalGradientMoved;
return EverChanged;
}
bool CodeSinking::runOnFunction(Function& F)
{
if (skipFunction(F))
return false;
CTX = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
// only limited code-sinking to several shader-type
// vs input has the URB-reuse issue to be resolved.
// Also need to understand the performance benefit better.
if (CTX->type != ShaderType::PIXEL_SHADER &&
CTX->type != ShaderType::DOMAIN_SHADER &&
CTX->type != ShaderType::OPENCL_SHADER &&
CTX->type != ShaderType::RAYTRACING_SHADER &&
CTX->type != ShaderType::COMPUTE_SHADER)
{
return false;
}
if (IGC_IS_FLAG_ENABLED(DisableCodeSinking) ||
numInsts(F) < IGC_GET_FLAG_VALUE(CodeSinkingMinSize))
{
return false;
}
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DL = &F.getParent()->getDataLayout();
bool Changed = treeSink(F);
if (Changed)
{
// the verifier currently rejects allocas with non-default
// address space (which is legal). Raytracing does this, so we skip
// verification here.
if (CTX->type != ShaderType::RAYTRACING_SHADER)
{
IGC_ASSERT(false == verifyFunction(F, &dbgs()));
}
}
return Changed;
}
bool CodeSinking::processBlock(BasicBlock& blk)
{
if (blk.empty())
return false;
uint32_t registerPressureThreshold = CTX->getNumGRFPerThread();
uint pressure0 = 0;
if (registerPressureThreshold)
{
// estimate live-out register pressure for this blk
pressure0 = estimateLiveOutPressure(&blk, DL);
}
bool madeChange = false;
numGradientMovedOutBB = 0;
// Walk the basic block bottom-up. Remember if we saw a store.
BasicBlock::iterator I = blk.end();
--I;
bool processedBegin = false;
bool metDbgValueIntrinsic = false;
SmallPtrSet<Instruction*, 16> stores;
UndoLocas.clear();
MovedInsts.clear();
Instruction* prevLoca = 0x0;
do {
Instruction* inst = &(*I); // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by sinking.
processedBegin = (I == blk.begin());
if (!processedBegin)
--I;
if (inst->mayWriteToMemory())
{
stores.insert(inst);
prevLoca = inst;
}
// intrinsic like discard has no explict use, gets skipped here
else if (isa<DbgInfoIntrinsic>(inst) || inst->isTerminator() ||
isa<PHINode>(inst) || inst->use_empty())
{
if (isa<DbgValueInst>(inst))
{
metDbgValueIntrinsic = true;
}
prevLoca = inst;
}
else {
Instruction* undoLoca = prevLoca;
prevLoca = inst;
if (sinkInstruction(inst, stores))
{
if (ComputesGradient(inst))
numGradientMovedOutBB++;
madeChange = true;
MovedInsts.push_back(inst);
UndoLocas.push_back(undoLoca);
}
}
// If we just processed the first instruction in the block, we're done.
} while (!processedBegin);
if (registerPressureThreshold)
{
if (madeChange)
{
// measure the live-out register pressure again
uint pressure1 = estimateLiveOutPressure(&blk, DL);
if (pressure1 > pressure0 + registerPressureThreshold)
{
rollbackSinking(&blk);
madeChange = false;
}
else
{
totalGradientMoved += numGradientMovedOutBB;
}
}
}
if ((madeChange || metDbgValueIntrinsic) && CTX->m_instrTypes.hasDebugInfo) {
ProcessDbgValueInst(blk, DT);
}
return madeChange;
}
bool CodeSinking::sinkInstruction(
Instruction *InstToSink,
SmallPtrSetImpl<Instruction *> &Stores
)
{
// Check if it's safe to move the instruction.
bool HasAliasConcern = false;
bool ReducePressure = false;
if (!isSafeToMove(InstToSink, ReducePressure, HasAliasConcern, Stores))
return false;
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
BasicBlock *SuccToSinkTo = nullptr;
SmallPtrSet<Instruction *, 16> UsesInBB;
if (!HasAliasConcern)
{
// find the lowest common dominator of all uses
bool IsOuterLoop = false;
if (BasicBlock *TgtBB = findLowestSinkTarget(InstToSink, UsesInBB, IsOuterLoop, false, DT, LI))
{
// heuristic, avoid code-motion that does not reduce execution frequency
// but may increase register usage
if (ReducePressure ||
(TgtBB && (IsOuterLoop || !PDT->dominates(TgtBB, InstToSink->getParent()))))
{
SuccToSinkTo = TgtBB;
}
}
else
{
// local code motion for cases like cmp and pln
if (ReducePressure)
{
LocalBlkSet.insert(InstToSink->getParent());
LocalInstSet.insert(InstToSink);
}
return false;
}
}
else
{
// when aliasing is a concern, only look at all the immed successors and
// decide which one we should sink to, if any.
BasicBlock *CurBB = InstToSink->getParent();
for (succ_iterator I = succ_begin(InstToSink->getParent()),
E = succ_end(InstToSink->getParent()); I != E && SuccToSinkTo == 0; ++I)
{
// avoid sinking an instruction into its own block. This can
// happen with loops.
if ((*I) == CurBB)
continue;
// punt on it because of alias concern
if ((*I)->getUniquePredecessor() != CurBB)
continue;
// Don't move instruction across a loop.
Loop *succLoop = LI->getLoopFor((*I));
Loop *currLoop = LI->getLoopFor(CurBB);
if (succLoop != currLoop)
continue;
if (allUsesDominatedByBlock(InstToSink, (*I), UsesInBB))
SuccToSinkTo = *I;
}
}
// If we couldn't find a block to sink to, ignore this instruction.
if (!SuccToSinkTo)
{
return false;
}
if (!ReducePressure || HasAliasConcern)
{
InstToSink->moveBefore(&(*SuccToSinkTo->getFirstInsertionPt()));
}
// when alasing is not an issue and reg-pressure is not an issue
// move it as close to the uses as possible
else if (UsesInBB.empty())
{
InstToSink->moveBefore(SuccToSinkTo->getTerminator());
}
else if (UsesInBB.size() == 1)
{
InstToSink->moveBefore(*(UsesInBB.begin()));
}
else
{
// first move to the beginning of the target block
InstToSink->moveBefore(&(*SuccToSinkTo->getFirstInsertionPt()));
// later on, move it close to the use
LocalBlkSet.insert(SuccToSinkTo);
LocalInstSet.insert(InstToSink);
}
return true;
}
// Sink to the use within basic block
bool CodeSinking::localSink(BasicBlock *BB)
{
bool Changed = false;
for (auto &I : *BB)
{
Instruction *Use = &I;
// "Use" can be a phi-node for a single-block loop,
// which is not really a local-code-motion
if (isa<PHINode>(Use))
continue;
for (unsigned i = 0; i < Use->getNumOperands(); ++i)
{
Instruction *Def = dyn_cast<Instruction>(Use->getOperand(i));
if (!Def)
continue;
if (Def->getParent() == BB && LocalInstSet.count(Def))
{
if (Def->getNextNode() != Use)
{
Instruction *InsertPoint = Use;
Def->moveBefore(InsertPoint);
Changed = true;
}
LocalInstSet.erase(Def);
}
}
}
if (Changed && CTX->m_instrTypes.hasDebugInfo) {
ProcessDbgValueInst(*BB, DT);
}
return Changed;
}
bool CodeSinking::isSafeToMove(Instruction* inst
, bool& reducePressure
, bool& hasAliasConcern
, SmallPtrSetImpl<Instruction*>& Stores)
{
if (isa<AllocaInst>(inst) || isa<ExtractValueInst>(inst))
{
return false;
}
if (isa<CallInst>(inst) && cast<CallInst>(inst)->isConvergent())
{
return false;
}
hasAliasConcern = true;
reducePressure = false;
if (isa<GetElementPtrInst>(inst) ||
isa<ExtractElementInst>(inst) ||
isa<InsertElementInst>(inst) ||
isa<InsertValueInst>(inst) ||
(isa<UnaryInstruction>(inst) && !isa<LoadInst>(inst)) ||
isa<BinaryOperator>(inst))
{
hasAliasConcern = false;
// sink CmpInst to make the flag-register lifetime short
reducePressure = (isCastInstrReducingPressure(inst, true) || isa<CmpInst>(inst));
return true;
}
if (isa<CmpInst>(inst))
{
hasAliasConcern = false;
reducePressure = true;
return true;
}
EOPCODE intrinsic_name = GetOpCode(inst);
if (intrinsic_name == llvm_input ||
intrinsic_name == llvm_shaderinputvec)
{
if( IGC_IS_FLAG_ENABLED( DisableCodeSinkingInputVec ) )
{
hasAliasConcern = true;
reducePressure = false;
return false;
}
hasAliasConcern = false;
reducePressure = true;
return true;
}
if (IsMathIntrinsic(intrinsic_name) || IsGradientIntrinsic(intrinsic_name))
{
hasAliasConcern = false;
reducePressure = false;
return true;
}
if (isSampleInstruction(inst) || isGather4Instruction(inst) ||
isInfoInstruction(inst) || isLdInstruction(inst))
{
if (!inst->mayReadFromMemory())
{
hasAliasConcern = false;
return true;
}
}
if (isSubGroupIntrinsic(inst))
{
return false;
}
if (LoadInst * load = dyn_cast<LoadInst>(inst))
{
if (load->isVolatile())
return false;
BufferType bufType = GetBufferType(load->getPointerAddressSpace());
if (bufType == CONSTANT_BUFFER || bufType == RESOURCE)
{
hasAliasConcern = false;
return true;
}
if (!Stores.empty())
{
return false;
}
}
else
if (SamplerLoadIntrinsic * intrin = dyn_cast<SamplerLoadIntrinsic>(inst))
{
Value* texture = intrin->getTextureValue();
if (texture->getType()->isPointerTy())
{
unsigned as = texture->getType()->getPointerAddressSpace();
BufferType bufType = GetBufferType(as);
if (bufType == CONSTANT_BUFFER || bufType == RESOURCE)
{
hasAliasConcern = false;
return true;
}
else
{
return (Stores.empty());
}
}
else
{
hasAliasConcern = false;
return true;
}
}
else if (inst->mayReadFromMemory())
{
return (Stores.empty());
}
return true;
}
/// AllUsesDominatedByBlock - Return true if all uses of the specified value
/// occur in blocks dominated by the specified block.
bool CodeSinking::allUsesDominatedByBlock(Instruction* inst,
BasicBlock* blk,
SmallPtrSetImpl<Instruction*>& usesInBlk
) const
{
usesInBlk.clear();
// Ignoring debug uses is necessary so debug info doesn't affect the code.
