1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "CodeGenPublicEnums.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/helper.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Transforms/Utils/Cloning.h>
#include <llvm/IR/Function.h>
#include "llvm/IR/Verifier.h"
#include <llvmWrapper/IR/PatternMatch.h>
#include "common/LLVMWarningsPop.hpp"
#include "GenerateBlockMemOpsPass.hpp"
#include "IGCIRBuilder.h"
using namespace llvm;
using namespace IGC;
char GenerateBlockMemOpsPass::ID = 0;
#define PASS_FLAG "generate-block-mem-ops"
#define PASS_DESCRIPTION "Generation of block load / block stores instead of regular load / stores."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(GenerateBlockMemOpsPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(GenerateBlockMemOpsPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
const size_t MaxSgSize = 32;
GenerateBlockMemOpsPass::GenerateBlockMemOpsPass() : FunctionPass(ID) {
initializeGenerateBlockMemOpsPassPass(*PassRegistry::getPassRegistry());
}
bool GenerateBlockMemOpsPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
bool Changed = false;
// Load / store instructions which are not in code divergence and can be optimized.
SmallVector<Instruction*, 32> LoadStoreToProcess;
// Load / store instructions which are inside the loop and can be optimized.
DenseMap<Loop*, SmallVector<Instruction*, 32>> LoadStoreInLoop;
MdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
CGCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
WI = &getAnalysis<WIAnalysis>();
IGCMD::FunctionInfoMetaDataHandle Info = MdUtils->getFunctionsInfoItem(&F);
if (Info->getType() != FunctionTypeMD::KernelFunction)
return false;
// If the subgroup size is not specified, then the maximum subgroup size is used.
IGC::IGCMD::FunctionInfoMetaDataHandle FuncInfoMD = MdUtils->getFunctionsInfoItem(&F);
IGC::IGCMD::SubGroupSizeMetaDataHandle SubGroupSize = FuncInfoMD->getSubGroupSize();
if (SubGroupSize->hasValue()) {
SimdSize = SubGroupSize->getSIMDSize();
} else {
SimdSize = MaxSgSize;
}
// Check that workgroups have been scalarized along the x-axis.
if (!checkVectorizationAlongX(&F))
return false;
// Collect all load / store instructions which can be replaced.
for (auto &B : F) {
for (auto &I : B) {
if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I))
continue;
if (!canOptLoadStore(&I))
continue;
// Block read and write instructions must be called by all elements in the subgroup.
if (!WI->insideDivergentCF(&I)) {
LoadStoreToProcess.push_back(&I);
} else if (Loop *L = LI->getLoopFor(I.getParent())) {
// In some cases IGC can't proof that there is no code divergence in the loop.
// Handle these cases here.
// Check that the loop has been already analyzed.
if (LoadStoreInLoop.find(L) == LoadStoreInLoop.end()) {
if (!isLoopPattern(L))
continue;
SmallVector<Instruction*, 32> Vec;
Vec.push_back(&I);
LoadStoreInLoop.insert(std::make_pair(L, Vec));
} else {
LoadStoreInLoop[L].push_back(&I);
}
}
}
}
// Optimize cases without loops.
for (auto I : LoadStoreToProcess)
Changed |= changeToBlockInst(I);
// Optimize cases with loops. Split loop into a remainder calculation and a new uniform loop.
// The remainder contains code divergence.
// The new loop will contain the main part of the loop without code divergence.
//
// For example:
//
// for (int idx = global_id_x + offset; idx < N; idx += simdsize) {
// A[idx] = B[idx];
// }
//
// will be split into:
//
// if (global_id_x + offset < N - (N - offset) / simdsize * simdsize) {
// A[idx] = B[idx];
// }
//
// for (int idx = global_id_x + offset + N - (N - offset) / simdsize * simdsize - offset; idx < N; idx += simdsize) {
// auto x = sg.load(&B[idx]);
// sg.store(&A[idx], x);
// }
//
for (const auto& Pair : LoadStoreInLoop) {
Loop *L = Pair.first;
BasicBlock *OldLatch = L->getLoopLatch();
BasicBlock *OldPreheader = L->getLoopPreheader();
PHINode *OldInductionPHI = L->getInductionVariable(*SE);
ICmpInst *OldLatchCmp = cast<ICmpInst>(cast<BranchInst>(OldLatch->getTerminator())->getCondition());
Value *OldLimit = OldLatchCmp->getOperand(1);
Value *OldIncomingIndV = OldInductionPHI->getIncomingValueForBlock(OldPreheader);
SmallVector<BasicBlock *, 1> ExitBlocks;
L->getExitBlocks(ExitBlocks);
BasicBlock *Exit = ExitBlocks[0];
// Get BranchInst which defines the condition for entering the loop.
