1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/EstimateFunctionSize.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "common/igc_regkeys.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Module.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/SyntheticCountsUtils.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvmWrapper/IR/BasicBlock.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include <deque>
#include <iostream>
#include <cfloat>
#include <algorithm>
using namespace llvm;
using namespace IGC;
using Scaled64 = ScaledNumber<uint64_t>;
char EstimateFunctionSize::ID = 0;
IGC_INITIALIZE_PASS_BEGIN(EstimateFunctionSize, "EstimateFunctionSize", "EstimateFunctionSize", false, true)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
IGC_INITIALIZE_PASS_END(EstimateFunctionSize, "EstimateFunctionSize", "EstimateFunctionSize", false, true)
llvm::ModulePass* IGC::createEstimateFunctionSizePass() {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize;
}
llvm::ModulePass *
IGC::createEstimateFunctionSizePass(bool EnableStaticProfileGuidedTrimming) {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize(
EstimateFunctionSize::AnalysisLevel::AL_Module,
EnableStaticProfileGuidedTrimming);
}
llvm::ModulePass*
IGC::createEstimateFunctionSizePass(EstimateFunctionSize::AnalysisLevel AL) {
initializeEstimateFunctionSizePass(*PassRegistry::getPassRegistry());
return new EstimateFunctionSize(AL, false);
}
EstimateFunctionSize::EstimateFunctionSize(AnalysisLevel AL, bool EnableStaticProfileGuidedTrimming)
: ModulePass(ID), M(nullptr), AL(AL), tmpHasImplicitArg(false), HasRecursion(false), EnableSubroutine(false) {
thresholdForTrimming =
Scaled64::get(IGC_GET_FLAG_VALUE(ControlInlineTinySizeForSPGT));
threshold_func_freq = Scaled64::getLargest();
// Flags for Kernel trimming
ControlKernelTotalSize = IGC_IS_FLAG_ENABLED(ControlKernelTotalSize);
ControlUnitSize = IGC_IS_FLAG_ENABLED(ControlUnitSize);
ControlInlineTinySize = IGC_GET_FLAG_VALUE(ControlInlineTinySize);
UnitSizeThreshold = IGC_GET_FLAG_VALUE(UnitSizeThreshold);
// Flags for Static Profile-guided trimming
StaticProfileGuidedTrimming =
IGC_IS_FLAG_ENABLED(StaticProfileGuidedTrimming);
UseFrequencyInfoForSPGT = IGC_IS_FLAG_ENABLED(UseFrequencyInfoForSPGT);
BlockFrequencySampling = IGC_IS_FLAG_ENABLED(BlockFrequencySampling);
EnableLeafCollapsing = IGC_IS_FLAG_ENABLED(EnableLeafCollapsing);
EnableSizeContributionOptimization =
IGC_IS_FLAG_ENABLED(EnableSizeContributionOptimization);
LoopCountAwareTrimming = IGC_IS_FLAG_ENABLED(LoopCountAwareTrimming);
EnableGreedyTrimming = IGC_IS_FLAG_ENABLED(EnableGreedyTrimming);
SizeWeightForSPGT = IGC_GET_FLAG_VALUE(SizeWeightForSPGT);
FrequencyWeightForSPGT = IGC_GET_FLAG_VALUE(FrequencyWeightForSPGT);
MetricForKernelSizeReduction =
IGC_GET_FLAG_VALUE(MetricForKernelSizeReduction);
ParameterForColdFuncThreshold =
IGC_GET_FLAG_VALUE(ParameterForColdFuncThreshold);
ControlInlineTinySizeForSPGT =
IGC_GET_FLAG_VALUE(ControlInlineTinySizeForSPGT);
MaxUnrollCountForFunctionSizeAnalysis =
IGC_GET_FLAG_VALUE(MaxUnrollCountForFunctionSizeAnalysis);
SkipTrimmingOneCopyFunction =
IGC_GET_FLAG_VALUE(SkipTrimmingOneCopyFunction);
SelectiveTrimming = IGC_GET_REGKEYSTRING(SelectiveTrimming);
// Flags for Partitioning
PartitionUnit = IGC_IS_FLAG_ENABLED(PartitionUnit);
StaticProfileGuidedPartitioning =
IGC_IS_FLAG_ENABLED(StaticProfileGuidedPartitioning);
// Flags for implcit arguments and external functions
ForceInlineExternalFunctions =
IGC_IS_FLAG_ENABLED(ForceInlineExternalFunctions);
ForceInlineStackCallWithImplArg =
IGC_IS_FLAG_ENABLED(ForceInlineStackCallWithImplArg);
ControlInlineImplicitArgs = IGC_IS_FLAG_ENABLED(ControlInlineImplicitArgs);
SubroutineThreshold = IGC_GET_FLAG_VALUE(SubroutineThreshold);
KernelTotalSizeThreshold = IGC_GET_FLAG_VALUE(KernelTotalSizeThreshold);
ExpandedUnitSizeThreshold = IGC_GET_FLAG_VALUE(ExpandedUnitSizeThreshold);
if (EnableStaticProfileGuidedTrimming) {
StaticProfileGuidedTrimming = true;
EnableLeafCollapsing = true;
EnableSizeContributionOptimization = true;
LoopCountAwareTrimming = true;
}
}
EstimateFunctionSize::~EstimateFunctionSize() { clear(); }
void EstimateFunctionSize::getAnalysisUsage(AnalysisUsage& AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
bool EstimateFunctionSize::runOnModule(Module& Mod) {
clear();
M = &Mod;
analyze();
checkSubroutine();
return false;
}
// Given a module, estimate the maximal function size with complete inlining.
/*
A ----> B ----> C ---> D ---> F
\ \ \
\ \ \---> E
\ \
\ \---> C ---> D --> F
\ \
\----> F \---> E
*/
// ExpandedSize(A) = size(A) + size(B) + 2 * size(C) + 2 * size(D)
// + 2 * size(E) + 3 * size(F)
//
// We compute the size as follows:
//
// (1) Initialize the data structure
//
// A --> {size(A), [B, F], [] }
// B --> {size(B), [C, C], [A] }
// C --> {size(C), [D, E], [B] }
// D --> {size(D), [F], [C] }
// E --> {size(E), [], [C] }
// F --> {size(F), [], [A, D] }
//
// where the first list consists of functions to be expanded and the second list
// consists of its caller functions.
//
// (2) Traverse in a reverse topological order and expand each node
namespace {
#define PrintPartitionUnit(hex_val,contents) if ((IGC_GET_FLAG_VALUE(PrintPartitionUnit) & hex_val) != 0) {dbgs() << "PartitionUnit0x" << hex_val << ": " << contents << "\n";}
#define PrintControlUnitSize(hex_val,contents) if ((IGC_GET_FLAG_VALUE(PrintControlUnitSize) & hex_val) != 0) {dbgs() << "ControlUnitSize0x" << hex_val << ": " << contents << "\n";}
#define PrintControlKernelTotalSize(hex_val,contents) if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & hex_val) != 0) {dbgs() << "ControlKernelTotalSize0x" << hex_val << ": " << contents << "\n";}
#define PrintTrimUnit(hex_val,contents) if ((IGC_GET_FLAG_VALUE(PrintControlKernelTotalSize) & hex_val) != 0 || (IGC_GET_FLAG_VALUE(PrintControlUnitSize) & hex_val) != 0) {dbgs() << "TrimUnit0x" << hex_val << ": " << contents << "\n";}
#define PrintFunctionSizeAnalysis(hex_val,contents) if ((IGC_GET_FLAG_VALUE(PrintFunctionSizeAnalysis) & hex_val) != 0) {dbgs() << "FunctionSizeAnalysis0x" << hex_val << ": " << contents << "\n";}
#define PrintStaticProfileGuidedKernelSizeReduction(hex_val,contents) if ((IGC_GET_FLAG_VALUE(PrintStaticProfileGuidedKernelSizeReduction) & hex_val) != 0) {dbgs() << "StaticProfileGuidedKernelSizeReduction0x" << hex_val << ": " << contents << "\n";}
static Scaled64 getSPGTWeight(unsigned Size, Scaled64 Freq,
unsigned SizeWeightForSPGT,
unsigned FrequencyWeightForSPGT) {
Scaled64 ScaledSize = Scaled64::get(Size);
unsigned SizeWeight = SizeWeightForSPGT;
Scaled64 WeightedSize = Scaled64::getOne();
for (unsigned i = 0; i < SizeWeight; i++)
WeightedSize *= ScaledSize;
if (Freq == 0)
return WeightedSize;
unsigned FreqWeight = FrequencyWeightForSPGT;
Scaled64 WeightedFreq = Scaled64::getOne();
for (unsigned i = 0; i < FreqWeight; i++)
WeightedFreq *= Freq;
return WeightedSize / WeightedFreq;
}
typedef enum
{
SP_NO_METRIC = 0, /// \brief A flag to indicate whether no metric is used. We use this especially when we only need static profile infomation without enforcement
SP_NORMAL_DISTRIBUTION = (0x1 << 0x0), /// \brief A flag to indicate whether a normal distribution is used as metric
SP_LONGTAIL_DISTRIBUTION = (0x1 << 0x1), /// \brief A flag to indicate whether a long tail distribution is used as metric
SP_AVERAGE_PERCENTAGE = (0x1 << 0x2), /// \brief A flag to indicate whether average % is used as metric
} StatiProfile_FLAG_t;
// Function Attribute Flag type
typedef enum
{
FA_BEST_EFFORT_INLINE= 0, /// \brief A flag to indicate whether it is to be inlined but it can be trimmed or assigned stackcall
FA_FORCE_INLINE = (0x1 << 0x0), /// \brief A flag to indicate whether it is to be inlined and it cannot be reverted
FA_TRIMMED = (0x1 << 0x1), /// \brief A flag to indicate whetehr it will be trimmed
FA_STACKCALL = (0x1 << 0x2), /// \brief A flag to indicate whether this node should be a stack call header
FA_KERNEL_ENTRY = (0x1 << 0x3), /// \brief A flag to indicate whether this node is a kernel entry. It will be affected by any schemes.