// This may leave a referencing dbg_value in the original block, before
// the definition of the vreg. Dwarf generator handles this although the
// user might not get the right info at runtime.
for (Value::user_iterator I = inst->user_begin(), E = inst->user_end(); I != E; ++I)
{
// Determine the block of the use.
Instruction* useInst = cast<Instruction>(*I);
BasicBlock* useBlock = useInst->getParent();
if (useBlock == blk)
{
usesInBlk.insert(useInst);
}
if (PHINode * PN = dyn_cast<PHINode>(useInst))
{
// PHI nodes use the operand in the predecessor block,
// not the block with the PHI.
Use& U = I.getUse();
unsigned num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
useBlock = PN->getIncomingBlock(num);
}
// Check that it dominates.
if (!DT->dominates(blk, useBlock))
return false;
}
return true;
}
uint CodeSinking::estimateLiveOutPressure(BasicBlock* blk, const DataLayout* DL)
{
// Walk the basic block bottom-up. Remember if we saw a store.
uint pressure = 0;
BasicBlock::iterator I = blk->end();
--I;
bool processedBegin = false;
do {
Instruction* inst = &(*I); // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by sinking.
processedBegin = (I == blk->begin());
if (!processedBegin)
--I;
if (isa<DbgInfoIntrinsic>(inst))
continue;
// intrinsic like discard has no explicit use, get skipped here
if (inst->use_empty())
continue;
bool useOutside = false;
for (Value::user_iterator useI = inst->user_begin(), useE = inst->user_end();
!useOutside && useI != useE; ++useI)
{
// Determine the block of the use.
Instruction* useInst = cast<Instruction>(*useI);
BasicBlock* useBlock = useInst->getParent();
if (useBlock != blk)
{
if (PHINode * PN = dyn_cast<PHINode>(useInst))
{
// PHI nodes use the operand in the predecessor block,
// not the block with the PHI.
Use& U = useI.getUse();
unsigned num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
if (PN->getIncomingBlock(num) != blk)
{
useOutside = true;
}
}
else
{
useOutside = true;
}
}
}
// estimate register usage by value
if (useOutside)
{
pressure += (uint)(DL->getTypeAllocSize(inst->getType()));
}
// If we just processed the first instruction in the block, we're done.
} while (!processedBegin);
return pressure;
}
void CodeSinking::rollbackSinking(BasicBlock* BB)
{
// undo code motion
int NumChanges = MovedInsts.size();
for (int i = 0; i < NumChanges; ++i)
{
Instruction* UndoLoca = UndoLocas[i];
IGC_ASSERT(UndoLoca->getParent() == BB);
MovedInsts[i]->moveBefore(UndoLoca);
}
}
/// ==================///
/// Loop code sinking ///
/// ==================///
// Sink in the loop if loop preheader's potential to sink covers at least 20% of registers delta
// between grf number and max estimated pressure in the loop
#define LOOPSINK_PREHEADER_IMPACT_THRESHOLD 0.2
// Helper functions for loop sink debug dumps
#define PrintDump(Contents) if (IGC_IS_FLAG_ENABLED(DumpLoopSink)) {*LogStream << Contents;}
#define PrintInstructionDump(Inst) if (IGC_IS_FLAG_ENABLED(DumpLoopSink)) {(Inst)->print(*LogStream, false); *LogStream << "\n";}
#define PrintOUGDump(OUG) if (IGC_IS_FLAG_ENABLED(DumpLoopSink)) {OUG.print(*LogStream); *LogStream << "\n";}
// Register pass to igc-opt
#define PASS_FLAG1 "igc-code-loop-sinking"
#define PASS_DESCRIPTION1 "code loop sinking"
#define PASS_CFG_ONLY1 false
#define PASS_ANALYSIS1 false
IGC_INITIALIZE_PASS_BEGIN(CodeLoopSinking, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(TranslationTable)
IGC_INITIALIZE_PASS_DEPENDENCY(IGCLivenessAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(IGCFunctionExternalRegPressureAnalysis)
IGC_INITIALIZE_PASS_END(CodeLoopSinking, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
char CodeLoopSinking::ID = 0;
CodeLoopSinking::CodeLoopSinking() : FunctionPass(ID), LogStringStream(Log) {
if (IGC_IS_FLAG_ENABLED(PrintToConsole))
LogStream = &IGC::Debug::ods();
else
LogStream = &LogStringStream;
initializeCodeLoopSinkingPass(*PassRegistry::getPassRegistry());
}
bool CodeLoopSinking::runOnFunction(Function& F)
{
if (skipFunction(F))
return false;
CTX = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
if (CTX->type != ShaderType::OPENCL_SHADER)
return false;
if (IGC_IS_FLAG_ENABLED(DisableCodeSinking) ||
numInsts(F) < IGC_GET_FLAG_VALUE(CodeLoopSinkingMinSize))
{
return false;
}
if (IGC_IS_FLAG_ENABLED(DumpLoopSink))
{
auto printGlobalSettings = [](llvm::raw_ostream &LogStream)
{
// print every value to the dump
LogStream << "ForceLoopSink: " << IGC_GET_FLAG_VALUE(ForceLoopSink) << "\n";
LogStream << "EnableLoadsLoopSink: " << IGC_GET_FLAG_VALUE(EnableLoadsLoopSink) << "\n";
LogStream << "ForceLoadsLoopSink: " << IGC_GET_FLAG_VALUE(ForceLoadsLoopSink) << "\n";
LogStream << "PrepopulateLoadChainLoopSink: " << IGC_GET_FLAG_VALUE(PrepopulateLoadChainLoopSink) << "\n";
LogStream << "EnableLoadChainLoopSink: " << IGC_GET_FLAG_VALUE(EnableLoadChainLoopSink) << "\n";
LogStream << "LoopSinkRegpressureMargin: " << IGC_GET_FLAG_VALUE(LoopSinkRegpressureMargin) << "\n";
LogStream << "CodeLoopSinkingMinSize: " << IGC_GET_FLAG_VALUE(CodeLoopSinkingMinSize) << "\n";
LogStream << "CodeSinkingLoadSchedulingInstr: " << IGC_GET_FLAG_VALUE(CodeSinkingLoadSchedulingInstr) << "\n";
LogStream << "LoopSinkMinSaveUniform: " << IGC_GET_FLAG_VALUE(LoopSinkMinSaveUniform) << "\n";
LogStream << "LoopSinkMinSave: " << IGC_GET_FLAG_VALUE(LoopSinkMinSave) << "\n";
LogStream << "LoopSinkThresholdDelta: " << IGC_GET_FLAG_VALUE(LoopSinkThresholdDelta) << "\n";
LogStream << "LoopSinkRollbackThreshold: " << IGC_GET_FLAG_VALUE(LoopSinkRollbackThreshold) << "\n";
LogStream << "LoopSinkEnableLoadsRescheduling: " << IGC_GET_FLAG_VALUE(LoopSinkEnableLoadsRescheduling) << "\n";
LogStream << "LoopSinkEnable2dBlockReads: " << IGC_GET_FLAG_VALUE(LoopSinkEnable2dBlockReads) << "\n";
LogStream << "LoopSinkEnableVectorShuffle: " << IGC_GET_FLAG_VALUE(LoopSinkEnableVectorShuffle) << "\n";
LogStream << "LoopSinkForceRollback: " << IGC_GET_FLAG_VALUE(LoopSinkForceRollback) << "\n";
LogStream << "LoopSinkDisableRollback: " << IGC_GET_FLAG_VALUE(LoopSinkDisableRollback) << "\n";
LogStream << "LoopSinkAvoidSplittingDPAS: " << IGC_GET_FLAG_VALUE(LoopSinkAvoidSplittingDPAS) << "\n";
};
Log.clear();
printGlobalSettings(*LogStream);
PrintDump("=====================================\n");
PrintDump("Function " << F.getName() << "\n");
}
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
MDUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
ModMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
TranslationTable TT;
TT.run(F);
WI = WIAnalysisRunner(&F, LI, DT, PDT, MDUtils, CTX, ModMD, &TT);
WI.run();
// Note: FRPE is a Module analysis and currently it runs only once.