BranchInst *PreConditionBranch = cast<BranchInst>(OldPreheader->getTerminator());
if (!PreConditionBranch->isConditional())
PreConditionBranch = cast<BranchInst>((*pred_begin(OldPreheader))->getTerminator());
ICmpInst *PreCondition = dyn_cast<ICmpInst>(PreConditionBranch->getCondition());
// Get offset for the initial value of the induction variable..
SmallVector<Value*, 2> Offset;
if (!getOffset(OldIncomingIndV, Offset))
continue;
// Create a new basic block which will separate the remainder and the new loop.
LLVMContext &Context = OldLatch->getContext();
BasicBlock *SeparatorBasicBlock = BasicBlock::Create(Context, ".separator", &F);
SeparatorBasicBlock->moveAfter(OldLatch);
// Clone the loop.
ValueToValueMapTy VMap;
BasicBlock *ClonedLatch = CloneBasicBlock(OldLatch, VMap, ".new.loop", &F);
for (auto &I : *ClonedLatch)
RemapInstruction(&I, VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
// Clone the pre-condition and pre-condition branch instructions in the separator block.
ICmpInst *ClonedPreCondition = cast<ICmpInst>(PreCondition->clone());
BranchInst *ClonedPreConditionBranch = cast<BranchInst>(PreConditionBranch->clone());
SeparatorBasicBlock->getInstList().push_back(ClonedPreCondition);
SeparatorBasicBlock->getInstList().push_back(ClonedPreConditionBranch);
// Create empty exit for the new loop.
BasicBlock *ExitForTheNewLoop = BasicBlock::Create(Context, ".new.exit", &F);
ExitForTheNewLoop->moveAfter(ClonedLatch);
IRBuilder<> Builder(ExitForTheNewLoop);
Builder.CreateBr(Exit);
Changed = true;
// Create empty preheader for the new loop.
BasicBlock *PreheaderForTheNewLoop = BasicBlock::Create(Context, ".new.preheader", &F);
PreheaderForTheNewLoop->moveAfter(SeparatorBasicBlock);
Builder.SetInsertPoint(PreheaderForTheNewLoop);
Builder.CreateBr(ClonedLatch);
// Update the cloned pre-condition branch successors.
ClonedPreConditionBranch->setCondition(ClonedPreCondition);
ClonedPreConditionBranch->setSuccessor(0, PreheaderForTheNewLoop);
ClonedPreConditionBranch->setSuccessor(1, Exit);
// Update the cloned latch branch successors.
BranchInst *ClonedLatchBranch = cast<BranchInst>(ClonedLatch->getTerminator());
ClonedLatchBranch->setSuccessor(0, ClonedLatch);
ClonedLatchBranch->setSuccessor(1, ExitForTheNewLoop);
// Insert the cloned latch block after the separator block.
ClonedLatch->moveAfter(SeparatorBasicBlock);
// Calculate the new limit for the remainder:
// newlimit = limit - (limit - offset1 - offset2) / simdsize * simdsize
//
// In IR it looks like:
//
// %suboffset1 = sub i32 %limit, %offset1
// %suboffset2 = sub i32 %suboffset1, %offset2
// %neg_qot = ashr i32 %suboffset2, log2(SimdSize)
// %qot = sub i32 0, %neg_qot
// %qotshl = shl i32 %qot, log2(SimdSize)
// %58 = add nsw i32 %limit, %qotshl
//
Type *LimitType = OldLimit->getType();
auto processOffset = [&](Value *SubArg) {
for (auto Val : Offset) {
if (!Val)
break;
Value *OffsetVal = Val;
Type *ValType = Val->getType();
if (LimitType != ValType)
OffsetVal = Builder.CreateZExt(Val, LimitType, "casted_offset");
SubArg = Builder.CreateSub(SubArg, OffsetVal);
}
return SubArg;
};
// Calculate the new limit (NewLimitFisrtLoop) for the remainder.