FA_ADDR_TAKEN = (0x1 << 0x4), /// \brief A flag to indicate whether this node is an address taken function.
} FA_FLAG_t;
/// Associate each function with a partially expanded size and remaining
/// unexpanded function list, etc.
typedef enum
{
FT_NOT_APPLICABLE = 0, /// \brief A flag to indicate functions don't need to be considered
FT_NOT_BEST_EFFORT = (0x1 << 0x1), /// \brief A flag to indicate function is not open to trimming or partitioning
FT_MUL_KERNEL = (0x1 << 0x2), /// \brief A flag to indicate function is in multiple kernels and they are forced to be inlined
FT_BIG_ENOUGH = (0x1 << 0x3), /// \brief A flag to indicate functions are big enough to trim
FT_TOO_TINY = (0x1 << 0x4), /// \brief A flag to indicate function is too tiny to be trimmed
FT_HIGHER_WEIGHT = (0x1 << 0x5), /// \brief a flag to indicate the function has higher weight than threshold
FT_LOWER_WEIGHT = (0x1 << 0x6), /// \brief a flag to indicate the function has lower weight than threshold
} FUNCTION_TRAIT_FLAG_t;
struct FunctionNode {
FunctionNode(Function* F, std::size_t Size)
: F(F), InitialSize(Size), UnitSize(Size), ExpandedSize(Size), SizeAfterCollapsing(Size), Inline_cnt(0), tmpSize(Size), CallingSubroutine(false),
FunctionAttr(0), InMultipleUnit(false), HasImplicitArg(false), staticFuncFreq(0, 0), EntryFreq(0,0) {}
Function* F;
/// leaf node.
/// \brief Initial size before partition
uint32_t InitialSize;
// \brief the size of a compilation unit
uint32_t UnitSize;
/// \brief Expanded size when all functions in a unit below the node are expanded
uint32_t ExpandedSize;
/// \brief Expanded size when all functions in a unit below the node are expanded
uint32_t SizeAfterCollapsing;
/// \brief How many times the function is inlined at callsites.
uint32_t Inline_cnt;
/// \brief used to update unit size or expanded unit size in topological sort
uint32_t tmpSize;
/// \brief Function attribute
uint8_t FunctionAttr;
/// \brief An estimated static function frequency
Scaled64 staticFuncFreq;
/// \brief A flag to indicate whether this node has a subroutine call before
/// expanding.
bool CallingSubroutine;
/// \brief A flag to indicate whether it is located in multiple kernels or units
bool InMultipleUnit;
bool HasImplicitArg;
Scaled64 EntryFreq;
std::unordered_map<llvm::BasicBlock*, Scaled64> blockFreqs;
/// \brief All functions directly called in this function.
std::unordered_map<FunctionNode*, uint16_t> CalleeList;
/// \brief All functions that call this function F.
std::unordered_map<FunctionNode*, uint16_t> CallerList;
bool EnableLeafCollapsing;
bool EnableSizeContributionOptimization;
bool StaticProfileGuidedTrimming;
bool UseFrequencyInfoForSPGT;
bool ForceInlineExternalFunctions;
unsigned ControlInlineTinySize;
bool ForceInlineStackCallWithImplArg;
bool ControlInlineImplicitArgs;
unsigned SizeWeightForSPGT;
unsigned FrequencyWeightForSPGT;
void setFlags(bool EnableLC, bool EnableSCO, bool SPGT,
bool UseFreqInfo, bool ForceInlineExtFun, unsigned TinySize,
bool InlineStkCallWithImplArg, bool InlineImplArgs,
unsigned SizeWeight, unsigned FreqWeight) {
EnableLeafCollapsing = EnableLC;
EnableSizeContributionOptimization = EnableSCO;
StaticProfileGuidedTrimming = SPGT;
UseFrequencyInfoForSPGT = UseFreqInfo;
ForceInlineExternalFunctions = ForceInlineExtFun;
ControlInlineTinySize = TinySize;
ForceInlineStackCallWithImplArg = InlineStkCallWithImplArg;
ControlInlineImplicitArgs = InlineImplArgs;
SizeWeightForSPGT = SizeWeight;
FrequencyWeightForSPGT = FreqWeight;
return;
}
void setStaticFuncFreq(Scaled64 freq) { staticFuncFreq = freq; }
Scaled64 getStaticFuncFreq() { return staticFuncFreq; }
std::string getStaticFuncFreqStr() { return staticFuncFreq.toString(); }
// \brief return the size used for Static Profile Guided Trimming
uint64_t getPotentialBodySize() { return EnableLeafCollapsing ? SizeAfterCollapsing : InitialSize; }
uint64_t getSizeContribution() {return Inline_cnt == 0 ? getPotentialBodySize() : static_cast<uint64_t>(Inline_cnt) * getPotentialBodySize(); }
uint64_t getSizeForTrimming() {return EnableSizeContributionOptimization ? getSizeContribution() : getPotentialBodySize();}
Scaled64 getWeightForTrimming() {
if (StaticProfileGuidedTrimming && UseFrequencyInfoForSPGT) {
return getSPGTWeight(getSizeForTrimming(), staticFuncFreq,
SizeWeightForSPGT,
FrequencyWeightForSPGT);
}
return Scaled64::get(getSizeForTrimming());
}
/// \brief A node becomes a leaf when all called functions are expanded.
bool isLeaf() const { return CalleeList.empty(); }
/// \brief Add a caller or callee.
// A caller may call the same callee multiple times, e.g. A->{B,B,B}: A->CalleeList(B,B,B), B->CallerList(A,A,A)
void addCallee(FunctionNode* G, unsigned weight) {
IGC_ASSERT(G);
if (CalleeList.find(G) == CalleeList.end()) //First time added, Initialize it
CalleeList[G] = 0;
CalleeList[G] += weight;
CallingSubroutine = true;
}
void addCaller(FunctionNode *G, unsigned weight) {
IGC_ASSERT(G);
if (CallerList.find(G) == CallerList.end()) //First time added, Initialize it
CallerList[G] = 0;
CallerList[G] += weight;
}
void setKernelEntry()
{
FunctionAttr = FA_KERNEL_ENTRY;
return;
}
void setAddressTaken()
{
FunctionAttr = FA_ADDR_TAKEN;
}
void setForceInline()
{
IGC_ASSERT(FunctionAttr != FA_KERNEL_ENTRY
&& FunctionAttr != FA_ADDR_TAKEN); //Can't force inline a kernel entry or address taken function
FunctionAttr = FA_FORCE_INLINE;
return;
}
void setTrimmed()
{
IGC_ASSERT(FunctionAttr == FA_BEST_EFFORT_INLINE); //Only best effort inline function can be trimmed
FunctionAttr = FA_TRIMMED;
return;
}
void unsetTrimmed()
{
IGC_ASSERT(FunctionAttr == FA_TRIMMED); //Only best effort inline function can be trimmed
FunctionAttr = FA_BEST_EFFORT_INLINE;
return;
}
void setStackCall()
{
//Can't assign stack call to force inlined function, kernel entry,
//address taken functions and functions that already assigned stack call
IGC_ASSERT(FunctionAttr == FA_BEST_EFFORT_INLINE || FunctionAttr == FA_TRIMMED);
FunctionAttr = FA_STACKCALL;
return;
}
void setEntryFrequency(uint64_t digit, uint16_t scale) { EntryFreq = Scaled64(digit,scale);}
Scaled64 getEntryFrequency() { return EntryFreq;}
bool isEntryFunc() { return FunctionAttr == FA_KERNEL_ENTRY; }
bool isAddrTakenFunc() { return FunctionAttr == FA_ADDR_TAKEN; }
bool isTrimmed() { return FunctionAttr == FA_TRIMMED; }
bool isForcedInlined() { return FunctionAttr == FA_FORCE_INLINE; }
bool isBestEffortInline() { return FunctionAttr == FA_BEST_EFFORT_INLINE; }
bool hasNoCaller() { return isAddrTakenFunc() || isEntryFunc(); }
bool willBeInlined() { return isBestEffortInline() || isForcedInlined(); }
bool isStackCallAssigned() { return FunctionAttr == FA_STACKCALL; }
bool canAssignStackCall()
{
if (FA_BEST_EFFORT_INLINE == FunctionAttr ||
FA_TRIMMED == FunctionAttr) //The best effort inline or manually trimmed functions can be assigned stack call
return true;
return false;
}
uint16_t getFunctionTrait(Scaled64 thresholdForTrimming)
{
if (FunctionAttr != FA_BEST_EFFORT_INLINE) //Only best effort inline can be trimmed
return FT_NOT_BEST_EFFORT;
// to allow trimming functions called from other kernels, set the regkey to false
if (ForceInlineExternalFunctions && InMultipleUnit)
return FT_MUL_KERNEL;
uint64_t tinySize = ControlInlineTinySize;
if (getPotentialBodySize() < tinySize) //It's too small to trim
return FT_TOO_TINY;
if (StaticProfileGuidedTrimming)
{
if (getWeightForTrimming() < thresholdForTrimming) {