// If function A calls function B then
// it's possible that transformation of function A reduces the regpressure good enough
// and we could not apply sinking in function B, but we don't recompute FPRE
// to save compile time, so in this case LoopSinking might apply for loops in function B
RPE = &getAnalysis<IGCLivenessAnalysis>();
FRPE = &getAnalysis<IGCFunctionExternalRegPressureAnalysis>();
// clear caching structures before handling the new function
MemoizedStoresInLoops.clear();
BlacklistedLoops.clear();
BBPressures.clear();
bool Changed = loopSink(F);
if (Changed)
{
IGC_ASSERT(false == verifyFunction(F, &dbgs()));
}
if (IGC_IS_FLAG_ENABLED(DumpLoopSink) && IGC_IS_FLAG_DISABLED(PrintToConsole))
{
dumpToFile(Log);
}
return Changed;
}
void CodeLoopSinking::dumpToFile(const std::string& Log)
{
auto Name = Debug::DumpName(IGC::Debug::GetShaderOutputName())
.Hash(CTX->hash)
.Type(CTX->type)
.Retry(CTX->m_retryManager.GetRetryId())
.Pass("loopsink")
.Extension("txt");
IGC::Debug::DumpLock();
std::ofstream OutputFile(Name.str(), std::ios_base::app);
if (OutputFile.is_open())
{
OutputFile << Log;
}
OutputFile.close();
IGC::Debug::DumpUnlock();
}
// Implementation of RPE->getMaxRegCountForLoop(*L, SIMD);
// with per-BB pressure caching to improve compile-time
uint CodeLoopSinking::getMaxRegCountForLoop(Loop *L)
{
IGC_ASSERT(RPE);
Function *F = L->getLoopPreheader()->getParent();
uint SIMD = numLanes(RPE->bestGuessSIMDSize(F));
unsigned int Max = 0;
for (BasicBlock *BB : L->getBlocks())
{
auto BBPressureEntry = BBPressures.try_emplace(BB);
unsigned int &BBPressure = BBPressureEntry.first->second;
if (BBPressureEntry.second) // BB was not in the set, need to recompute
{
BBPressure = RPE->getMaxRegCountForBB(*BB, SIMD, &WI);
}
Max = std::max(BBPressure, Max);
}
return Max;
}
// this function returns the best known regpressure, not up-to-date repgressure
// it was implemented this way to cut compilation time costs
uint CodeLoopSinking::getMaxRegCountForFunction(Function *F)
{
unsigned int MaxPressure = 0;
for (auto BB : BBPressures)
{
if (BB.getFirst()->getParent() != F)
continue;
MaxPressure = std::max(BB.getSecond(), MaxPressure);
}
return MaxPressure;
}
// Find the loops with too high regpressure and sink the instructions from
// preheaders into them
bool CodeLoopSinking::loopSink(Function &F)
{
bool Changed = false;
for (auto &L : LI->getLoopsInPreorder())
{
LoopSinkMode SinkMode = IGC_IS_FLAG_ENABLED(ForceLoopSink) ? LoopSinkMode::FullSink : LoopSinkMode::NoSink;
if (SinkMode == LoopSinkMode::NoSink)
SinkMode = needLoopSink(L);
if (SinkMode != LoopSinkMode::NoSink)
Changed |= loopSink(L, SinkMode);
}
unsigned int MaxPressure = getMaxRegCountForFunction(&F);
RPE->publishRegPressureMetadata(F, MaxPressure + FRPE->getExternalPressureForFunction(&F));
return Changed;
}
LoopSinkMode CodeLoopSinking::needLoopSink(Loop *L)
{
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return LoopSinkMode::NoSink;
if (!RPE)
return LoopSinkMode::NoSink;
Function *F = Preheader->getParent();
uint GRFThresholdDelta = IGC_GET_FLAG_VALUE(LoopSinkThresholdDelta);
uint NGRF = CTX->getNumGRFPerThread();
uint SIMD = numLanes(RPE->bestGuessSIMDSize(F));
PrintDump("\n");
if (!Preheader->getName().empty())
{
PrintDump("Checking loop with preheader " << Preheader->getName() << ": \n");
}
else if (!Preheader->empty())
{
PrintDump("Checking loop with unnamed preheader. First preheader instruction:\n");
Instruction* First = &Preheader->front();
PrintInstructionDump(First);
}
else
{
PrintDump("Checking loop with unnamed empty preheader.");
}
if (IGC_IS_FLAG_ENABLED(LoopSinkEnableLoadsRescheduling))
{
for (auto &BB : L->getBlocks())
{
for (auto &I : *BB)
{
GenIntrinsicInst* GII = dyn_cast<GenIntrinsicInst>(&I);
if (GII && GII->getIntrinsicID() == GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload)
{
PrintDump(">> Loop has 2D block reads. Enabling loads rescheduling and sinking.\n");
return LoopSinkMode::SinkWhileRegpressureIsHigh;
}
}
}
}
// Estimate preheader's potential to sink
ValueSet PreheaderDefs = RPE->getDefs(*Preheader);
// Filter out preheader defined values that are used not in the loop or not supported
ValueSet PreheaderDefsCandidates;
for (Value *V : PreheaderDefs)
{
Instruction *I = dyn_cast<Instruction>(V);
if (I && mayBeLoopSinkCandidate(I, L))
{
PreheaderDefsCandidates.insert(V);
}
}
if (PreheaderDefsCandidates.empty())
{
PrintDump(">> No sinking candidates in the preheader.\n");
return LoopSinkMode::NoSink;
}
uint PreheaderDefsSizeInBytes = RPE->estimateSizeInBytes(PreheaderDefsCandidates, *F, SIMD, &WI);
uint PreheaderDefsSizeInRegs = RPE->bytesToRegisters(PreheaderDefsSizeInBytes);
// Estimate max pressure in the loop and the external pressure
uint MaxLoopPressure = getMaxRegCountForLoop(L);
uint FunctionExternalPressure = FRPE ? FRPE->getExternalPressureForFunction(F) : 0;
auto isSinkCriteriaMet = [&](uint MaxLoopPressure)
{
// loop sinking is needed if the loop's pressure is higher than number of GRFs by threshold
// and preheader's potential to reduce the delta is good enough
return ((MaxLoopPressure > NGRF + GRFThresholdDelta) &&
(PreheaderDefsSizeInRegs > (MaxLoopPressure - NGRF) * LOOPSINK_PREHEADER_IMPACT_THRESHOLD));
};
PrintDump("Threshold to sink = " << NGRF + GRFThresholdDelta << "\n");
PrintDump("MaxLoopPressure = " << MaxLoopPressure << "\n");
PrintDump("MaxLoopPressure + FunctionExternalPressure = " << MaxLoopPressure + FunctionExternalPressure << "\n");
PrintDump("PreheaderDefsSizeInRegs = " << PreheaderDefsSizeInRegs << "\n");
PrintDump("PreheaderPotentialThreshold = " << uint((MaxLoopPressure - NGRF) * LOOPSINK_PREHEADER_IMPACT_THRESHOLD) << "\n");
// Sink if the regpressure in the loop is high enough (including function external regpressure)
if (isSinkCriteriaMet(MaxLoopPressure + FunctionExternalPressure))
return LoopSinkMode::SinkWhileRegpressureIsHigh;
PrintDump(">> No sinking.\n");
return LoopSinkMode::NoSink;
}
bool CodeLoopSinking::allUsesAreInLoop(Instruction *I, Loop *L)
{
for (const User *UserInst : I->users())
{
if (!isa<Instruction>(UserInst))
return false;
if (!L->contains(cast<Instruction>(UserInst)))
return false;
}
return true;
}
// Adapter for the common function findLowestSinkTarget
// Ignore the uses in the BB and IsOuterLoop side effects
BasicBlock * CodeLoopSinking::findLowestLoopSinkTarget(Instruction *I, Loop *L)
{
SmallPtrSet<Instruction *, 16> UsesInBB;
bool IsOuterLoop = false;
BasicBlock *TgtBB = findLowestSinkTarget(I, UsesInBB, IsOuterLoop, true, DT, LI);
if (!TgtBB)
return nullptr;
if (!L->contains(TgtBB))
return nullptr;
return TgtBB;
}
bool CodeLoopSinking::loopSink(Loop *L, LoopSinkMode Mode)
{
// Sink loop invariants back into the loop body if register
// pressure can be reduced.
IGC_ASSERT(L);
// No Preheader, stop!
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
PrintDump(">> Sinking in the loop with preheader " << Preheader->getName() << "\n");
Function *F = Preheader->getParent();
uint NGRF = CTX->getNumGRFPerThread();
uint InitialLoopPressure = getMaxRegCountForLoop(L);
uint MaxLoopPressure = InitialLoopPressure;
uint FunctionExternalPressure = FRPE ? FRPE->getExternalPressureForFunction(F) : 0;
uint NeededRegpressure = NGRF - IGC_GET_FLAG_VALUE(LoopSinkRegpressureMargin);
if ((NeededRegpressure >= FunctionExternalPressure) &&
(Mode == LoopSinkMode::SinkWhileRegpressureIsHigh))
{
NeededRegpressure -= FunctionExternalPressure;
PrintDump("Targeting new own regpressure in the loop = " << NeededRegpressure << "\n");
}
else
{
Mode = LoopSinkMode::FullSink;
PrintDump("Doing full sink.\n");
}
PrintDump("Initial regpressure:\n" << InitialLoopPressure << "\n");
// We can only affect Preheader and the loop.