Builder.SetInsertPoint(PreCondition);
Value *SubOffset = processOffset(OldLimit);
int LogSimdSizeBase2 = std::log2(SimdSize);
Value *AshrInst = Builder.CreateAShr(SubOffset, ConstantInt::get(LimitType, LogSimdSizeBase2), "ashr");
Value *Neg = Builder.CreateSub(ConstantInt::get(LimitType, 0), AshrInst, "neg");
Value *Shl = Builder.CreateShl(Neg, ConstantInt::get(LimitType, LogSimdSizeBase2));
Value *NewLimitFisrtLoop = Builder.CreateAdd(OldLimit, Shl);
// Update cmp instruction in the remainder and preheader with new limit.
PreCondition->setOperand(1, NewLimitFisrtLoop);
OldLatchCmp->setOperand(1, NewLimitFisrtLoop);
// Calculate the induction variable initial value for the the new loop.
Builder.SetInsertPoint(SeparatorBasicBlock, SeparatorBasicBlock->getFirstInsertionPt());
Value *OffsetForNewLoop = processOffset(NewLimitFisrtLoop);
Value *NewIncInductiveVar = Builder.CreateAdd(OldIncomingIndV, OffsetForNewLoop);
// Set operands for the cloned pre-condition.
ClonedPreCondition->setOperand(0, NewIncInductiveVar);
ClonedPreCondition->setOperand(1, OldLimit);
// Substitude load/store instructions with block ones.
for (auto I : Pair.second) {
Instruction *NewI = cast<Instruction>(VMap[cast<Value>(I)]);
changeToBlockInst(NewI);
}
std::vector<PHINode*> PhiNodes;
// Set operands for phi instructions in the new loop and prepare initial values for the new loop.
for (auto &I : *OldLatch) {
if (!isa<PHINode>(&I))
break;
Value *IVal = cast<Value>(&I);
PHINode *Phi = cast<PHINode>(&I);
PHINode *NewPhi = dyn_cast<PHINode>(VMap[IVal]);
Value *OldIncomingV = Phi->getIncomingValueForBlock(OldPreheader);
PhiNodes.push_back(Phi);
for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
if (NewPhi->getIncomingBlock(i) == OldLatch) {
NewPhi->setIncomingBlock(i, ClonedLatch);
} else if (NewPhi->getIncomingBlock(i) == OldPreheader) {
NewPhi->setIncomingBlock(i, PreheaderForTheNewLoop);
}
}
Value *NewInc = nullptr;
if (GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(OldIncomingV)) {
Type *GEPType = Gep->getResultElementType();
NewInc = Builder.CreateGEP(GEPType, OldIncomingV, OffsetForNewLoop);
} else if (Phi == OldInductionPHI) {
NewInc = NewIncInductiveVar;
}
NewPhi->setIncomingValueForBlock(PreheaderForTheNewLoop, NewInc);
}
// Erase phi instructions from values (make it if-statement).
for (auto Phi : PhiNodes) {
Value *OldIncomingV = Phi->getIncomingValueForBlock(OldPreheader);
Phi->replaceAllUsesWith(OldIncomingV);
Phi->eraseFromParent();
}
// Erase conditional branch from the old latch and creat unconditional branch.