return FT_LOWER_WEIGHT;
} else {
return FT_HIGHER_WEIGHT;
}
}
return FT_BIG_ENOUGH;
}
std::string getFuncAttrStr()
{
switch (FunctionAttr) {
case FA_BEST_EFFORT_INLINE:
return "Best effort innline";
case FA_FORCE_INLINE:
return "Force innline";
case FA_TRIMMED:
return "Trimmed";
case FA_STACKCALL:
return "Stack call";
case FA_KERNEL_ENTRY:
return "Kernel entry";
case FA_ADDR_TAKEN:
return "Address taken";
default:
return "Wrong value";
}
return "";
}
void dumpFuncInfo(uint16_t type, std::string message)
{
std::string dumpInfo = message + ", ";
dumpInfo += F->getName().str();
dumpInfo += ", Function Attribute: ";dumpInfo += getFuncAttrStr();
dumpInfo += ", Function size: "; dumpInfo += std::to_string(InitialSize);
if (EnableLeafCollapsing)
{
dumpInfo += ", Size after collapsing: ";
dumpInfo += std::to_string(SizeAfterCollapsing);
}
if (EnableSizeContributionOptimization)
{
dumpInfo += ", Size contribution: ";
dumpInfo += std::to_string(getSizeContribution());
}
if (UseFrequencyInfoForSPGT)
{
dumpInfo += ", Freq: ";
dumpInfo += getStaticFuncFreqStr();
}
if (StaticProfileGuidedTrimming)
{
dumpInfo += ", Weight: ";
dumpInfo += getWeightForTrimming().toString();
}
PrintTrimUnit(type, dumpInfo);
}
//Top down bfs to find the size of a compilation unit
uint32_t updateUnitSize() {
std::unordered_set<FunctionNode*> visit;
std::deque<FunctionNode*> TopDownQueue;
TopDownQueue.push_back(this);
visit.insert(this);
uint32_t total = 0;
PrintFunctionSizeAnalysis(0x4, "Functions in the unit " << F->getName().str())
while (!TopDownQueue.empty())
{
FunctionNode* Node = TopDownQueue.front();
PrintFunctionSizeAnalysis(0x4, Node->F->getName().str() << ": " << Node->InitialSize)
TopDownQueue.pop_front();
total += Node->InitialSize;
for (auto& Callee : Node->CalleeList)
{
FunctionNode* calleeNode = Callee.first;
if (visit.find(calleeNode) != visit.end() || calleeNode->isStackCallAssigned()) //Already processed or head of stack call
continue;
visit.insert(calleeNode);
TopDownQueue.push_back(calleeNode);
}
}
return UnitSize = total;
}
/// \brief A single step to expand F
void expand(FunctionNode* callee)
{
//When the collaped callee has implicit arguments
//the node will have implicit arguments too
//In this scenario, when ControlInlineImplicitArgs is set
//the node should be inlined unconditioinally so exempt from a stackcall and trimming target
if (HasImplicitArg == false && callee->HasImplicitArg == true)
{
HasImplicitArg = true;
PrintFunctionSizeAnalysis(0x4, "Func " << this->F->getName().str() << " expands to has implicit arg due to " << callee->F->getName().str())
if (!hasNoCaller()) //Can't inline kernel entry or address taken functions
{
if (isStackCallAssigned()) {//When stackcall is assigned we need to determine based on the flag
if (ForceInlineStackCallWithImplArg)
setForceInline();
} else if (ControlInlineImplicitArgs) {//Force inline ordinary functions with implicit arguments
setForceInline();
}
}
}
uint32_t sizeIncrease = callee->ExpandedSize * CalleeList[callee];
tmpSize += sizeIncrease;
}
#if defined(_DEBUG)
void print(raw_ostream& os);
void dump() { print(llvm::errs()); }
#endif
};
} // namespace
#if defined(_DEBUG)
void FunctionNode::print(raw_ostream& os) {
os << "Function: " << F->getName() << ", " << InitialSize << "\n";
for (const auto &G : CalleeList)
os << "--->>>" << G.first->F->getName() << "\n";
for (const auto &G : CallerList)
os << "<<<---" << G.first->F->getName() << "\n";
}
#endif
void EstimateFunctionSize::clear() {
M = nullptr;
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I) {
auto Node = (FunctionNode*)I->second;
delete Node;
}
ECG.clear();
kernelEntries.clear();
stackCallFuncs.clear();
addressTakenFuncs.clear();
}
bool EstimateFunctionSize::matchImplicitArg( CallInst& CI )
{
bool matched = false;
StringRef funcName = CI.getCalledFunction()->getName();
if( funcName.equals( GET_LOCAL_ID_X ) ||
funcName.equals( GET_LOCAL_ID_Y ) ||
funcName.equals( GET_LOCAL_ID_Z ) ) {
matched = true;
} else if( funcName.equals( GET_GROUP_ID ) ) {
matched = true;
} else if( funcName.equals( GET_LOCAL_THREAD_ID ) ) {
matched = true;
} else if( funcName.equals( GET_GLOBAL_OFFSET ) ) {
matched = true;
} else if( funcName.equals( GET_GLOBAL_SIZE ) ) {
matched = true;
} else if( funcName.equals( GET_LOCAL_SIZE ) ) {
matched = true;
} else if( funcName.equals( GET_WORK_DIM ) ) {
matched = true;
} else if( funcName.equals( GET_NUM_GROUPS ) ) {
matched = true;
} else if( funcName.equals( GET_ENQUEUED_LOCAL_SIZE ) ) {
matched = true;
} else if( funcName.equals( GET_STAGE_IN_GRID_ORIGIN ) ) {
matched = true;
} else if( funcName.equals( GET_STAGE_IN_GRID_SIZE ) ) {
matched = true;
} else if( funcName.equals( GET_SYNC_BUFFER ) ) {
matched = true;
} else if( funcName.equals( GET_ASSERT_BUFFER ) ) {
matched = true;
}
if( matched && ( IGC_GET_FLAG_VALUE( PrintControlKernelTotalSize ) & 0x40 ) != 0 )
{
PrintFunctionSizeAnalysis(0x8, "Matched implicit arg " << funcName.str())
}
return matched;
}
// visit Call inst to determine if implicit args are used by the caller
void EstimateFunctionSize::visitCallInst( CallInst& CI )
{
if( !CI.getCalledFunction() )
{
return;
}
// Check for implicit arg function calls
bool matched = matchImplicitArg( CI );
tmpHasImplicitArg = matched;
}
void EstimateFunctionSize::updateStaticFuncFreq()
{
DenseMap<Function*, ScaledNumber<uint64_t>> Counts;
auto MayHaveIndirectCalls = [](Function& F) {
for (auto* U : F.users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
return true;
}
return false;
};
uint64_t InitialSyntheticCount = 10;
uint64_t InlineSyntheticCount = 15;
uint64_t ColdSyntheticCount = 5;
for (Function& F : *M) {
uint64_t InitialCount = InitialSyntheticCount;
if (F.empty() || F.isDeclaration())
continue;
if (F.hasFnAttribute(llvm::Attribute::AlwaysInline) ||
F.hasFnAttribute(llvm::Attribute::InlineHint)) {
// Use a higher value for inline functions to account for the fact that
// these are usually beneficial to inline.
InitialCount = InlineSyntheticCount;
} else if (F.hasLocalLinkage() && !MayHaveIndirectCalls(F)) {
// Local functions without inline hints get counts only through
// propagation.
InitialCount = 0;
} else if (F.hasFnAttribute(llvm::Attribute::Cold) ||
F.hasFnAttribute(llvm::Attribute::NoInline)) {
// Use a lower value for noinline and cold functions.
InitialCount = ColdSyntheticCount;
}
Counts[&F] = Scaled64(InitialCount, 0);
}
// Edge includes information about the source. Hence ignore the first
// parameter.
auto GetCallSiteProfCount = [&](const CallGraphNode*,
const CallGraphNode::CallRecord& Edge) {
#if LLVM_VERSION_MAJOR < 11
Optional<Scaled64> Res = None;
if (!Edge.first)
return Res;
assert(isa<Instruction>(Edge.first));
CallSite CS(cast<Instruction>(Edge.first));
Function* Caller = CS.getCaller();
BasicBlock* CSBB = CS.getInstruction()->getParent();
#else
Optional<Scaled64> Res = None;
if (!Edge.first)
return Res;
CallBase& CB = *cast<CallBase>(*Edge.first);
Function* Caller = CB.getCaller();
BasicBlock* CSBB = CB.getParent();
#endif
// Now compute the callsite count from relative frequency and
// entry count:
Scaled64 EntryFreq = get<FunctionNode>(Caller)->getEntryFrequency();
Scaled64 BBCount = get<FunctionNode>(Caller)->blockFreqs[CSBB];
IGC_ASSERT(EntryFreq != 0);
BBCount /= EntryFreq;
BBCount *= Counts[Caller];
return Optional<Scaled64>(BBCount);
};
CallGraph CG(*M);
// Propgate the entry counts on the callgraph.