// Collect affected BBs to invalidate cached regpressure
// and request recomputation of liveness analysis preserving not affected BBs
BBSet AffectedBBs;
AffectedBBs.insert(Preheader);
for (BasicBlock *BB: L->blocks())
AffectedBBs.insert(BB);
auto rerunLiveness = [&]()
{
for (BasicBlock *BB: AffectedBBs)
BBPressures.erase(BB);
RPE->rerunLivenessAnalysis(*F, &AffectedBBs);
};
bool EverChanged = false;
InstSet LoadChains;
if (IGC_IS_FLAG_ENABLED(PrepopulateLoadChainLoopSink))
prepopulateLoadChains(L, LoadChains);
bool AllowLoadSinking = IGC_IS_FLAG_ENABLED(ForceLoadsLoopSink);
bool AllowOnlySingleUseLoadChainSinking = false;
bool IterChanged = false;
bool AchievedNeededRegpressure = false;
bool RecomputeMaxLoopPressure = false;
auto isBeneficialToSinkBitcast = [&](Instruction *I, Loop *L, bool AllowLoadSinking = false) {
BitCastInst *BC = dyn_cast<BitCastInst>(I);
if (!BC)
return false;
Value *Op = BC->getOperand(0);
// if Op has uses in the loop then it's beneficial
for (const User *UserInst : Op->users())
{
if (!isa<Instruction>(UserInst))
return false;
if (L->contains(cast<Instruction>(UserInst)))
return true;
}
Instruction *LI = dyn_cast<Instruction>(Op);
if (!LI || !isAllowedLoad(LI))
return true;
// Either load will be sinked before bitcast or the loaded value would anyway be alive
// in the whole loop body. So it's safe to sink the bitcast
if (BC->hasOneUse())
return true;
// Now it makes sense to sink bitcast only if it would enable load sinking
// Otherwise it can lead to the increase of register pressure
if (!AllowLoadSinking)
return false;
// Check the load would be a candidate if not for this bitcast
for (const User *UserInst : LI->users())
{
if (!isa<Instruction>(UserInst))
return false;
if (dyn_cast<BitCastInst>(UserInst) == BC)
continue;
if (!L->contains(cast<Instruction>(UserInst)))
return false;
}
return isSafeToLoopSinkLoad(LI, L);
};
// We'll reschedule loads only once, on the first iteration
bool ReschedulingIteration = IGC_IS_FLAG_ENABLED(LoopSinkEnableLoadsRescheduling);
auto createSimpleCandidates = [&](
InstSet &SkipInstructions,
CandidateVec &SinkCandidates)
{
bool Changed = false;
for (auto II = Preheader->rbegin(), IE = Preheader->rend(); II != IE;)
{
Instruction *I = &*II++;
if (SkipInstructions.count(I))
continue;
if (!allUsesAreInLoop(I, L))
continue;
LoopSinkWorthiness Worthiness = LoopSinkWorthiness::Unknown;
if (AllowOnlySingleUseLoadChainSinking)
{
if (!isLoadChain(I, LoadChains, true))
continue;
Worthiness = LoopSinkWorthiness::Sink;
}
else if (isa<BinaryOperator>(I) || isa<CastInst>(I))
{
Worthiness = LoopSinkWorthiness::MaybeSink;
if (isCastInstrReducingPressure(I, false))
Worthiness = LoopSinkWorthiness::Sink;
if (isBeneficialToSinkBitcast(I, L, AllowLoadSinking))
Worthiness = LoopSinkWorthiness::Sink;
}
if (isAlwaysSinkInstruction(I))
{
Worthiness = LoopSinkWorthiness::Sink;
}
if (isa<LoadInst>(I))
{
if (!AllowLoadSinking)
continue;
if (!isSafeToLoopSinkLoad(I, L))
continue;
Worthiness = LoopSinkWorthiness::MaybeSink;
}
if (Worthiness == LoopSinkWorthiness::Sink || Worthiness == LoopSinkWorthiness::MaybeSink)
{
BasicBlock *TgtBB = findLowestLoopSinkTarget(I, L);
if (!TgtBB)
continue;
Changed = true;
SinkCandidates.push_back(std::make_unique<Candidate>(I, TgtBB, Worthiness, I->getNextNode()));
continue;
}
IGC_ASSERT(Worthiness == LoopSinkWorthiness::Unknown);
// 2d block loads are usually large
// So the sinking are beneficial when it's safe
if (AllowLoadSinking && IGC_IS_FLAG_ENABLED(LoopSinkEnable2dBlockReads))
tryCreate2dBlockReadGroupSinkingCandidate(I, L, SkipInstructions, SinkCandidates);
}
return Changed;
};
CandidateVec SinkedCandidates;
InstToCandidateMap InstToCandidate;
CandidateVec CurrentSinkCandidates;
InstToCandidateMap CurrentInstToCandidate;
// Candidate ownership:
// Unique pointers are created in CurrentSinkCandidates on every iteration.
// Then they are moved to ToSink collection to be sinked (done in refineLoopSinkCandidates).
// Then they are moved to SinkedCandidates within iteration if they are actually sinked.
// The actually sinked Candidates have therefore live time until the end ot loopSink function.
// CurrentInstToCandidate and InstToCandidate are maps Instruction->Candidate *
// It's assumed the pointers are never invalidated, because the Candidate object is created
// via make_unique and is not relocated and destroyed until the end of the function
InstSet SkipInstructions;
do
{
CurrentSinkCandidates.clear();
CurrentInstToCandidate.clear();
SkipInstructions.clear();
// Moving LI back to the loop
// If we sinked something we could allow sinking of the previous instructions as well
// on the next iteration of do-loop
//
// For example, here we sink 2 EE first and need one more iteration to sink load:
// preheader:
// %l = load <2 x double>
// extractelement 1, %l
// extractelement 2, %l
// loop:
// ...
IterChanged = false;
// Try rescheduling the loads that are already in the loop
// by adding them as a candidates, so that they are moved to the first use by LocalSink
// Do it only once before starting sinking
if (ReschedulingIteration)
{
PrintDump("Trying to find loads to reschedule...\n");
if (IGC_IS_FLAG_ENABLED(LoopSinkEnable2dBlockReads))
{
// traverse Loop in the reverse order
for (auto BBI = L->block_begin(), BBE = L->block_end(); BBI != BBE; BBI++)
{
BasicBlock *BB = *BBI;
for (auto BI = BB->rbegin(), BE = BB->rend(); BI != BE; BI++)
{
Instruction *I = &*BI;
tryCreate2dBlockReadGroupSinkingCandidate(I, L, SkipInstructions, CurrentSinkCandidates);
}
}
}
}
else
{
PrintDump("Starting sinking iteration...\n");
for (auto &Pair : InstToCandidate)
SkipInstructions.insert(Pair.first);
// lowered vector shuffle patterns are beneficial to sink,
// because they can enable further sinking of the large loads
// Create such candidates first
if (IGC_IS_FLAG_ENABLED(LoopSinkEnableVectorShuffle))
tryCreateShufflePatternCandidates(L, SkipInstructions, CurrentSinkCandidates);
// Create simple (1-instr) candidates for sinking by traversing the preheader once
createSimpleCandidates(SkipInstructions, CurrentSinkCandidates);
}
// Make decisions for "MaybeSink" candidates
CandidateVec ToSink = refineLoopSinkCandidates(CurrentSinkCandidates, LoadChains, L);
// Sink the beneficial instructions
bool IterChanged = false;
for (auto &C : ToSink)
{
if (C->Worthiness == LoopSinkWorthiness::Sink || C->Worthiness == LoopSinkWorthiness::IntraLoopSink)
{
IGC_ASSERT(C->size() > 0);
SinkedCandidates.push_back(std::move(C));
Candidate *SC = SinkedCandidates.back().get();
bool SinkFromPH = SC->Worthiness == LoopSinkWorthiness::Sink;
Instruction *InsertPoint = SinkFromPH ?
&*SC->TgtBB->getFirstInsertionPt() : SC->first()->getNextNode();
for (Instruction *I : *SC) {
PrintDump((SinkFromPH ? "Sinking instruction:\n" : "Scheduling instruction for local sink:\n"));
PrintInstructionDump(I);
CurrentInstToCandidate[I] = SC;
InstToCandidate[I] = SC;
I->moveBefore(InsertPoint);
InsertPoint = I;
if (SinkFromPH)
{
if (isAllowedLoad(I) || isLoadChain(I, LoadChains))
LoadChains.insert(I);
}
}
UndoBlkSet.insert(SC->UndoPos->getParent());
LocalBlkSet.insert(SC->TgtBB);
PrintDump("\n");
IterChanged = true;
}
}
if (IterChanged)
{
EverChanged = true;
// Getting the size of the sinked on this iteration candidates
// Must be before local sinking
auto SIMD = numLanes(RPE->bestGuessSIMDSize(F));
ValueSet InstsSet;
for (auto &Pair : CurrentInstToCandidate)
{
InstsSet.insert(Pair.first);
}
uint SinkedSizeInBytes = RPE->estimateSizeInBytes(InstsSet, *F, SIMD, &WI);
uint SinkedSizeInRegs = RPE->bytesToRegisters(SinkedSizeInBytes);
// Invoke LocalSink() to move def to its first use
if (LocalBlkSet.size() > 0)
{
for (auto BI = LocalBlkSet.begin(), BE = LocalBlkSet.end(); BI != BE; BI++)
{
BasicBlock *BB = *BI;
localSink(BB, CurrentInstToCandidate);
}
LocalBlkSet.clear();
}
if (MaxLoopPressure - SinkedSizeInRegs > NeededRegpressure)
{
// Heuristic to save recalculation of liveness
// The size of the candidates set is not enough to reach the needed regpressure
PrintDump("Running one more iteration without recalculating liveness...\n");
RecomputeMaxLoopPressure = true;
ReschedulingIteration = false;
continue;
}
rerunLiveness();
MaxLoopPressure = getMaxRegCountForLoop(L);
RecomputeMaxLoopPressure = false;
PrintDump("New max loop pressure = " << MaxLoopPressure << "\n");
if ((MaxLoopPressure < NeededRegpressure)
&& (Mode == LoopSinkMode::SinkWhileRegpressureIsHigh))
{
AchievedNeededRegpressure = true;
if (IGC_IS_FLAG_ENABLED(EnableLoadChainLoopSink) && !LoadChains.empty())
{
PrintDump("Allowing only chain sinking...\n");
AllowOnlySingleUseLoadChainSinking = true;
}
else
{
PrintDump("Achieved needed regpressure, finished.\n");
break;
}
}
}
else if (!ReschedulingIteration)
{
if (!AllowLoadSinking && IGC_IS_FLAG_ENABLED(EnableLoadsLoopSink))
{
PrintDump("Allowing loads...\n");
AllowLoadSinking = true;
}
else
{
PrintDump("Nothing to sink, finished.\n");
break;
}
}
ReschedulingIteration = false;
} while (true);
if (!EverChanged)
{
PrintDump("No changes were made in this loop.\n");
return false;
}
if (RecomputeMaxLoopPressure)
{
rerunLiveness();
MaxLoopPressure = getMaxRegCountForLoop(L);
}
PrintDump("New max loop pressure = " << MaxLoopPressure << "\n");
bool NeedToRollback = IGC_IS_FLAG_ENABLED(LoopSinkForceRollback);
// We always estimate if the sinking of a candidate is beneficial.