BranchInst *OldLatchBranch = cast<BranchInst>(OldLatch->getTerminator());
Builder.SetInsertPoint(OldLatchBranch);
Builder.CreateBr(SeparatorBasicBlock);
OldLatchBranch->eraseFromParent();
PreConditionBranch->setSuccessor(1, SeparatorBasicBlock);
}
return Changed;
}
using namespace llvm::PatternMatch;
bool GenerateBlockMemOpsPass::getOffset(Value *Init, SmallVector<Value*, 2> &Offset) {
Value *NonUnifOp = Init;
while (NonUnifOp) {
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(NonUnifOp)) {
NonUnifOp = ZExt->getOperand(0);
} else if (SExtInst *SExt = dyn_cast<SExtInst>(NonUnifOp)) {
NonUnifOp = SExt->getOperand(0);
} else if (Instruction *Inst = dyn_cast<Instruction>(NonUnifOp)) {
if (Inst->getOpcode() != Instruction::Add)
return false;
IGC::IGCMD::FunctionInfoMetaDataHandle FuncInfoMD = MdUtils->getFunctionsInfoItem(Inst->getFunction());
IGC::IGCMD::ThreadGroupSizeMetaDataHandle ThreadGroupSize = FuncInfoMD->getThreadGroupSize();
// ThreadGroupSize should be specified. It is checked earlier in checkVectorizationAlongX function.
IGC_ASSERT(ThreadGroupSize->hasValue());
int LogBase2 = std::log2((int32_t)ThreadGroupSize->getXDim());
// Check global_id_x pattern
Value *LocalIdX = nullptr;
Value *R0 = nullptr;
auto GlobalIdXPattern = m_Add(m_Shl(m_ExtractElt(m_Value(R0), m_SpecificInt(1)), m_SpecificInt(LogBase2)), m_Value(LocalIdX));
if (match(NonUnifOp, GlobalIdXPattern)) {
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(LocalIdX))
LocalIdX = ZExt->getOperand(0);
if (isLocalIdX(LocalIdX) && isR0(R0))
return true;
}
Value *Op0 = Inst->getOperand(0);
Value *Op1 = Inst->getOperand(1);
if (!WI->isUniform(Op1) && !WI->isUniform(Op0))
return false;
if (Offset.size() == 2)
return false;
if (WI->isUniform(Op0)) {
Offset.push_back(Op0);
NonUnifOp = Op1;
} else {
Offset.push_back(Op1);
NonUnifOp = Op0;
}
} else {
return false;
}
}
return false;
}
bool GenerateBlockMemOpsPass::isLoopPattern(Loop *L) {
// Check that Loop has good shape so it safe to use llvm methods to work with it.
if (!L || !L->isSafeToClone() || (L->getNumBlocks() != 1) || !L->isLCSSAForm(*DT))
return false;
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *Preheader = L->getLoopPreheader();
PHINode *Phi = L->getInductionVariable(*SE);
// Check that all parts of the loop can be found.
if (!Phi || !Preheader || !Latch || !Header)
return false;
ICmpInst *LatchCmp = dyn_cast<ICmpInst>(cast<BranchInst>(Latch->getTerminator())->getCondition());
if (!LatchCmp)
return false;
if (pred_size(Header) != 2)
return false;
// Check that the loop has only one exit block.
SmallVector<BasicBlock *, 4> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() != 1)
return false;
BasicBlock *Exit = ExitBlocks[0];
// Check that all values inside the loop have only internal users.
if (doesLoopHaveExternUse(L))
return false;
// Check that the loop has phi instructions of specific type.
if (!checkLoopPhiVals(L))
return false;
// Check that the induction variable is incremented by the simd size.
Instruction *Inc = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
if (Inc->getOpcode() != Instruction::Add || (Inc->getOperand(0) != Phi && Inc->getOperand(1) != Phi))
return false;
ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(0));
if (!CI)
CI = dyn_cast<ConstantInt>(Inc->getOperand(1));
if (!CI)
return false;
if (CI->getValue() != SimdSize)
return false;
// Check that the loop condition is ULT or SLT.
CmpInst::Predicate Pred = LatchCmp->getPredicate();
if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT)
return false;
// Loop limit should be uniform.
Value *Limit = LatchCmp->getOperand(1);
if (!WI->isUniform(Limit))
return false;
// Initial value for induction variable should be continuous.
Value *InitValForIndVar = Phi->getIncomingValueForBlock(Preheader);
if (!isIndexContinuous(InitValForIndVar))
return false;
// Find a conditional branch that defines if the loop should be executed.
// It can be placed in the preheader or in its single predecessor.
// This condition should match the condition in the loop latch.