SyntheticCountsUtils<const CallGraph*>::propagate(
&CG, GetCallSiteProfCount, [&](const CallGraphNode* N, Scaled64 New) {
auto F = N->getFunction();
if (!F || F->isDeclaration())
return;
Counts[F] += New;
});
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode* Node = get<FunctionNode>(&F);
if (Counts.find(&F) != Counts.end())
Node->setStaticFuncFreq(Counts[&F]);
}
return;
}
void EstimateFunctionSize::runStaticAnalysis()
{
//Analyze function frequencies from SyntheticCountsPropagation
PrintStaticProfileGuidedKernelSizeReduction(0x1, "------------------Static analysis start------------------")
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
auto& BFI = getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
FunctionNode* Node = get<FunctionNode>(&F);
Node->setEntryFrequency(BFI.getEntryFreq(), 0);
for (auto& B : F)
Node->blockFreqs[&B] = Scaled64(BFI.getBlockFreq(&B).getFrequency(), 0);
}
updateStaticFuncFreq();
std::vector<Scaled64> freqLog;
if (BlockFrequencySampling) {//Set basic blocks as the sample space
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode* Node = get<FunctionNode>(&F);
Scaled64 EntryFreq = Node->getEntryFrequency();
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Function frequency of " << Node->F->getName().str() << ": " << Node->getStaticFuncFreqStr())
for (auto& B : F)
{
Scaled64 BBCount = Node->blockFreqs[&B];
BBCount /= EntryFreq;
BBCount *= Node->getStaticFuncFreq();
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Block frequency of " << B.getName().str() << ": " << BBCount.toString())
if (BBCount > 0) //Can't represent 0 in log scale so ignore, better idea?
freqLog.push_back(BBCount);
}
}
} else {
for (auto& F : M->getFunctionList())
{
if (F.empty())
continue;
FunctionNode* Node = get<FunctionNode>(&F);
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Function frequency of " << Node->F->getName().str() << ": " << Node->getStaticFuncFreqStr())
if (Node->getStaticFuncFreq() > 0) //Can't represent 0 in log scale so ignore, better idea?
freqLog.push_back(Node->getStaticFuncFreq());
}
}
if ((MetricForKernelSizeReduction & SP_NORMAL_DISTRIBUTION) != 0 && !freqLog.empty()) {//When using a normal distribution. Ignore when there are no frequency data
IGC_ASSERT(ParameterForColdFuncThreshold >= 0 && ParameterForColdFuncThreshold <= 30);
//Find a threshold from a normal distribution
std::sort(freqLog.begin(), freqLog.end()); //Sort frequency data
std::vector<double> freqLogDbl;
std::unordered_map<double, Scaled64> map_log10_to_scaled64;
double log10_2 = std::log10(2);
for (Scaled64& val : freqLog) //transform into log10 scale
{
double logedVal = std::log10(val.getDigits()) + val.getScale() * log10_2;
map_log10_to_scaled64[logedVal] = val;
freqLogDbl.push_back(logedVal);
}
double sum_val = std::accumulate(freqLogDbl.begin(), freqLogDbl.end(), 0.0);
double mean = sum_val / freqLogDbl.size();
double sq_sum = std::inner_product(freqLogDbl.begin(), freqLogDbl.end(), freqLogDbl.begin(), 0.0,
[](double const& x, double const& y) {return x + y;},
[mean](double const& x, double const& y) {return (x - mean) * (y - mean);});
double standard_deviation = std::sqrt(sq_sum / freqLogDbl.size());
float C = (float)ParameterForColdFuncThreshold / 10; //Since 1 STD is too wide in the majority case, we need to scale down
double threshold_log10 = mean - C * standard_deviation;
auto it_lower = std::lower_bound(freqLogDbl.begin(), freqLogDbl.end(), threshold_log10);
if (it_lower == freqLogDbl.end())
threshold_func_freq = freqLog.back();
else
threshold_func_freq = map_log10_to_scaled64[*it_lower];
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Metric: Normal distribution");
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Sample count: " << freqLogDbl.size());
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Execution frequency mean (Log10 scale): " << mean);
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Standard deviation (Log10 scale): " << standard_deviation);
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Execution frequency threshold with Constant(C) " << C << ": " << threshold_func_freq.toString());
} else if ((MetricForKernelSizeReduction & SP_LONGTAIL_DISTRIBUTION) != 0 && !freqLog.empty()) { //When using a long-tail distribution. Ignore when there are no frequency data
IGC_ASSERT(ParameterForColdFuncThreshold > 0 && ParameterForColdFuncThreshold <= 100);
//Find a threshold from a long tail distribution
uint32_t threshold_cold = (uint32_t)ParameterForColdFuncThreshold;
uint32_t C_pos = freqLog.size() * threshold_cold / 100;
std::nth_element(freqLog.begin(), freqLog.begin() + C_pos, freqLog.end(),
[](Scaled64& x, Scaled64& y) {return x < y;}); //Low C%
threshold_func_freq = freqLog[C_pos];
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Metric: Long tail distribution");
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Low " << threshold_cold << "% pos: " << C_pos << " out of " << freqLog.size());
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Execution frequency threshold: " << threshold_func_freq);
} else if ((MetricForKernelSizeReduction & SP_AVERAGE_PERCENTAGE) != 0 && !freqLog.empty()) {//When using a average C%
Scaled64 sum_val = std::accumulate(freqLog.begin(), freqLog.end(), Scaled64::getZero());
Scaled64 mean = sum_val / Scaled64::get(freqLog.size());
Scaled64 C = Scaled64::get(ParameterForColdFuncThreshold) / Scaled64::get(10); //Scale down /10
IGC_ASSERT(C > 0 && C <= 100);
threshold_func_freq = mean * (C / Scaled64::get(100));
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Metric: Average%");
PrintStaticProfileGuidedKernelSizeReduction(0x1, "Average threshold * " << C.toString() << "%: " << threshold_func_freq.toString());
}
unsigned sizeThreshold = ControlInlineTinySizeForSPGT;
if (UseFrequencyInfoForSPGT) {
thresholdForTrimming =
getSPGTWeight(sizeThreshold, threshold_func_freq, SizeWeightForSPGT,
FrequencyWeightForSPGT);
} else {
thresholdForTrimming =
Scaled64::get(sizeThreshold); // If we don't want to use freq data,
// just use size only
}
PrintStaticProfileGuidedKernelSizeReduction(0x1, "------------------Static analysis end------------------\n")
return;
}
void EstimateFunctionSize::estimateTotalLoopIteration(llvm::Function &F,
LoopInfo *LI) {
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>(F).getSE();
for (Loop *L : LI->getLoopsInPreorder()) {
Scaled64 ParentLCnt = Scaled64::getOne();
Loop *ParentL = L->getParentLoop();
if (ParentL) {
IGC_ASSERT(LoopIterCnts.find(ParentL) != LoopIterCnts.end());
ParentLCnt = LoopIterCnts[ParentL];
}
StringRef LoopCntAttr = " Back edge count not available";
if (SE.hasLoopInvariantBackedgeTakenCount(L)) {
unsigned TripCount = 0;
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBlock : ExitingBlocks)
if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
if (!TripCount || TC < TripCount)
TripCount = TC;
if (TripCount) {
// We assume that loop unrolling will not exceed 16 times
unsigned MaxUnrollCount = MaxUnrollCountForFunctionSizeAnalysis;
TripCount = std::min(TripCount, MaxUnrollCount);
LoopIterCnts[L] = ParentLCnt * Scaled64::get(TripCount);
LoopCntAttr = " Trip count available";
} else {
// TODO: We currently set a loop count to 5
// if we don't know the exact number
LoopIterCnts[L] = ParentLCnt * Scaled64::get(5);
LoopCntAttr = " Upper bound available";
}
}
else {
LoopIterCnts[L] = Scaled64::getOne();
}
PrintFunctionSizeAnalysis(
0x2, "Loop " << L->getName().str()
<< ": Loop Count = " << LoopIterCnts[L].toString()
<< ", Parent Loop Count = " << ParentLCnt.toString() << LoopCntAttr)
}
return;
}
void EstimateFunctionSize::analyze() {
auto getSize = [&](llvm::Function &F) {
std::size_t Size = 0;
for (auto &BB : F) {
std::size_t BlkSize = IGCLLVM::sizeWithoutDebug(&BB);
Size += BlkSize;
}
return Size;
};
auto getSizeWithLoopCnt = [&](llvm::Function &F, LoopInfo &LI) {
std::size_t Size = 0;
for (auto &BB : F) {
std::size_t BlkSize = IGCLLVM::sizeWithoutDebug(&BB);
Loop *L = LI.getLoopFor(&BB);
if (L) {
BlkSize = BlkSize * LoopIterCnts[L].toInt<size_t>();
}
Size += BlkSize;
}
return Size;
};
auto MdWrapper = getAnalysisIfAvailable<MetaDataUtilsWrapper>();
auto pMdUtils = MdWrapper->getMetaDataUtils();
// Initialize the data structure. find all noinline and stackcall properties
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode *node = nullptr;
if (LoopCountAwareTrimming) {
auto &LI = getAnalysis<LoopInfoWrapperPass>(F).getLoopInfo();
estimateTotalLoopIteration(F, &LI);
size_t FuncSize = getSize(F);
size_t FuncSizeWithLoopCnt = getSizeWithLoopCnt(F, LI);
node = new FunctionNode(&F, FuncSizeWithLoopCnt);
PrintFunctionSizeAnalysis(
0x1, "Function "
<< F.getName().str() << " Original Size: " << FuncSize
<< " Size with Loop Iter: " << FuncSizeWithLoopCnt);
} else {
node = new FunctionNode(&F, getSize(F));
}
node->setFlags(EnableLeafCollapsing, EnableSizeContributionOptimization,
StaticProfileGuidedTrimming, UseFrequencyInfoForSPGT,
ForceInlineExternalFunctions, ControlInlineTinySize,
ForceInlineStackCallWithImplArg,
ControlInlineImplicitArgs, SizeWeightForSPGT,
FrequencyWeightForSPGT);
bool isForceTrim = false;
if (!SelectiveTrimming.empty()) {
std::string functionToTrim = SelectiveTrimming;
if (F.getName().str() == functionToTrim)
{
isForceTrim = true;
PrintFunctionSizeAnalysis(0x1, "Force trimming (No inline) " << functionToTrim);
}
}
ECG[&F] = node;
if (isEntryFunc(pMdUtils, node->F)) {///Entry function
node->setKernelEntry();
kernelEntries.push_back(node);
} else if (F.hasFnAttribute("igc-force-stackcall")) {
node->setStackCall();
} else if (F.hasFnAttribute(llvm::Attribute::NoInline) || isForceTrim) {
node->setTrimmed();
} else if (F.hasFnAttribute(llvm::Attribute::AlwaysInline)) {
node->setForceInline();
}
//Otherwise, the function attribute to be assigned is best effort
}
// Visit all call instructions and populate CG.
for (auto& F : M->getFunctionList()) {
if (F.empty())
continue;
FunctionNode* Node = get<FunctionNode>(&F);
auto &LI = getAnalysis<LoopInfoWrapperPass>(F).getLoopInfo();
for (auto U : F.users()) {
// Other users (like bitcast/store) are ignored.
if (auto* CI = dyn_cast<CallInst>(U)) {
// G calls F, or G --> F
BasicBlock* BB = CI->getParent();
Function* G = BB->getParent();
FunctionNode* GN = get<FunctionNode>(G);
unsigned LoopCnt = 1;
if (LoopCountAwareTrimming) {
Loop *L = LI.getLoopFor(BB);
if (L) {
IGC_ASSERT(LoopIterCnts.find(L) !=
LoopIterCnts.end());
LoopCnt = LoopIterCnts[L].toInt<size_t>();
}
}
GN->addCallee(Node, LoopCnt);
Node->addCaller(GN, LoopCnt);
}
}
}
//Find all address taken functions
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I)
{
FunctionNode* Node = (FunctionNode*)I->second;
//Address taken functions neither have callers nor is an entry function
if (Node->CallerList.empty() && !Node->isEntryFunc())
Node->setAddressTaken();
}
bool needImplAnalysis = ControlInlineImplicitArgs || ForceInlineStackCallWithImplArg;
// check functions and mark those that use implicit args.