// So it's unlikely we increase the regpressure in the loop.
//
// But due to iterative approach we have some heuristics to sink
// instruction that don't reduce the regpressure immediately in order to
// enable the optimization for some potential candidates on the next iteration.
// Rollback the transformation if the result regpressure becomes higher
// as a result of such speculative sinking.
if (MaxLoopPressure > InitialLoopPressure)
{
PrintDump("Loop pressure increased after sinking.\n");
NeedToRollback = true;
}
// If we haven't achieved the needed regpressure, it's possible that even if the sinking
// would be beneficial for small GRF, there still will be spills.
// In this case there is a chance that just choosing
// more GRF will be enough to eliminate spills and we would degrade performance
// if we sinked. So we rollback the changes if autoGRF is provided
if (Mode == LoopSinkMode::SinkWhileRegpressureIsHigh &&
!AchievedNeededRegpressure &&
(NGRF <= 128 && CTX->isAutoGRFSelectionEnabled()) &&
MaxLoopPressure >= (NGRF + IGC_GET_FLAG_VALUE(LoopSinkRollbackThreshold))
)
{
PrintDump("AutoGRF is enabled and the needed regpressure is not achieved:\n");
PrintDump("New max loop pressure = " << MaxLoopPressure << "\n");
PrintDump("Threshold to rollback = " <<
NGRF + IGC_GET_FLAG_VALUE(LoopSinkRollbackThreshold) << "\n");
NeedToRollback = true;
}
if (NeedToRollback && IGC_IS_FLAG_DISABLED(LoopSinkDisableRollback))
{
PrintDump(">> Reverting the changes.\n");
for (auto CI = SinkedCandidates.rbegin(), CE = SinkedCandidates.rend(); CI != CE; CI++)
{
Candidate *C = CI->get();
Instruction *UndoPos = C->UndoPos;
IGC_ASSERT(UndoPos);
while (InstToCandidate.count(UndoPos))
{
UndoPos = InstToCandidate[UndoPos]->UndoPos;
}
for (Instruction *I : *C)
{
I->moveBefore(UndoPos);
UndoPos = I;
}
}
rerunLiveness();
return false;
}
if (CTX->m_instrTypes.hasDebugInfo)
{
for (BasicBlock *BB : UndoBlkSet)
{
ProcessDbgValueInst(*BB, DT);
}
}
// We decided we don't rollback, change the names of the instructions in IR
for (auto &Pair : InstToCandidate)
{
Instruction *I = Pair.first;
Candidate *C = Pair.second;
if (I->getType()->isVoidTy())
continue;
std::string Prefix = C->Worthiness == LoopSinkWorthiness::IntraLoopSink ? "sched" : "sink";
I->setName(Prefix + "_" + I->getName());
}
return true;
}
// Try to create a candidate for sinking 2d block read group.
//
// If every use of the AddrPayload is in the same BB and every use is a GenISA_LSC2DBlockReadAddrPayload or
// GenISA_LSC2DBlockSetAddrPayloadField and it's safe to sink the loads
//
// Example:
// %Block2D_AddrPayload = call i8* @llvm.genx.GenISA.LSC2DBlockCreateAddrPayload.p0i8(i64 %base_addr, i32 127, i32 1023, i32 127, i32 0, i32 0, i32 16, i32 16, i32 2)
//
// The candidate will be the following group of instructions:
// call void @llvm.genx.GenISA.LSC2DBlockSetAddrPayloadField.p0i8.i32(i8* %Block2D_AddrPayload, i32 5, i32 5, i1 false)
// call void @llvm.genx.GenISA.LSC2DBlockSetAddrPayloadField.p0i8.i32(i8* %Block2D_AddrPayload, i32 6, i32 6, i1 false)
// %load = call <32 x i16> @llvm.genx.GenISA.LSC2DBlockReadAddrPayload.v32i16.p0i8(i8* %Block2D_AddrPayload, i32 0, i32 0, i32 16, i32 16, i32 16, i32 2, i1 false, i1 false, i32 4)
bool CodeLoopSinking::tryCreate2dBlockReadGroupSinkingCandidate(
Instruction *I,
Loop *L,
InstSet &SkipInstructions,
CandidateVec &SinkCandidates)
{
BasicBlock *PH = L->getLoopPreheader();
GenIntrinsicInst *Intr = dyn_cast<GenIntrinsicInst>(I);
if (!Intr)
return false;
auto Id = Intr->getIntrinsicID();
if (Id != GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload &&
Id != GenISAIntrinsic::GenISA_LSC2DBlockSetAddrPayloadField)
{
return false;
}
GenIntrinsicInst *AddrPayload = dyn_cast<GenIntrinsicInst>(I->getOperand(0));
if (!AddrPayload)
return false;
if (SkipInstructions.count(cast<Instruction>(AddrPayload)))
return false;
PrintDump("Found 2d block read instruction, trying to create candidate group:\n");
PrintInstructionDump(I);
PrintDump("AddrPayload:\n");
PrintInstructionDump(AddrPayload);
bool Start = false;
SmallVector<llvm::Instruction *, 16> CandidateInsts;
BasicBlock *TgtBB = nullptr;
// Traversing the PH or the BB in the loop in reverse order
// from the found instruction to the beginning
// or the AddrPayload inst if it's in the block
if (I->getParent() == PH)
{
PrintDump("Traversing the preheader:\n");
}
else
{
PrintDump("Traversing the BB with the instruction:\n");
}
for (auto IB = I->getParent()->rbegin(), IE = I->getParent()->rend(); IB != IE;)
{
Instruction *II = &*IB++;
if (II == AddrPayload)
break;
if (II == I)
Start = true;
else
{
if (!Start)
{
continue;
}
else
{
Intr = dyn_cast<GenIntrinsicInst>(II);
if (!Intr)
continue;
Id = Intr->getIntrinsicID();
}
}
if (II->getOperand(0) != AddrPayload)
{
continue;
}
SkipInstructions.insert(II);
// We expect to see only the following intrinsics for this AddrPayload
if (Id == GenISAIntrinsic::GenISA_LSC2DBlockSetAddrPayloadField)
{
PrintDump("Found GenISA_LSC2DBlockSetAddrPayloadField:\n");
PrintInstructionDump(II);
CandidateInsts.push_back(II);
}
else if (Id == GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload)
{
PrintDump("Found GenISA_LSC2DBlockReadAddrPayload:\n");
PrintInstructionDump(II);
if (!isSafeToLoopSinkLoad(II, L))
{
PrintDump("Not safe to sink the load, skipping.\n");
return false;
}
PrintDump("Safe to sink the load.\n");
BasicBlock *CurrentTgtBB = I->getParent() == PH ? findLowestLoopSinkTarget(I, L) : I->getParent();
if (!CurrentTgtBB)
return false;
if (!TgtBB)
TgtBB = CurrentTgtBB;
else
TgtBB = DT->findNearestCommonDominator(TgtBB, CurrentTgtBB);
if (TgtBB != CurrentTgtBB)
{
if (I->getParent() == PH)
{
TgtBB = DT->findNearestCommonDominator(TgtBB, CurrentTgtBB);
if (!TgtBB)
{
PrintDump("No common dominator found, skipping.\n");
return false;
}
}
else
{
PrintDump("Not all the uses are in the same BB, skipping.\n");
return false;
}
}
PrintDump("Adding the instruction to this candidate group.\n");
CandidateInsts.push_back(II);
}
else
{
PrintDump("Unexpected intrinsic, skipping:\n");
PrintInstructionDump(II);
return false;
}
}
SkipInstructions.insert(AddrPayload);
if (!TgtBB)
{
PrintDump("No target block to sink, skipping.\n");
return false;
}
// The creation of address payload can be in a different BB, we don't sink it
// All other uses should be in the same BB
if (CandidateInsts.size() != AddrPayload->getNumUses())
{
PrintDump("Not all the uses of the AddrPayload are in the same BB, skipping.\n");
return false;
}
// Check that all the uses are dominated by the remaining uses
// We avoid changing the order of the loads for now
// We have a number of current candidates, they will be placed before their uses.
// The remaining instructions are initially places earlier than the current candidates.