BranchInst *PreConditionBranch = cast<BranchInst>(Preheader->getTerminator());
if (!PreConditionBranch->isConditional()) {
if (Preheader->size() != 1)
return false;
PreConditionBranch = nullptr;
if (Preheader->hasNPredecessors(1))
PreConditionBranch = cast<BranchInst>((*pred_begin(Preheader))->getTerminator());
}
if (!PreConditionBranch || !PreConditionBranch->isConditional())
return false;
ICmpInst *PreCondition = dyn_cast<ICmpInst>(PreConditionBranch->getCondition());
if (!PreCondition || PreCondition->getPredicate() != Pred || PreCondition->getOperand(1) != Limit)
return false;
if ((PreConditionBranch->getSuccessor(0) != Latch) && (PreConditionBranch->getSuccessor(0) != Preheader))
return false;
// That PreConditionBranch leads to the loop exit or to its single successor block.
if (PreConditionBranch->getSuccessor(1) != Exit) {
if (Exit->size() != 1)
return false;
BranchInst *ExitBranch = cast<BranchInst>(Exit->getTerminator());
if (ExitBranch->isConditional())
return false;
if (ExitBranch->getSuccessor(0) != PreConditionBranch->getSuccessor(1))
return false;
}
return true;
}
// Check that incoming values for phi instructions are getelementptr instructions except induction variable.
bool GenerateBlockMemOpsPass::checkLoopPhiVals(Loop *L) {
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
PHINode *IndPhi = L->getInductionVariable(*SE);
for (auto &I : *Latch) {
PHINode *Phi = dyn_cast<PHINode>(&I);
if (!Phi)
break;
Value *IncomingVal = Phi->getIncomingValueForBlock(Preheader);
Value *InternalVal = Phi->getIncomingValueForBlock(Latch);
if (Phi != IndPhi) {
if (!isa<GetElementPtrInst>(IncomingVal))
return false;
if (!isa<GetElementPtrInst>(InternalVal))
return false;
}
}
return true;
}
// Check that loop has only internal users.
bool GenerateBlockMemOpsPass::doesLoopHaveExternUse(Loop *L) {
// Expect that loop has only one exit block. It is checked earlier in checkLoopPattern function.
IGC_ASSERT(L->getNumBlocks() == 1);
BasicBlock *Latch = L->getLoopLatch();
for (auto &I : *Latch) {
for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) {
Instruction *Inst = dyn_cast<Instruction>(*UI);
if (!Inst)
return true;
if (Inst->getParent() != Latch)
return true;
}
}
return false;
}
bool GenerateBlockMemOpsPass::isAddressAligned(Value *Ptr, const alignment_t &CurrentAlignment, Type *DataType) {
unsigned ScalarSize = DataType->getScalarSizeInBits();
// The list of possible alignments should be expanded.
if (CGCtx->platform.isProductChildOf(IGFX_PVC))
if ((ScalarSize == 32) && (CurrentAlignment == 4))
return true;
return false;
}
// This function checks if Indx is equal to 1 * LocalIdX + UniformPart, assuming LocalIdY and LocalIdZ are uniform values.
bool GenerateBlockMemOpsPass::isIndexContinuous(Value *Indx) {
SmallVector<Value*, 2> NonUniformInstVector;
NonUniformInstVector.push_back(Indx);
PHINode *VisitedPhi = nullptr;
// Continuity requires that only add and zext operations can be performed on a non-uniform value.
while (NonUniformInstVector.size()) {
for (auto It = NonUniformInstVector.begin(); It != NonUniformInstVector.end();) {
Value *NonUnifOp = *It;
if (!NonUnifOp)
return false;
NonUniformInstVector.erase(It);
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(NonUnifOp)) {
NonUniformInstVector.push_back(ZExt->getOperand(0));
} else if (SExtInst *SExt = dyn_cast<SExtInst>(NonUnifOp)) {
NonUniformInstVector.push_back(SExt ->getOperand(0));
} else if (PHINode *Phi = dyn_cast<PHINode>(NonUnifOp)) {
// Check that PHINode has two incoming values and one of them
// is calculated from local_id_x and another one from this PHINode.