PrintFunctionSizeAnalysis(0x1, "--------------------------Function size analysis start--------------------------");
if (needImplAnalysis)
performImplArgsAnalysis();
// Update expanded and static unit size and propagate implicit argument information which might cancel some stackcalls
for (void *entry : kernelEntries)
{
FunctionNode* kernelEntry = (FunctionNode*)entry;
updateExpandedUnitSize(kernelEntry->F, true);
kernelEntry->updateUnitSize();
PrintFunctionSizeAnalysis(0x1, "Unit size (kernel entry) " << kernelEntry->F->getName().str() << ": " << kernelEntry->UnitSize);
PrintFunctionSizeAnalysis(0x1, "Expanded unit size (kernel entry) " << kernelEntry->F->getName().str() << ": " << kernelEntry->ExpandedSize);
}
// Find all survived stackcalls and address taken functions and update unit sizes
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I)
{
FunctionNode* Node = (FunctionNode*)I->second;
if (Node->isStackCallAssigned()) {
stackCallFuncs.push_back(Node);
Node->updateUnitSize();
PrintFunctionSizeAnalysis(0x1, "Unit size (stack call) " << Node->F->getName().str() << ": " << Node->UnitSize);
} else if (Node->isAddrTakenFunc()) {
addressTakenFuncs.push_back(Node);
updateExpandedUnitSize(Node->F, true);
Node->updateUnitSize();
PrintFunctionSizeAnalysis(0x1, "Unit size (address taken) " << Node->F->getName().str() << ": " << Node->UnitSize);
PrintFunctionSizeAnalysis(0x1, "Expanded unit size (address taken) " << Node->F->getName().str() << ": " << Node->ExpandedSize);
}
}
PrintFunctionSizeAnalysis(0x1, "Function count= " << ECG.size());
PrintFunctionSizeAnalysis(0x1, "Kernel count= " << kernelEntries.size());
PrintFunctionSizeAnalysis(0x1, "Manual stack call count= " << stackCallFuncs.size());
PrintFunctionSizeAnalysis(0x1, "Address taken function call count= " << addressTakenFuncs.size());
PrintFunctionSizeAnalysis(0x1, "--------------------------Function size analysis end--------------------------\n");
return;
}
void EstimateFunctionSize::performImplArgsAnalysis()
{
for (auto I = ECG.begin(), E = ECG.end(); I != E; ++I)
{
FunctionNode* Node = (FunctionNode*)I->second;
IGC_ASSERT(Node);
tmpHasImplicitArg = false;
visit(Node->F);
if (!tmpHasImplicitArg) //The function doesn't have an implicit argument: skip
continue;
Node->HasImplicitArg = true;
static int cnt = 0;
const char* Name;
if (Node->isLeaf()) {
Name = "Leaf";
} else {
Name = "nonLeaf";
}
PrintFunctionSizeAnalysis(0x8, Name << " Func " << ++cnt << " " << Node->F->getName().str() << " calls implicit args so HasImplicitArg")
if (Node->hasNoCaller()) //Can't inline kernel entry or address taken functions
continue;
if (Node->isStackCallAssigned()) //When stackcall is assigned we need to determine based on the flag
{
if (ForceInlineStackCallWithImplArg)
Node->setForceInline();
continue;
}
//For other cases
if (ControlInlineImplicitArgs) //Force inline ordinary functions with implicit arguments
Node->setForceInline();
}
return;
}
/// \brief Return the estimated maximal function size after complete inlining.
std::size_t EstimateFunctionSize::getMaxExpandedSize() const {
uint32_t MaxSize = 0;
for (auto I : kernelEntries) {
FunctionNode* Node = (FunctionNode*)I;
MaxSize = std::max(MaxSize, Node->ExpandedSize);
}
for (auto I : addressTakenFuncs) {
FunctionNode* Node = (FunctionNode*)I;
MaxSize = std::max(MaxSize, Node->ExpandedSize);
}
return MaxSize;
}
void EstimateFunctionSize::checkSubroutine() {
auto CGW = getAnalysisIfAvailable<CodeGenContextWrapper>();
if (!CGW) return;
EnableSubroutine = true;
CodeGenContext* pContext = CGW->getCodeGenContext();
if (pContext->type != ShaderType::OPENCL_SHADER &&
pContext->type != ShaderType::COMPUTE_SHADER &&
pContext->type != ShaderType::RAYTRACING_SHADER)
EnableSubroutine = false;
if (EnableSubroutine)
{
uint32_t subroutineThreshold = SubroutineThreshold;
uint32_t expandedMaxSize = getMaxExpandedSize();
if (AL != AL_Module) // at the second call of EstimationFucntionSize, halve the threshold
subroutineThreshold = subroutineThreshold >> 1;
if (expandedMaxSize <= subroutineThreshold ) {
PrintTrimUnit(0x1, "No need to reduce the kernel size. (The max expanded kernel size is small) " << expandedMaxSize << " < " << subroutineThreshold)
if(!HasRecursion)
EnableSubroutine = false;
} else if (AL == AL_Module && IGC_IS_FLAG_DISABLED(DisableAddingAlwaysAttribute)) {//kernel trimming and partitioning only kick in at the first EstimationFunctionSize
//Analyze Function/Block frequencies
if (StaticProfileGuidedPartitioning || StaticProfileGuidedTrimming) // Either a normal or long-tail distribution is enabled
runStaticAnalysis();
// If the max unit size exceeds threshold, do partitioning
if (PartitionUnit)
{
PrintPartitionUnit(0x1, "--------------------------Partition unit start--------------------------");
uint32_t unitThreshold = UnitSizeThreshold;
uint32_t maxUnitSize = getMaxUnitSize();
if (maxUnitSize > unitThreshold) {
PrintPartitionUnit(0x1, "Max unit size " << maxUnitSize << " is larger than the threshold (to partition) " << unitThreshold)
partitionKernel();
} else {
PrintPartitionUnit(0x1, "Max unit size " << maxUnitSize << " is smaller than the threshold (No partitioning needed) " << unitThreshold)
}
PrintPartitionUnit(0x1, "--------------------------Partition unit end--------------------------\n");
}
PrintTrimUnit(0x1, "Need to reduce the kernel size. (The max expanded kernel size is large) " << expandedMaxSize << " > " << subroutineThreshold)
PrintTrimUnit(0x1, "-----------------------------Trimming start-----------------------------")
if (ControlKernelTotalSize) {
reduceKernelSize();
} else if (ControlUnitSize) {
reduceCompilationUnitSize();
}
PrintTrimUnit(0x1, "-----------------------------Trimming end-----------------------------\n")
}
}
IGC_ASSERT(!HasRecursion || EnableSubroutine);
return;
}
std::size_t EstimateFunctionSize::getExpandedSize(const Function* F) const {
//IGC_ASSERT(IGC_IS_FLAG_DISABLED(ControlKernelTotalSize));
auto I = ECG.find((Function*)F);
if (I != ECG.end()) {
FunctionNode* Node = (FunctionNode*)I->second;
IGC_ASSERT(F == Node->F);
return Node->ExpandedSize;
}
return std::numeric_limits<std::size_t>::max();
}
bool EstimateFunctionSize::onlyCalledOnce(const Function* F) {
//IGC_ASSERT(IGC_IS_FLAG_DISABLED(ControlKernelTotalSize));
auto I = ECG.find((Function*)F);
if (I != ECG.end()) {
FunctionNode* Node = (FunctionNode*)I->second;
IGC_ASSERT(F == Node->F);
// one call-site and not a recursion
if (Node->CallerList.size() == 1 &&
Node->CallerList.begin()->second == 1 &&
Node->CallerList.begin()->first != Node) {
return true;
}
// OpenCL specific, called once by each kernel
auto MdWrapper = getAnalysisIfAvailable<MetaDataUtilsWrapper>();
if (MdWrapper) {
auto pMdUtils = MdWrapper->getMetaDataUtils();
for (const auto &node : Node->CallerList) {
FunctionNode* Caller = node.first;
uint32_t cnt = node.second;
if (cnt > 1) {
return false;
}
if (!isEntryFunc(pMdUtils, Caller->F)) {
return false;
}
}
return true;
}
}
return false;
}
void EstimateFunctionSize::reduceKernelSize() {
uint32_t threshold = KernelTotalSizeThreshold;
llvm::SmallVector<void*, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode*)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode*)node);
trimCompilationUnit(unitHeads, threshold, true);
return;
}
bool EstimateFunctionSize::isTrimmedFunction( llvm::Function* F) {
return get<FunctionNode>(F)->isTrimmed();
}
//Initialize data structures for topological traversal: FunctionsInKernel and BottomUpQueue.