// If the remaining instructions are dominated by the current candidates, we can split the current candidates
// So that they are scheduled separately, because in this case the order will be not changed.
auto allUsesAreDominatedByRemainingUses = [&](SmallVector<Instruction *, 16> &CurrentCandidateInsts,
SmallPtrSet<Instruction *, 16> &RemainingCandidateInsts)
{
auto instUsesDominateAllCurrentCandidateUses = [&](Instruction *RI)
{
for (User *RU : RI->users())
{
Instruction *RUI = dyn_cast<Instruction>(RU);
if (!RUI)
return false;
for (Instruction *CI : CurrentCandidateInsts)
{
for (User *CU : CI->users())
{
Instruction *CUI = dyn_cast<Instruction>(CU);
if (!CUI)
return false;
if (!DT->dominates(RUI, CUI))
return false;
}
}
}
return true;
};
if (IGC_IS_FLAG_ENABLED(LoopSinkCoarserLoadsRescheduling))
return std::all_of(RemainingCandidateInsts.begin(), RemainingCandidateInsts.end(), instUsesDominateAllCurrentCandidateUses);
else
return std::any_of(RemainingCandidateInsts.begin(), RemainingCandidateInsts.end(), instUsesDominateAllCurrentCandidateUses);
};
// If the uses are not dominated by the UndoPoint
// It's possible that we put some instructions after their uses on rollback
// So it needs to be checked if we sink not from PH
auto allUsesAreDominatedByUndoPoint = [&](SmallVector<Instruction *, 16> &CurrentCandidateInsts, Instruction *UndoPoint)
{
for (Instruction *CI : CurrentCandidateInsts)
{
for (User *CU : CI->users())
{
Instruction *CUI = dyn_cast<Instruction>(CU);
if (!CUI)
return false;
if (!DT->dominates(UndoPoint, CUI))
return false;
}
}
return true;
};
// All the uses are a candidate
// Try splitting then into separate candidates for better scheduling within a BB
bool SinkFromPH = I->getParent() == PH;
auto Worthiness = SinkFromPH ? LoopSinkWorthiness::Sink : LoopSinkWorthiness::IntraLoopSink;
SmallVector<Instruction *, 16> CurrentCandidateInsts;
SmallPtrSet<Instruction *, 16> RemainingCandidateInsts(CandidateInsts.begin(), CandidateInsts.end());
uint NCandidates = 0;
for (Instruction *I : CandidateInsts)
{
GenIntrinsicInst *CurIntr = dyn_cast<GenIntrinsicInst>(I);
if (!CurIntr)
return false;
auto Id = CurIntr->getIntrinsicID();
if (CurrentCandidateInsts.size() > 0 &&
Id == GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload &&
allUsesAreDominatedByRemainingUses(CurrentCandidateInsts, RemainingCandidateInsts) &&
(SinkFromPH || allUsesAreDominatedByUndoPoint(CurrentCandidateInsts, CurrentCandidateInsts[0]->getNextNode())))
{
NCandidates++;
SinkCandidates.push_back(std::make_unique<Candidate>(CurrentCandidateInsts, TgtBB, Worthiness, CurrentCandidateInsts[0]->getNextNode()));
CurrentCandidateInsts.clear();
}
CurrentCandidateInsts.push_back(I);
RemainingCandidateInsts.erase(I);
}
if (CurrentCandidateInsts.size() > 0 &&
(SinkFromPH || allUsesAreDominatedByUndoPoint(CurrentCandidateInsts, CurrentCandidateInsts[0]->getNextNode())))
{
NCandidates++;
SinkCandidates.push_back(std::make_unique<Candidate>(CurrentCandidateInsts, TgtBB, Worthiness, CurrentCandidateInsts[0]->getNextNode()));
}
PrintDump("Successfully created " << NCandidates << " candidates.\n");
return true;
}
CodeLoopSinking::StoresVec CodeLoopSinking::getAllStoresInLoop(Loop *L)
{
IGC_ASSERT(!BlacklistedLoops.count(L));
// if all the stores for this loop are not memoized yet, do it first
if (!MemoizedStoresInLoops.count(L))
{
llvm::SmallVector<Instruction *, 32>& StoresInLoop = MemoizedStoresInLoops[L];
for (BasicBlock *BB: L->blocks())
{
for (Instruction &I : *BB)
{
if (I.mayWriteToMemory())
{
StoresInLoop.push_back(&I);
}
}
}
}
return MemoizedStoresInLoops[L];
}
bool CodeLoopSinking::tryCreateShufflePatternCandidates(
Loop *L,
InstSet &SkipInstructions,
CandidateVec &SinkCandidates)
{
BasicBlock *Preheader = L->getLoopPreheader();
// It's possible that a large vector is shuffled to different smaller vectors
// but if all the vector components are used only in ExtractElement and
// InsertElement instructions we can sink all EE and IE instructions
// This function checks if all the uses of the source vector are used in the dest vectors
// that are defined by the first IE instruction (that has "undef" as a dst operand)
// As a side effect, it also populates the DestVecMap
// that maps the last IE instruction to the set of all the IE and EE instructions of
// a particular dest vector
auto SourceVectorIsFullyShuffled = [&](
Value *SourceVec,
SmallVector<InsertElementInst *, 4> &IEs,
DenseMap<InsertElementInst *, InstSet> &DestVecMap)
{
auto SourceVectorType = dyn_cast<IGCLLVM::FixedVectorType>(SourceVec->getType());
if (!SourceVectorType)
return false;
auto SourceElemType = SourceVectorType->getElementType();
if (!SourceElemType->isSingleValueType())
return false;
SmallSet<uint64_t, 32> EEIndices;
for (InsertElementInst *CurrentBaseIE : IEs)
{
InsertElementInst *CurrentIE = CurrentBaseIE;
InsertElementInst *LastIE = CurrentBaseIE;
SmallSet<uint64_t, 32> IEIndices;
auto IEVectorType = cast<IGCLLVM::FixedVectorType>(CurrentIE->getType());
auto IEElemType = IEVectorType->getElementType();
// support only the same base types for now
if (IEElemType != SourceElemType)
return false;
// the set of all instruction for this dest vector
InstSet ShuffleInst;
for (;;)
{
auto *Idx = cast<ConstantInt>(CurrentIE->getOperand(2));
IEIndices.insert(Idx->getZExtValue());
ShuffleInst.insert(CurrentIE);
ExtractElementInst *CurrentEE = dyn_cast<ExtractElementInst>(CurrentIE->getOperand(1));
if (!CurrentEE || CurrentEE->getParent() != Preheader ||
(CurrentEE->getOperand(0) != SourceVec) || !CurrentEE->hasOneUse())
{
return false;
}
ShuffleInst.insert(CurrentEE);
auto *IdxEE = cast<ConstantInt>(CurrentEE->getOperand(1));
EEIndices.insert(IdxEE->getZExtValue());
LastIE = CurrentIE;
User *U = IGCLLVM::getUniqueUndroppableUser(CurrentIE);
if (!U)
break;
CurrentIE = dyn_cast<InsertElementInst>(U);
if (!CurrentIE)
break;
if (CurrentIE->getParent() != Preheader)
break;
}
// We need to check all the indices are used in IE instructons
// to guarantee there are no more other uses
// of the dest vector.