if (VisitedPhi && VisitedPhi != Phi)
return false;
if (VisitedPhi)
continue;
unsigned NumIncomingValues = Phi->getNumIncomingValues();
if (NumIncomingValues != 2)
return false;
for (Use &U : Phi->incoming_values()) {
Value *V = U.get();
if (WI->isUniform(V))
return false;
NonUniformInstVector.push_back(V);
}
VisitedPhi = Phi;
} else if (Instruction *Inst = dyn_cast<Instruction>(NonUnifOp)) {
if (Inst->getOpcode() != Instruction::Add)
return false;
Value *Op0 = Inst->getOperand(0);
Value *Op1 = Inst->getOperand(1);
if (!WI->isUniform(Op1) && !WI->isUniform(Op0))
return false;
if (WI->isUniform(Op0)) {
NonUniformInstVector.push_back(Op1);
} else {
NonUniformInstVector.push_back(Op0);
}
} else if (!isLocalIdX(NonUnifOp)) {
// If local_id_x was met then index is continuous.
return false;
}
}
}
return true;
}
bool GenerateBlockMemOpsPass::checkVectorizationAlongX(Function *F) {
if (CGCtx->type != ShaderType::OPENCL_SHADER)
return false;
IGC::IGCMD::FunctionInfoMetaDataHandle FuncInfoMD = MdUtils->getFunctionsInfoItem(F);
ModuleMetaData *ModMD = CGCtx->getModuleMetaData();
auto FuncMD = ModMD->FuncMD.find(F);
if (FuncMD == ModMD->FuncMD.end())
return false;
WorkGroupWalkOrderMD WorkGroupWalkOrder = FuncMD->second.workGroupWalkOrder;
if (WorkGroupWalkOrder.dim0 != 0 || WorkGroupWalkOrder.dim1 != 1 || WorkGroupWalkOrder.dim2 != 2)
return false;
int32_t X = -1;
IGC::IGCMD::ThreadGroupSizeMetaDataHandle ThreadGroupSize = FuncInfoMD->getThreadGroupSize();
if (!ThreadGroupSize->hasValue())
return false;
X = (int32_t)ThreadGroupSize->getXDim();
if (!X)
return false;
if (X % SimdSize == 0)
return true;
return false;
}
bool GenerateBlockMemOpsPass::canOptLoadStore(Instruction *I) {
Value *Ptr = nullptr;
Value *ValOp = nullptr;
Type *DataType = nullptr;
alignment_t CurrentAlignment = 0;
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Ptr = LI->getPointerOperand();
CurrentAlignment = IGCLLVM::getAlignmentValue(LI);
DataType = cast<Value>(LI)->getType();
} else {
StoreInst* SI = cast<StoreInst>(I);
Ptr = SI->getPointerOperand();
ValOp = SI->getValueOperand();
CurrentAlignment = IGCLLVM::getAlignmentValue(SI);
DataType = ValOp->getType();
}
if (DataType->isVectorTy())
return false;
// Need to check what alignment block load/store requires for the specific architecture.
if (!isAddressAligned(Ptr, CurrentAlignment, DataType))
return false;
// Get the last index from the getelementptr instruction if it is not uniform in the subgroup.
Instruction *PtrInstr = dyn_cast<Instruction>(Ptr);
Value *Idx = checkGep(PtrInstr);
if (!Idx)
return false;
// Check that memory access is continuous in the subgroup.