//FunctionsInKernel is a map data structure where the key is FunctionNode and value is the number of edges to callee nodes.
//FunctionsInKernel is primarily used for topological traversal and also used to check whether a function is in the currently processed kernel/unit.
//BottomUpQueue will contain the leaf nodes of a kernel/unit and they are starting points of topological traversal.
void EstimateFunctionSize::initializeTopologicalVisit(Function* root, std::unordered_map<void*, uint32_t>& FunctionsInKernel, std::deque<void*>& BottomUpQueue, bool ignoreStackCallBoundary)
{
std::deque<FunctionNode*> Queue;
FunctionNode* unitHead = get<FunctionNode>(root);
Queue.push_back(unitHead);
FunctionsInKernel[unitHead] = unitHead->CalleeList.size();
// top down traversal to visit functions which will be processed reversely
while (!Queue.empty()) {
FunctionNode* Node = Queue.front();Queue.pop_front();
Node->tmpSize = Node->InitialSize;
for (auto &Callee : Node->CalleeList) {
FunctionNode* CalleeNode = Callee.first;
if (FunctionsInKernel.find(CalleeNode) != FunctionsInKernel.end())
continue;
if (!ignoreStackCallBoundary && CalleeNode->isStackCallAssigned()) //This callee is a compilation unit head, so not in the current compilation unit
{
FunctionsInKernel[Node] -= 1; //Ignore different compilation unit
continue;
}
FunctionsInKernel[CalleeNode] = CalleeNode->CalleeList.size(); //Update the number of edges to callees
Queue.push_back(CalleeNode);
}
if (FunctionsInKernel[Node] == 0) // This means no children or all children are compilation unit heads: leaf node
BottomUpQueue.push_back(Node);
}
return;
}
llvm::ScaledNumber<uint64_t> EstimateFunctionSize::calculateTotalWeight(Function* root)
{
FunctionNode* root_node = get<FunctionNode>(root);
std::deque<void*> TopdownQueue;TopdownQueue.push_back(root_node);
std::unordered_set<void*> visit;visit.insert(root_node);
Scaled64 totalSizeContributionSq = Scaled64::getZero();
Scaled64 totalSubroutineFreq = Scaled64::getZero();
while (!TopdownQueue.empty())
{
FunctionNode* node = (FunctionNode*)TopdownQueue.front(); TopdownQueue.pop_front();
totalSizeContributionSq += Scaled64::get(node->getSizeContribution()*node->getSizeContribution());
if(!node->willBeInlined())
totalSubroutineFreq += node->getStaticFuncFreq();
for (auto &callee_info : node->CalleeList)
{
FunctionNode* callee = callee_info.first;
if (visit.find(callee) == visit.end())
{
visit.insert(callee);
TopdownQueue.push_back(callee);
}
}
}
return totalSizeContributionSq * totalSizeContributionSq * totalSubroutineFreq;
}
//Update the information about how many time a function will be inlined
void EstimateFunctionSize::updateInlineCnt(Function *root)
{
FunctionNode* root_node = get<FunctionNode>(root);
std::unordered_map<void*, uint32_t> unprocessed_callers;//A data structure to collect the number of callers for a functoin in a kernel boundary
unprocessed_callers[root_node] = 0;
std::deque<void*> TopdownQueue;TopdownQueue.push_back(root_node);
std::unordered_set<void*> visit;visit.insert(root_node);
//Top down traversal to initialize the number of callers and inline count in a kernel boundary
//This step is just for initialization for the topological traverse at the second step
while (!TopdownQueue.empty())
{
FunctionNode* node = (FunctionNode*)TopdownQueue.front(); TopdownQueue.pop_front();
node->Inline_cnt = 0;
for (auto &callee_info : node->CalleeList)
{
FunctionNode* callee = callee_info.first;
if (unprocessed_callers.find(callee) == unprocessed_callers.end())
unprocessed_callers[callee] = 0; //Initialize callee's caller count
unprocessed_callers[callee] += 1; //Increment by 1 since the callee is called by the node
if (visit.find(callee) == visit.end())
{
visit.insert(callee);
TopdownQueue.push_back(callee);
}
}
}
TopdownQueue.push_back(root_node);
while (!TopdownQueue.empty())
{
FunctionNode* node = (FunctionNode*)TopdownQueue.front(); TopdownQueue.pop_front();
for (auto &callee_info : node->CalleeList)
{
FunctionNode* callee = callee_info.first;
uint16_t call_cnt = callee_info.second;
IGC_ASSERT(unprocessed_callers[callee] != 0);
unprocessed_callers[callee] -= 1;
if(callee->willBeInlined())
callee->Inline_cnt += call_cnt * (node->Inline_cnt == 0 ? 1 : node->Inline_cnt);
if (unprocessed_callers[callee] == 0)
TopdownQueue.push_back(callee);
}
}
return;
}
//This function compute the size of each function when must-be-inlined functions are all inlined
//must-be-inlined functions are two kinds: 1) have force-inline attribute, 2) small leaf functions
//Functions with those two kinds should be inlined no matter what the reason is.
//When all small leaf functions are inlined and collapsed, there may be a set of new leaf functions
//So, the algorithm repeat collapsing small leaf functions until only large leaf functions are left
void EstimateFunctionSize::UpdateSizeAfterCollapsing(std::deque<void*> &nodesToProcess, std::unordered_set<void*> &funcsInKernel)
{
for (auto n : funcsInKernel)
{
//Initialize the size after inlining
FunctionNode* Node = (FunctionNode*)n;
Node->SizeAfterCollapsing = Node->InitialSize;
}
std::unordered_map<FunctionNode*, uint16_t> remainingCallee;
std::unordered_set<FunctionNode*> hasCalleesAfterInline;
while (!nodesToProcess.empty())
{
FunctionNode* Node = (FunctionNode*)nodesToProcess.front();nodesToProcess.pop_front();
bool hasCallee = hasCalleesAfterInline.find(Node) != hasCalleesAfterInline.end();
if (Node->willBeInlined() && !hasCallee && Node->SizeAfterCollapsing < ControlInlineTinySizeForSPGT)
{
if (!Node->isForcedInlined())
{
PrintTrimUnit(0x8, "Small leaf functions should always be inlined" << Node->F->getName().str() << ", Size after Inline: " << Node->SizeAfterCollapsing);
Node->setForceInline(); //If the node is supposed to have no callee in the end and small size, it should be inlined
}
}
for (const auto &c : Node->CallerList)
{
FunctionNode* caller = c.first;
uint16_t call_cnt = c.second;
if (funcsInKernel.find(caller) == funcsInKernel.end()) //This caller must not be in the currently processing kernel
continue;
if (remainingCallee.find(caller) == remainingCallee.end())
remainingCallee[caller] = caller->CalleeList.size();
remainingCallee[caller] -= 1;
if (remainingCallee[caller] == 0)
nodesToProcess.push_back((FunctionNode*)caller);
if (Node->isForcedInlined()) {//Will be inlined in any case
caller->SizeAfterCollapsing += Node->SizeAfterCollapsing * call_cnt;
if (hasCallee) //Fucntion that already has force inline might have callee
hasCalleesAfterInline.insert(caller);
} else {//Otherwise we don't know, so conservatively mark it having callees
hasCalleesAfterInline.insert(caller);
}
}
}
return;
}
//Find the total size of a unit when to-be-inlined functions are expanded
//Topologically traverse from leaf nodes and expand nodes to callers except noinline and stackcall functions
uint32_t EstimateFunctionSize::updateExpandedUnitSize(Function* F, bool ignoreStackCallBoundary)
{
FunctionNode* root = get<FunctionNode>(F);
std::deque<void*> BottomUpQueue;
std::unordered_map<void*, uint32_t> FunctionsInUnit;
initializeTopologicalVisit(root->F, FunctionsInUnit, BottomUpQueue, ignoreStackCallBoundary);
uint32_t unitTotalSize = 0;
while (!BottomUpQueue.empty()) //Topologically visit nodes and collape for each compilation unit
{
FunctionNode* node = (FunctionNode*)BottomUpQueue.front();BottomUpQueue.pop_front();
IGC_ASSERT(FunctionsInUnit[node] == 0);
FunctionsInUnit.erase(node);
node->ExpandedSize = node->tmpSize; //Update the size of an expanded chunk
if (!node->willBeInlined())
{
//dbgs() << "Not be inlined Attr: " << (int)node->FunctionAttr << "\n";
unitTotalSize += node->ExpandedSize;
PrintTrimUnit(0x10, "Expansion stop at " << node->F->getName().str()
<< ", Attribute: " << node->getFuncAttrStr()
<< ", Chunck size: " << node->ExpandedSize
<< ", Total chunck size: " << unitTotalSize);
}
for (const auto &c : node->CallerList)
{
FunctionNode* caller = c.first;
if (FunctionsInUnit.find(caller) == FunctionsInUnit.end()) //Caller is in another compilation unit
{
node->InMultipleUnit = true;
continue;
}
FunctionsInUnit[caller] -= 1;
if (FunctionsInUnit[caller] == 0)
BottomUpQueue.push_back(caller);
if (node->willBeInlined())
caller->expand(node); //collapse and update tmpSize of the caller
}
}
//Has recursion
if (!FunctionsInUnit.empty())
HasRecursion = true;
PrintTrimUnit(0x10, "Final expanded size of " << root->F->getName().str() << ": " << unitTotalSize);
return root->ExpandedSize = unitTotalSize;
}
//Partition kernels using bottom-up heristic.
uint32_t EstimateFunctionSize::bottomUpHeuristic(Function* F, uint32_t& stackCall_cnt) {
uint32_t threshold = UnitSizeThreshold;
std::deque<void*> BottomUpQueue;
std::unordered_map<void*, uint32_t> FunctionsInUnit; //Set of functions in the boundary of a kernel. Record unprocessed callee counter for topological sort.