// Only "LastIE" instruction can have other uses
if (IEIndices.size() != IEVectorType->getNumElements())
return false;
DestVecMap[LastIE] = std::move(ShuffleInst);
}
// The same logic with EE of the source vector:
// we need all the indices are used
if (EEIndices.size() != SourceVectorType->getNumElements())
return false;
// Check that all the source vector uses are in the ShuffleInst set
bool AllSourceVecUsesInShuffleInst = std::all_of(SourceVec->user_begin(), SourceVec->user_end(),
[&](User *U)
{
return std::any_of(DestVecMap.begin(), DestVecMap.end(),
[&](const std::pair<InsertElementInst *, InstSet> &Pair)
{
return Pair.second.count(cast<Instruction>(U));
});
});
return AllSourceVecUsesInShuffleInst;
};
bool Changed = false;
PrintDump("Trying to create shuffle pattern candidates...\n");
// Map {Source vector Value : InsertElement instructions that create a new vector}
SmallDenseMap<Value *, SmallVector<InsertElementInst *, 4>> SourceVectors;
for (Instruction &I : *Preheader)
{
if (auto *IE = dyn_cast<InsertElementInst>(&I))
{
if (!isa<UndefValue>(IE->getOperand(0)))
continue;
ExtractElementInst *EE = dyn_cast<ExtractElementInst>(IE->getOperand(1));
if (EE && EE->getParent() == Preheader)
{
SourceVectors[EE->getVectorOperand()].push_back(IE);
}
}
}
DenseMap<InsertElementInst *, InstSet> DestVecToShuffleInst;
SmallVector<Candidate, 16> ShuffleCandidates;
DenseMap<Instruction *, Candidate *> ShuffleInstToCandidate;
for (auto &VecIEs : SourceVectors)
{
DestVecToShuffleInst.clear();
auto *SourceVec = VecIEs.first;
auto &IEs = VecIEs.second;
if (!SourceVectorIsFullyShuffled(SourceVec, IEs, DestVecToShuffleInst))
continue;
// We proved it's full shuffle pattern, but we need to also prove the last IE instructions
// are candidates to sink, and collect them in the right order
// In the following code DestVec means the last IE instruction
DenseMap<InsertElementInst *, BasicBlock *> DestVecToTgtBB;
for (auto &Pair : DestVecToShuffleInst)
{
auto *DestVec = Pair.first;
if (!allUsesAreInLoop(cast<Instruction>(DestVec), L))
{
break;
}
BasicBlock *TgtBB = findLowestLoopSinkTarget(cast<Instruction>(DestVec), L);
if (!TgtBB)
break;
DestVecToTgtBB[DestVec] = TgtBB;
}
if (DestVecToTgtBB.size() == DestVecToShuffleInst.size())
{
// Found the target BB for all the dest vectors, safe to sink for every dest vector
// Create the candidates and populate the mapping between unordered shuffle instructions
// to the corresponding candidate
for (auto &Pair : DestVecToShuffleInst)
{
auto *DestVec = Pair.first;
auto &ShuffleInst = Pair.second;
auto *TgtBB = DestVecToTgtBB[DestVec];
PrintDump("Instruction is a part of shuffle pattern, create a candidate:\n");
PrintDump("DestVector used in the loop:\n");
PrintInstructionDump(DestVec);
ShuffleCandidates.emplace_back(Candidate::InstrVec{}, TgtBB, LoopSinkWorthiness::Sink, nullptr);
Changed = true;
for (Instruction *I : ShuffleInst)
{
ShuffleInstToCandidate[I] = &ShuffleCandidates.back();
}
}
}
}
CandidatePtrVec ShuffleCandidatesOrdered;
// Traverse PH in reverse order and populate Candidates instructions so that they are in the right order
// Populate the ShuffleCandidatesOrdered with Candidates in the right order
for (auto IB = Preheader->rbegin(), IE = Preheader->rend(); IB != IE; ++IB)
{
Instruction *I = &*IB;
if (ShuffleInstToCandidate.count(I))
{
Candidate *C = ShuffleInstToCandidate[I];
if (C->size() == 0)
{
C->UndoPos = I->getNextNode();
ShuffleCandidatesOrdered.push_back(C);
}
C->Instructions.push_back(I);
SkipInstructions.insert(I);
}
}
// Add the candidates to the main list
for (auto *C : ShuffleCandidatesOrdered)
{
SinkCandidates.push_back(std::make_unique<Candidate>(*C));
}
return Changed;
}
bool CodeLoopSinking::isAlwaysSinkInstruction(Instruction *I)
{
return (isa<IntToPtrInst>(I) ||
isa<PtrToIntInst>(I) ||
isa<ExtractElementInst>(I) ||
isa<InsertValueInst>(I));
}
// Check that this instruction is a part of address calc
// chain of an already sinked load
bool CodeLoopSinking::isLoadChain(Instruction *I, InstSet &LoadChains, bool EnsureSingleUser)
{
if (!isa<BinaryOperator>(I) && !isa<CastInst>(I))
return false;
User *InstrUser = IGCLLVM::getUniqueUndroppableUser(I);
if (EnsureSingleUser && !InstrUser)
return false;
return std::all_of(I->user_begin(), I->user_end(),
[&](User *U)
{
Instruction *UI = dyn_cast<Instruction>(U);
return UI && LoadChains.count(UI);
});
}
// Prepopulate load chain with the loads that are already in the loop
void CodeLoopSinking::prepopulateLoadChains(Loop *L, InstSet &LoadChains)
{
std::function<void(Value *)> addInstructionIfLoadChain = [&](Value *V)-> void
{
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return;
if (!L->contains(I))
return;
if (!isLoadChain(I, LoadChains))
return;
LoadChains.insert(I);
for (auto &U : I->operands()) {
addInstructionIfLoadChain(U);
}
};
for (BasicBlock *BB: L->blocks())
{
for (Instruction &I : *BB)
{
// support only LoadInst for now
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
{
LoadChains.insert(&I);
addInstructionIfLoadChain(LI->getPointerOperand());
}
}
}
}
/// isSafeToLoopSinkLoad - Determine whether it is safe to sink the load
/// instruction in the loop using alias information
bool CodeLoopSinking::isSafeToLoopSinkLoad(Instruction *InstToSink, Loop *L)
{
PrintDump("Checking if it is safe to sink the load:\n");
PrintInstructionDump(InstToSink);
if (!L || !AA)
return false;
if (BlacklistedLoops.count(L))
return false;
if (!isAllowedLoad(InstToSink))
{
PrintDump("Unsupported load\n");
return false;
}
auto getRemainingStoresInBB = [](Instruction *I)
{
StoresVec Stores;
BasicBlock *BB = I->getParent();
Instruction *Last = BB->getTerminator();
for ( ; I != Last ; I = I->getNextNode())
{
if (I->mayWriteToMemory())
{
Stores.push_back(I);
}
}
return Stores;
};
auto getMemLoc = [&](Instruction *I)
{
if (StoreInst *SI = dyn_cast<StoreInst>(I))
{
return MemoryLocation::get(SI);
}
if (LoadInst *LI = dyn_cast<LoadInst>(I))
{
return MemoryLocation::get(LI);
}
if (GenIntrinsicInst *Intr = dyn_cast<GenIntrinsicInst>(I))
{
switch (Intr->getIntrinsicID())
{
case GenISAIntrinsic::GenISA_LSC2DBlockRead:
case GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload:
case GenISAIntrinsic::GenISA_LSC2DBlockWrite:
case GenISAIntrinsic::GenISA_LSC2DBlockWriteAddrPayload:
return MemoryLocation::getForArgument(Intr, 0, TLI);
default:
break;
}
}
return MemoryLocation();
};
StoresVec RemainingStores;
if (InstToSink->getParent() == L->getLoopPreheader())
{
RemainingStores = getRemainingStoresInBB(InstToSink);
}
else
{
IGC_ASSERT(L->contains(InstToSink->getParent()));
}
StoresVec LoopStores = getAllStoresInLoop(L);
MemoryLocation A = getMemLoc(InstToSink);
for (auto Stores : { &RemainingStores, &LoopStores })
{
for (Instruction *I: *Stores)
{
PrintDump("Store:\n");
PrintInstructionDump(I);
bool UnsupportedStore = true;
if (GenIntrinsicInst *Intr = dyn_cast<GenIntrinsicInst>(I))
{
switch (Intr->getIntrinsicID())
{
// Reads
case GenISAIntrinsic::GenISA_LSCPrefetch:
case GenISAIntrinsic::GenISA_LSC2DBlockRead:
case GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload:
case GenISAIntrinsic::GenISA_LSC2DBlockPrefetchAddrPayload:
case GenISAIntrinsic::GenISA_LSC2DBlockPrefetch:
case GenISAIntrinsic::GenISA_LSC2DBlockSetAddrPayloadField:
PrintDump("Load/prefetch instruction, may not alias\n");
continue;
// Change only registers
case GenISAIntrinsic::GenISA_LSC2DBlockCreateAddrPayload:
case GenISAIntrinsic::GenISA_dpas:
case GenISAIntrinsic::GenISA_sub_group_dpas:
PrintDump("Not a real store instruction, may not alias\n");
continue;
// Wave intrinsics
case GenISAIntrinsic::GenISA_WaveShuffleIndex:
case GenISAIntrinsic::GenISA_WaveBroadcast:
case GenISAIntrinsic::GenISA_WaveBallot:
case GenISAIntrinsic::GenISA_WaveInverseBallot:
case GenISAIntrinsic::GenISA_WaveAll:
case GenISAIntrinsic::GenISA_WaveClustered:
case GenISAIntrinsic::GenISA_WaveInterleave:
case GenISAIntrinsic::GenISA_WavePrefix:
PrintDump("Not a real store instruction, may not alias\n");
continue;
// Supported writes
case GenISAIntrinsic::GenISA_LSC2DBlockWrite:
case GenISAIntrinsic::GenISA_LSC2DBlockWriteAddrPayload:
UnsupportedStore = false;
break;
default:
break;
}
}
else if (isa<StoreInst>(I))
{
UnsupportedStore = false;
}
if (UnsupportedStore)
{
PrintDump("Unsupported store\n");
if (L->contains(I->getParent()))
BlacklistedLoops.insert(L);
return false;
}
MemoryLocation B = getMemLoc(I);
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
{
PrintDump("May alias\n");
return false;
}
}
}
PrintDump("Safe\n");
return true;
}
// Very quick estimation to decide if we a going to sink in the loop
// The real Candidate selection will be done in CodeLoopSinking::loopSink()
bool CodeLoopSinking::mayBeLoopSinkCandidate(Instruction *I, Loop *L)
{
BasicBlock *PH = L->getLoopPreheader();
// Limit sinking for the following case for now.