if (!isIndexContinuous(Idx))
return false;
return true;
}
bool GenerateBlockMemOpsPass::isLocalIdX(const Value *InputVal) {
const Argument *A = dyn_cast<Argument>(InputVal);
if (!A)
return false;
Function *F = const_cast<Function *>(A->getParent());
ImplicitArgs implicitArgs(*F, MdUtils);
Value *localIdX = implicitArgs.getImplicitArgValue(*F, ImplicitArg::LOCAL_ID_X, MdUtils);
return A == localIdX;
}
bool GenerateBlockMemOpsPass::isR0(const Value *InputVal) {
const Argument *A = dyn_cast<Argument>(InputVal);
if (!A)
return false;
Function *F = const_cast<Function *>(A->getParent());
ImplicitArgs implicitArgs(*F, MdUtils);
Value *R0 = implicitArgs.getImplicitArgValue(*F, ImplicitArg::R0, MdUtils);
return A == R0;
}
bool GenerateBlockMemOpsPass::changeToBlockInst(Instruction *I) {
IRBuilder<> Builder(I);
Function *BlockOpDecl = nullptr;
CallInst *BlockOpCall = nullptr;
if (isa<LoadInst>(I)) {
Value *Args[1] = {I->getOperand(0)};
Type *Types[2] = {I->getType(), I->getOperand(0)->getType()};
BlockOpDecl = GenISAIntrinsic::getDeclaration(I->getModule(),
GenISAIntrinsic::GenISA_simdBlockRead,
Types);
BlockOpCall = Builder.CreateCall(BlockOpDecl, Args);
} else {
Value *Args[2] = {I->getOperand(1), I->getOperand(0)};
Type *Types[2] = {I->getOperand(1)->getType(), I->getOperand(0)->getType()};
BlockOpDecl = GenISAIntrinsic::getDeclaration(I->getModule(),
GenISAIntrinsic::GenISA_simdBlockWrite,
Types);
BlockOpCall = Builder.CreateCall(BlockOpDecl, Args);
}
if (!BlockOpCall)
return false;
I->replaceAllUsesWith(BlockOpCall);
I->eraseFromParent();
return true;
}
Value *GenerateBlockMemOpsPass::checkGep(Instruction *PtrInstr) {
if (!PtrInstr)
return nullptr;
PHINode *Phi = dyn_cast<PHINode>(PtrInstr);
GetElementPtrInst *Gep = nullptr;
if (Phi) {
unsigned NumIncomingValues = Phi->getNumIncomingValues();
if (NumIncomingValues != 2)
return nullptr;
BasicBlock *BB = PtrInstr->getParent();
Loop *L = LI->getLoopFor(BB);
BasicBlock *Preheader = L->getLoopPreheader();
Value *IncomingVal1 = Phi->getIncomingValueForBlock(Preheader);
Gep = dyn_cast<GetElementPtrInst>(IncomingVal1);
if (!Gep)
return nullptr;
} else {
Gep = dyn_cast<GetElementPtrInst>(PtrInstr);
}
if (!Gep)
return nullptr;
bool IsPtrUniform = false, IsLastIndUniform = false;
Value *Ptr = Gep->getOperand(0);
if (WI->isUniform(Ptr))
IsPtrUniform = true;
// Make sure that all indexes, not including the last one, are uniform.
// This is important because the address must be continuous in the subgroup.
for (auto Idx = Gep->idx_begin(), E = Gep->idx_end() - 1; Idx != E; Idx++)
if (!WI->isUniform(*Idx))
return nullptr;
auto LIndx = Gep->idx_end() - 1;
if (WI->isUniform(*LIndx))
IsLastIndUniform = true;
if (!IsLastIndUniform && IsPtrUniform) {
return *LIndx;
} else if (IsLastIndUniform && !IsPtrUniform) {
if (!isa<PHINode>(Ptr) && !isa<GetElementPtrInst>(Ptr))
return nullptr;
if (PHINode *Phi = dyn_cast<PHINode>(Ptr)) {
if (Phi->getNumIncomingValues() != 2)
return nullptr;
for (Use &U : Phi->incoming_values()) {
Value *V = U.get();
if (!isa<GetElementPtrInst>(V))
return nullptr;
GetElementPtrInst *G = cast<GetElementPtrInst>(V);
bool IsGepHasPhiArg = false;
if (G->getOperand(0) == Phi) {
// Check that the address was incremented using gep instruction and the value incrementation is uniform.
IsGepHasPhiArg = true;
for (auto Idx = G->idx_begin(), E = G->idx_end(); Idx != E; Idx++) {
if (!WI->isUniform(*Idx)) {
return nullptr;
}
}
} else {
// Get the incoming address value.
Ptr = V;
}
if (!IsGepHasPhiArg)
return nullptr;
}
}
return checkGep(dyn_cast<GetElementPtrInst>(Ptr));
}
return nullptr;
}
|