initializeTopologicalVisit(F, FunctionsInUnit, BottomUpQueue, false);
FunctionNode* unitHeader = get<FunctionNode>(F);
uint32_t max_unit_size = 0;
while (!BottomUpQueue.empty()) {
FunctionNode* Node = (FunctionNode*)BottomUpQueue.front();
BottomUpQueue.pop_front();
IGC_ASSERT(FunctionsInUnit[Node] == 0);
FunctionsInUnit.erase(Node);
Node->UnitSize = Node->tmpSize; //Update the size
if (Node == unitHeader) //The last node to process is the unit header
{
max_unit_size = std::max(max_unit_size, Node->updateUnitSize());
continue;
}
bool beStackCall = Node->canAssignStackCall() &&
Node->UnitSize > threshold && Node->updateUnitSize() > threshold &&
Node->getStaticFuncFreq() < threshold_func_freq;
if (beStackCall) {
PrintPartitionUnit(0x4, "Stack call marked " << Node->F->getName().str() << " Unit size: " << Node->UnitSize << " > Threshold " << threshold
<< " Function frequency: " << Node->getStaticFuncFreqStr() << " < " << threshold_func_freq.toString())
stackCallFuncs.push_back(Node); //We have a new unit head
Node->setStackCall();
max_unit_size = std::max(max_unit_size, Node->UnitSize);
stackCall_cnt += 1;
} else {
if (!Node->canAssignStackCall()) {
PrintPartitionUnit(0x4, "Stack call not marked: not best effort or trimmed " << Node->F->getName().str())
} else if (Node->UnitSize <= threshold || Node->updateUnitSize() <= threshold) {
PrintPartitionUnit(0x4, "Stack call not marked: unit size too small " << Node->F->getName().str())
} else {
PrintPartitionUnit(0x4, "Stack call not marked: too many function frequencies " << Node->getStaticFuncFreqStr()
<< " > " << threshold_func_freq.toString() << " " << Node->F->getName().str())
}
}
for (const auto &c : Node->CallerList)
{
FunctionNode* caller = c.first;
if (FunctionsInUnit.find(caller) == FunctionsInUnit.end()) //The caller is in another kernel, skip
continue;
FunctionsInUnit[caller] -= 1;
if (FunctionsInUnit[caller] == 0) //All callees of the caller are processed: become leaf.
BottomUpQueue.push_back(caller);
if (!beStackCall)
caller->tmpSize += Node->UnitSize;
}
}
return max_unit_size;
}
//For all function F : F->Us = size(F), F->U# = 0 // unit size and unit number
//For each kernel K
// kernelSize = K->UnitSize // O(C)
// IF(kernelSize > T)
// workList = ReverseTopoOrderList(K) // Bottom up traverse
// WHILE(worklist not empty) // O(N)
// remove F from worklist
// //F->Us might be overestimated due to overcounting issue -> recompute F->Us to find the actual size
// IF(F->Us > T || recompute(F->Us) > T) { // recompute(F->Us): O(N) only when F->Us is larger than T
// mark F as stackcall;
// Add F to end of headList;
// continue;
// }
// Foreach F->callers P{ P->Us += F->Us; }
// ENDWHILE
// ENDIF
//ENDFOR
void EstimateFunctionSize::partitionKernel() {
uint32_t threshold = UnitSizeThreshold;
uint32_t max_unit_size = 0;
uint32_t stackCall_cnt = 0;
// Iterate over kernel
llvm::SmallVector<void*, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode*)node);
for (auto node : stackCallFuncs)
unitHeads.push_back((FunctionNode*)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode*)node);
for (auto node : unitHeads) {
FunctionNode* UnitHead = (FunctionNode*)node;
if (UnitHead->UnitSize <= threshold) //Unit size is within threshold, skip
{
max_unit_size = std::max(max_unit_size, UnitHead->UnitSize);
continue;
}
PrintPartitionUnit(0x2, "Partition Kernel " << UnitHead->F->getName().str() << " Original Unit Size: " << UnitHead->UnitSize)
uint32_t size_after_partition = bottomUpHeuristic(UnitHead->F, stackCall_cnt);
max_unit_size = std::max(max_unit_size, size_after_partition);
PrintPartitionUnit(0x2, "Unit size after partitioning: " << size_after_partition)
}
float threshold_err = (float)(max_unit_size - threshold) / threshold * 100;
PrintPartitionUnit(0x2, "Max unit size: " << max_unit_size << " Threshold Error Rate: " << threshold_err << "%");
PrintPartitionUnit(0x2, "Stack call cnt: " << stackCall_cnt);
return;
}
//Work same as reduceKernel except for stackcall functions
void EstimateFunctionSize::reduceCompilationUnitSize() {
uint32_t threshold = ExpandedUnitSizeThreshold;
llvm::SmallVector<void*, 64> unitHeads;
for (auto node : kernelEntries)
unitHeads.push_back((FunctionNode*)node);
for (auto node : stackCallFuncs)
unitHeads.push_back((FunctionNode*)node);
for (auto node : addressTakenFuncs)
unitHeads.push_back((FunctionNode*)node);
trimCompilationUnit(unitHeads, threshold,false);
return;
}
//Top down traverse to find and retrieve functions that meet trimming criteria
void EstimateFunctionSize::getFunctionsToTrim(llvm::Function* root, llvm::SmallVector<void*, 64>& trimming_pool, bool ignoreStackCallBoundary, uint32_t &func_cnt)
{
FunctionNode* unitHead = get<FunctionNode>(root);
std::unordered_set<void*> visit;
std::deque<FunctionNode*> TopDownQueue;
TopDownQueue.push_back(unitHead);
visit.insert((void*)unitHead);
SmallVector<FunctionNode*, 64> funcsInKernel;
uint64_t tinySizeThreshold = ControlInlineTinySize;
std::deque<void*> bottomUpQueue;
//Profile function information in the kernel boundary
while (!TopDownQueue.empty())
{
FunctionNode* Node = TopDownQueue.front();TopDownQueue.pop_front();
for (auto &Callee : Node->CalleeList)
{
FunctionNode* calleeNode = Callee.first;
if (visit.find((void*)calleeNode) != visit.end() || (!ignoreStackCallBoundary && calleeNode->isStackCallAssigned()))
continue;
visit.insert((void*)calleeNode);
TopDownQueue.push_back(calleeNode);
}
funcsInKernel.push_back(Node);
if (Node->CalleeList.empty())
bottomUpQueue.push_back((void*)Node);
}
func_cnt += visit.size();
if (EnableSizeContributionOptimization)
updateInlineCnt(root);
if (EnableLeafCollapsing)
UpdateSizeAfterCollapsing(bottomUpQueue, visit);
if (EnableGreedyTrimming)
{
trimming_pool = llvm::SmallVector<void*, 64>(funcsInKernel.size());
//Node with best effort and larger size contribution could be trimmed
llvm::copy_if(funcsInKernel,std::back_inserter(trimming_pool), [](void* node) { return ((FunctionNode*)node)->isBestEffortInline();});
return;
}
//Find all functions that meet trimming criteria
for(FunctionNode *Node : funcsInKernel)
{
uint16_t func_trait = Node->getFunctionTrait(thresholdForTrimming);
switch (func_trait)
{
case FT_NOT_BEST_EFFORT:
Node->dumpFuncInfo(0x4, "Can't trim (not best effort inline)");
break;
case FT_MUL_KERNEL:
Node->dumpFuncInfo(0x4, "Can't trim (in multiple kernels)");
break;
case FT_BIG_ENOUGH://Functions are big enough to trim
trimming_pool.push_back(Node);
Node->dumpFuncInfo(0x4, "Good to trim (Big enough > " + std::to_string(tinySizeThreshold) + ")");
break;
case FT_TOO_TINY:
Node->dumpFuncInfo(0x4, "Can't trim (Too tiny < " + std::to_string(tinySizeThreshold) + ")");
break;
case FT_HIGHER_WEIGHT:
trimming_pool.push_back(Node);
Node->dumpFuncInfo(0x4, "Good to trim (High weight > " + thresholdForTrimming.toString() + ")");
break;
case FT_LOWER_WEIGHT:
Node->dumpFuncInfo(0x4, "Can't trim (Low weight < " + thresholdForTrimming.toString() + ")");
break;
default:
PrintTrimUnit(0x4, "Something goes wrong with the function property");
break;
}
}
return;
}
//Trim kernel/unit by canceling out inline candidate functions one by one until the total size is within threshold
/*
For all F: F->ToBeInlined = True
For each kernel K
kernelTotalSize = updateExpandedUnitSize(K) // O(C) >= O(N*logN)
IF (FullInlinedKernelSize > T)
workList= non-tiny-functions sorted by size from large to small // O(N*logN)
WHILE (worklist not empty) // O(N)
remove F from worklist
F->ToBeInlined = False
kernelTotalSize = updateExpandedUnitSize(K)
IF (kernelTotalSize <= T) break
ENDWHILE
Inline functions with ToBeInlined = True
Inline functions with single caller // done
*/
void EstimateFunctionSize::trimCompilationUnit(llvm::SmallVector<void*, 64> &unitHeads, uint32_t threshold, bool ignoreStackCallBoundary)
{
llvm::SmallVector<FunctionNode*, 64> unitsToTrim;
//Extract kernels / units that are larger than threshold
for (auto node : unitHeads)
{
FunctionNode* unitEntry = (FunctionNode*)node;
//Partitioning can add more stackcalls. So need to recompute the expanded unit size.
updateExpandedUnitSize(unitEntry->F, ignoreStackCallBoundary);
if (unitEntry->ExpandedSize > threshold) {
PrintTrimUnit(0x2, "Kernel / Unit " << unitEntry->F->getName().str() << " expSize= " << unitEntry->ExpandedSize << " > " << threshold)
unitsToTrim.push_back(unitEntry);
} else {
PrintTrimUnit(0x2, "Kernel / Unit " << unitEntry->F->getName().str() << " expSize= " << unitEntry->ExpandedSize << " <= " << threshold)
}
}
if (unitsToTrim.empty())
{
PrintTrimUnit(0x2, "Kernels / Units become no longer big enough to be trimmed (affected by partitioning)")
return;
}
std::sort(unitsToTrim.begin(), unitsToTrim.end(),
[&](const FunctionNode* LHS, const FunctionNode* RHS) { return LHS->ExpandedSize > RHS->ExpandedSize;}); //Sort by expanded size
// Iterate over units
for (auto unit : unitsToTrim) {
size_t expandedUnitSize = updateExpandedUnitSize(unit->F, ignoreStackCallBoundary); //A kernel size can be reduced by a function that is trimmed at previous kernels, so recompute it.