for (User *UserInst : I->users())
{
Instruction *II = dyn_cast<Instruction>(UserInst);
if (!II)
return false;
if (!L->contains(II) && II->getParent() != PH)
return false;
}
if (isAlwaysSinkInstruction(I) || isa<BinaryOperator>(I) || isa<CastInst>(I))
return true;
bool AllowLoadSinking = IGC_IS_FLAG_ENABLED(EnableLoadsLoopSink) || IGC_IS_FLAG_ENABLED(ForceLoadsLoopSink);
if (AllowLoadSinking && isAllowedLoad(I))
{
return isSafeToLoopSinkLoad(I, L);
}
return false;
}
CodeLoopSinking::CandidateVec CodeLoopSinking::refineLoopSinkCandidates(
CandidateVec &SinkCandidates,
InstSet &LoadChains,
Loop *L)
{
struct OperandUseGroup {
SmallPtrSet<Value *, 4> Operands;
SmallVector<std::unique_ptr<Candidate> *, 16> Users;
void print(raw_ostream &OS)
{
OS << "OUG " << Operands.size() << " -> " << Users.size() << "\n";
OS << " Operands:\n";
for (Value* V : Operands)
{
OS << " ";
V->print(OS);
OS << "\n";
}
OS << " Users:\n";
for (auto &C : Users)
{
OS << " ";
(*C)->print(OS);
OS << "\n";
}
}
};
auto isUsedInLoop = [](Value *V, Loop *L) {
if (isa<Constant>(V))
{
// Ignore constant
return false;
}
for (auto UI : V->users())
{
if (Instruction *User = dyn_cast<Instruction>(UI))
{
if (L->contains(User))
return true;
}
}
return false;
};
auto isUsedOnlyInLoop = [](Value *V, Loop *L)
{
return std::all_of(V->user_begin(), V->user_end(),
[&](User *U)
{
Instruction *UI = dyn_cast<Instruction>(U);
return UI && L->contains(UI);
});
};
auto isSameSet = [](const SmallPtrSet <Value *, 4> &S0, const SmallPtrSet <Value *, 4> &S1) {
if (S0.size() == S1.size())
{
for (auto I : S1)
{
Value* V = I;
if (!S0.count(V)) {
return false;
}
}
return true;
}
return false;
};
auto getNonConstCandidateOperandsOutsideLoop = [&](Candidate *C, Loop *L)
{
SmallPtrSet<Value *, 4> Operands;
for (Instruction *I : *C)
{
for (Use &U : I->operands())
{
Value *V = U;
if (isa<Constant>(V) || isUsedInLoop(V, L))
continue;
Operands.insert(V);
}
}
return Operands;
};
// Check if it's beneficial to sink it in the loop
auto isBeneficialToSink = [&](OperandUseGroup &OUG)-> bool
{
auto getDstSize = [this](Value *V)
{
int DstSize = 0;
Type* Ty = V->getType();
if (Ty->isPointerTy())
{
uint32_t addrSpace = cast<PointerType>(Ty)->getAddressSpace();
int PtrSize = (int) CTX->getRegisterPointerSizeInBits(addrSpace);
DstSize = PtrSize;
}
else
{
DstSize = (int) Ty->getPrimitiveSizeInBits();
}
return DstSize;
};
auto allUsersAreLoadChains = [&](OperandUseGroup &OUG)
{
return std::all_of(OUG.Users.begin(), OUG.Users.end(),
[&](std::unique_ptr<Candidate> *C) {
return std::all_of((*C)->begin(), (*C)->end(),
[&](Instruction *I) {
return isLoadChain(I, LoadChains);
});
});
};
// Estimate how much regpressure we save (in bytes).
// Don't count uniform values. This way if every operand that is used only in the loop
// is uniform, but the User (instruction to sink) is uniform, we'll decide it's beneficial to sink
int AccSave = 0;
for (Value *V : OUG.Operands)
{
int DstSize = getDstSize(V);
if (!DstSize)
return false;
if (WI.isUniform(V))
continue;
AccSave -= DstSize / 8;
}
bool AllUsersAreUniform = true;
for (auto &C : OUG.Users)
{
for (Value *V : **C)
{
if (!V->hasNUsesOrMore(1))
continue;
if (!isUsedOnlyInLoop(V, L))
continue;
int DstSize = getDstSize(V);
if (!DstSize)
return false;
if (WI.isUniform(V))
continue;
AllUsersAreUniform = false;
AccSave += DstSize / 8;
}
}
// If all uses are uniform, and we save enough SSA-values it's still beneficial
if (AccSave >= 0 && AllUsersAreUniform &&
((int)OUG.Users.size() - (int)OUG.Operands.size() >= (int)(IGC_GET_FLAG_VALUE(LoopSinkMinSaveUniform))))
{
return true;
}
// All instructions are part of a chain to already sinked load and don't
// increase pressure too much. It simplifies the code a little and without
// adding remat pass for simple cases
if (AccSave >= 0 && allUsersAreLoadChains(OUG))
{
return true;
}
// Compare estimated saved regpressure with the specified threshold
// Number 4 here is just a constant multiplicator of the option to make the numbers more human-friendly,
// as the typical minimum data size is usually 32-bit. 1 (=4b) means roughly 1 register of saved regpressure
return AccSave >= (int)(IGC_GET_FLAG_VALUE(LoopSinkMinSave) * 4);
};
// For each candidate like the following:
// preheader:
// x = add y, z
// loop:
// ...
// BB:
// = x
//
// Afer sinking, x changes from global to local, and thus reduce pressure.
// But y and z could change to global to local (if y and z are local).
// Thus, we reduce pressure by 1 (x), but increase by the number of its
// operands (y and z). If there are more candidates share the same operands,
// we will reduce the pressure. For example:
// preheader:
// x0 = add y, 10
// x1 = add y, 20
// x2 = add y, 100
// x3 = add y, 150
// loop:
// = x0
// = x1
// = x2
// = x3
//
// After sinking x0-x3 into loop, we make x0-x3 be local and make y be global,
// which results in 3 (4 - 1) pressure reduction.
//
// Here we group all candidates based on its operands and select ones that definitely
// reduce the pressure.
//
SmallVector<OperandUseGroup, 16> InstUseInfo;
InstUseInfo.reserve(SinkCandidates.size());
CandidateVec ToSink;
for (auto &C : SinkCandidates)
{
if (C->Worthiness == LoopSinkWorthiness::Sink || C->Worthiness == LoopSinkWorthiness::IntraLoopSink)
{
ToSink.push_back(std::move(C));
continue;
}
const SmallPtrSet<Value *, 4>& CandidateOperands = getNonConstCandidateOperandsOutsideLoop(C.get(), L);
// If this set of uses have been referenced by other instructions,
// put this inst in the same group. Note that we don't union sets
// that intersect each other.
auto it = std::find_if(InstUseInfo.begin(), InstUseInfo.end(), [&](OperandUseGroup &OUG)
{
return CandidateOperands.size() > 0 && isSameSet(OUG.Operands, CandidateOperands);
});
if (it != InstUseInfo.end())
it->Users.push_back(&C);
else
InstUseInfo.push_back(OperandUseGroup{CandidateOperands, {&C}});
}
// Check if it's beneficial to sink every OUG
for (OperandUseGroup &OUG : InstUseInfo)
{
PrintDump("Checking if sinking the group is beneficial:\n");
PrintOUGDump(OUG);
if (!isBeneficialToSink(OUG))
continue;
PrintDump(">> Beneficial to sink.\n\n");
for (auto &C : OUG.Users)
{
(*C)->Worthiness = LoopSinkWorthiness::Sink;
ToSink.push_back(std::move(*C));
}
}
return ToSink;
}
// Sink to the use within basic block
bool CodeLoopSinking::localSink(
BasicBlock *BB,
InstToCandidateMap &InstToCandidate
)
{
auto isPartOfUnsplittableGroup = [](Instruction *Inst)
{
if (GenIntrinsicInst *Intr = dyn_cast<GenIntrinsicInst>(Inst))
{
switch (Intr->getIntrinsicID())
{
case GenISAIntrinsic::GenISA_dpas:
case GenISAIntrinsic::GenISA_sub_group_dpas:
if (IGC_IS_FLAG_ENABLED(LoopSinkAvoidSplittingDPAS))
return true;
default:
break;
}
}
return false;
};
auto getInsertPointBeforeUse = [&](Instruction *InstToMove, Instruction *StartInsertPoint)
{
// Try scheduling the instruction earlier than the use.
// Useful for loads to cover some latency.
bool BreakAfterGroup = isPartOfUnsplittableGroup(StartInsertPoint);
if (!BreakAfterGroup && !isAllowedLoad(InstToMove))
return StartInsertPoint;
int Cnt = IGC_GET_FLAG_VALUE(CodeSinkingLoadSchedulingInstr);
Instruction *InsertPoint = StartInsertPoint;
Instruction *I = StartInsertPoint->getPrevNode();
for (;;) {
if (I == nullptr)
break;
if (isa<PHINode>(I))
break;
if (std::any_of(I->use_begin(), I->use_end(),
[InstToMove](auto &U) {return llvm::cast<Instruction>(&U) == InstToMove;}))
break;
if (isPartOfUnsplittableGroup(I))
{
BreakAfterGroup = true;
InsertPoint = I;
I = I->getPrevNode();
continue;
}
else if (BreakAfterGroup)
break;
if (I->mayWriteToMemory())
{
// At this point of the program we might have lost some information
// About aliasing so don't schedule anything before possible stores
// But it's OK to alias with prefetch
GenIntrinsicInst *Intr = dyn_cast<GenIntrinsicInst>(I);
if (!(Intr && Intr->getIntrinsicID() == GenISAIntrinsic::GenISA_LSCPrefetch))
{
break;
}
}
if (--Cnt <= 0)
break;
InsertPoint = I;
I = I->getPrevNode();
}
return InsertPoint;
};
bool Changed = false;
for (auto &I : *BB)
{
Instruction *Use = &I;
if (isa<PHINode>(Use))
continue;
PrintDump("Local sink: Checking use: ");
PrintInstructionDump(Use);
auto UseCit = InstToCandidate.find(Use);
if (UseCit != InstToCandidate.end())
{
PrintDump("The instruction was sinked, skipping.\n");
continue;
}
for (unsigned i = 0; i < Use->getNumOperands(); ++i)
{
Instruction *Def = dyn_cast<Instruction>(Use->getOperand(i));
if (!Def)
continue;
if (Def->getParent() != BB)
continue;
auto Cit = InstToCandidate.find(Def);
if (Cit == InstToCandidate.end())
continue;
PrintDump("Found candidate to local sink:\n");
PrintInstructionDump(Def);
Candidate *C = Cit->second;
IGC_ASSERT(C->size() > 0);
Instruction *MainInst = C->first();
Instruction *InsertPoint = getInsertPointBeforeUse(MainInst, Use);
PrintDump("Inserting before:\n");
PrintInstructionDump(InsertPoint);
// Candidate can be a group of several instructions, so sinking the whole Candidate
for (Instruction *CI : *C)
{
CI->moveBefore(InsertPoint);
InstToCandidate.erase(CI);
InsertPoint = CI;
}
Changed = true;
}
}
if (Changed && CTX->m_instrTypes.hasDebugInfo) {
ProcessDbgValueInst(*BB, DT);
}
return Changed;
}
}
|