PrintTrimUnit(0x2, "Trimming kernel / unit " << unit->F->getName().str() << " expanded size= " << expandedUnitSize)
if (expandedUnitSize <= threshold) {
PrintTrimUnit(0x2, "Kernel / unit " << unit->F->getName().str() << ": The expanded unit size(" << expandedUnitSize << ") is smaller than threshold(" << threshold << ")")
continue;
}
PrintTrimUnit(0x2, "Kernel size is bigger than threshold")
SmallVector<void*, 64> trimming_pool;
uint32_t func_cnt = 0;
getFunctionsToTrim(unit->F, trimming_pool, ignoreStackCallBoundary, func_cnt);
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << " has " << trimming_pool.size() << " functions for trimming out of " << func_cnt)
if (trimming_pool.empty())
{
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << " size " << unit->ExpandedSize << " has no sorted list")
continue; // all functions are tiny.
}
uint64_t size_before_trimming = unit->ExpandedSize;
if (EnableGreedyTrimming) {
performGreedyTrimming(unit->F, trimming_pool, threshold, ignoreStackCallBoundary);
} else {
performTrimming(unit->F, trimming_pool, threshold, ignoreStackCallBoundary);
}
if (unit->ExpandedSize < threshold) {
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << ": The size becomes below threshold")
} else {
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << ": The size is still above threhosld even though all candidates are trimmed")
}
PrintTrimUnit(0x2, "Kernel / Unit " << unit->F->getName().str() << " final size " << unit->ExpandedSize << " reduced from " << size_before_trimming)
}
}
void EstimateFunctionSize::performGreedyTrimming(Function* head, llvm::SmallVector<void*, 64>& functions_to_trim, uint32_t threshold, bool ignoreStackCallBoundary)
{
llvm::SmallVector<FunctionNode*, 64> candidates;
llvm::SmallVector<FunctionNode*, 64> funcWithNoEffect;
for (auto f : functions_to_trim)
{
FunctionNode* func = (FunctionNode*)f;
if (func->getSizeContribution() != func->getPotentialBodySize()) {
candidates.push_back(func);
} else {
funcWithNoEffect.push_back(func);
}
}
uint32_t total_trim_cnt = 0;
while (!candidates.empty())
{
Scaled64 minWeight = calculateTotalWeight(head);
FunctionNode* bestForTrim = NULL;
Scaled64 weightBeforeTrim = minWeight;
PrintTrimUnit(0x8, "Trimming candidate count: " << candidates.size());
for (auto func : candidates)
{
func->setTrimmed();
//Update inline count
updateInlineCnt(head);
//calculate weight
Scaled64 weight = calculateTotalWeight(head);
if (weight < minWeight)
{
minWeight = weight;
bestForTrim = func;
}
func->unsetTrimmed();
updateInlineCnt(head);
}
PrintTrimUnit(0x8, "Total weight before trim: " << weightBeforeTrim.toString() << " Total weight after trim: " << minWeight.toString());
if (bestForTrim == NULL) //Trimming any of functions result in better code
break;
PrintTrimUnit(0x8, "Trim the function " << bestForTrim->F->getName().str()
<< ", Function Attribute: " << bestForTrim->getFuncAttrStr()
<< ", Function size: " << bestForTrim->InitialSize
<< ", Size after inlining: " << bestForTrim->SizeAfterCollapsing
<< ", Size contribution: " << bestForTrim->getSizeContribution()
<< ", Freq: " << bestForTrim->getStaticFuncFreqStr()
<< ", Weight: " << bestForTrim->getWeightForTrimming().toString());
bestForTrim->setTrimmed();
updateInlineCnt(head);
total_trim_cnt += 1;
PrintTrimUnit(0x8, "The size contribution of the trimmed function changes to " << bestForTrim->getSizeContribution());
llvm::SmallVector<FunctionNode*, 64> new_candidates;
for (auto func : candidates)
{
if (func->getSizeContribution() != func->getPotentialBodySize()) {
new_candidates.push_back(func);
} else {
funcWithNoEffect.push_back(func);
}
}
candidates = std::move(new_candidates);
}
updateExpandedUnitSize(head, ignoreStackCallBoundary);
for (FunctionNode* trimNoGain : candidates) //Those remaining candidates will likely degrade performance
{
PrintTrimUnit(0x8, "Dont't trim (Performance penalty is higher than size reduction)" << trimNoGain->F->getName().str()
<< ", Function Attribute: " << trimNoGain->getFuncAttrStr()
<< ", Function size: " << trimNoGain->InitialSize
<< ", Size after inlining: " << trimNoGain->SizeAfterCollapsing
<< ", Size contribution: " << trimNoGain->getSizeContribution()
<< ", Freq: " << trimNoGain->getStaticFuncFreqStr()
<< ", Weight: " << trimNoGain->getWeightForTrimming().toString());
}
for (FunctionNode* trimNoGain : funcWithNoEffect) //The kernel size will not change when those functions are trimmed
{
PrintTrimUnit(0x8, "Dont't trim (Trimming doesn't give size reduction)" << trimNoGain->F->getName().str()
<< ", Function Attribute: " << trimNoGain->getFuncAttrStr()
<< ", Function size: " << trimNoGain->InitialSize
<< ", Size after inlining: " << trimNoGain->SizeAfterCollapsing
<< ", Size contribution: " << trimNoGain->getSizeContribution()
<< ", Freq: " << trimNoGain->getStaticFuncFreqStr()
<< ", Weight: " << trimNoGain->getWeightForTrimming().toString());
}
PrintTrimUnit(0x8, "In total, " << total_trim_cnt << " function(s) are trimmed out of " << functions_to_trim.size());
return;
}
void EstimateFunctionSize::performTrimming(Function *head, llvm::SmallVector<void*, 64>& functions_to_trim, uint32_t threshold, bool ignoreStackCallBoundary)
{
FunctionNode* unitHead = get<FunctionNode>(head);
uint32_t total_cand = functions_to_trim.size();
uint32_t total_trim_cnt = 0;
//Sort all to-be trimmed function according to the its actual size
//Repeat trimming functions for cold functions until the unit size is smaller than threshold
while (!functions_to_trim.empty() && unitHead->ExpandedSize >= threshold)
{
std::sort(functions_to_trim.begin(), functions_to_trim.end(),
[&](const void* LHS, const void* RHS) {
return ((FunctionNode*)LHS)->getWeightForTrimming() < ((FunctionNode*)RHS)->getWeightForTrimming();
});
FunctionNode* functionToTrim = (FunctionNode*)functions_to_trim.back(); //Pick the largest one first to trim
functions_to_trim.pop_back();
uint64_t original_expandedSize = unitHead->ExpandedSize;
if (EnableSizeContributionOptimization) {
uint64_t size_contribution = functionToTrim->getSizeContribution();
uint64_t FuncSize = functionToTrim->getPotentialBodySize();
if (FuncSize == size_contribution &&
FuncSize < SkipTrimmingOneCopyFunction) {
functionToTrim->dumpFuncInfo(
0x8, "Don't trim (Same size contribution and too small)");
continue;
}
functionToTrim->dumpFuncInfo(0x8, "Trim the function");
functionToTrim->setTrimmed();
updateInlineCnt(head);
PrintTrimUnit(
0x8, "The size contribution of the trimmed function changes to "
<< functionToTrim->getSizeContribution());
} else {
functionToTrim->dumpFuncInfo(0x8, "Trim the function");
functionToTrim->setTrimmed();
}
total_trim_cnt += 1;
//After trimming, update exapnded size
updateExpandedUnitSize(head, ignoreStackCallBoundary);
PrintTrimUnit(0x8, "The kernel size is reduced after trimming from " << original_expandedSize << " to " << unitHead->ExpandedSize);
}
PrintTrimUnit(0x8, "In total, " << total_trim_cnt << " function(s) are trimmed out of " << total_cand);
return;
}
bool EstimateFunctionSize::isStackCallAssigned(llvm::Function* F) {
FunctionNode* Node = get<FunctionNode>(F);
return Node->isStackCallAssigned();
}
uint32_t EstimateFunctionSize::getMaxUnitSize() {
uint32_t max_val = 0;
for (auto kernelEntry : kernelEntries) //For all kernel, update unitsize
{
FunctionNode* head = (FunctionNode*)kernelEntry;
max_val = std::max(max_val, head->UnitSize);
}
for (auto stackCallFunc : stackCallFuncs) //For all address taken functions, update unitsize
{
FunctionNode* head = (FunctionNode*)stackCallFunc;
max_val = std::max(max_val, head->UnitSize);
}
for (auto addrTakenFunc : addressTakenFuncs) //For all address taken functions, update unitsize
{
FunctionNode* head = (FunctionNode*)addrTakenFunc;
max_val = std::max(max_val, head->UnitSize);
}
return max_val;
}
|