File: IGCVectorizer.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (604 lines) | stat: -rw-r--r-- 20,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "IGCVectorizer.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include <algorithm>

//
// IGCVectorizer pass currently looks for insert elements instructions
// that are going inside LSC2DBlockWrite & sub_group_dpas
// intrinsics and vectorizes phi nodes and eliminates
// unnecessary insert/extract element operations
//
// BEFORE:
// %phi_a = phi %extr_a
// %phi_b = phi %extr_b
// %dpas_vec = insert element %phi_a
// %dpas_vec = insert element %phi_b
// %dpas_res = dpas (%dpas_vec ...)
// %extr_a = extract element %dpas_res
// %extr_b = extrat elelment %dpas_res
// end of BB
//
// %a = phi %extr_a
// %b = phi %extr_b
// %vec = insert element %a
// %vec = insert element %b
// lsc_block_write (%vec ...)
// end of BB
//
// AFTER:
// %phi_vec  = phi 2xfloat %dpas_res
// %dpas_res = dpas (%phi_vec ...)
// end of BB
//
// %phi_vec_2 = phi 2xfloat %dpas_res
// lsc_block_write (%phi_vec_2 ...)
// end of BB
//
// we vectorize PHI & scatter/gather pairs to eliminate scalar path between
// inherently vector intrinsics
//
// the backbone of the optimization is a vector_slice_tree (VectorSliceChain):
// each slice is a vector with index matching position of a scalar value
// inside the final vector:
// using strict ordering we can check that data inside final vector matches
// the data of the original vector element
//
//  example 4 elements for compactness:
//  [ 0       1       2        3     ]
//  [ tmp104  tmp105  tmp106  tmp107 ]
//  [ tmp90   tmp91   tmp92   tmp93  ]
//  [ tmp114  tmp115  tmp116  tmp117 ]
//
// Slice:
// -->   %tmp104 = insertelement <8 x float> zeroinitializer, float %tmp90, i64 0
// -->   %tmp105 = insertelement <8 x float> %tmp104, float %tmp91, i64 1
// -->   %tmp106 = insertelement <8 x float> %tmp105, float %tmp92, i64 2
// -->   %tmp107 = insertelement <8 x float> %tmp106, float %tmp93, i64 3
// Slice:
// -->   %tmp90 = phi float [ 0.000000e+00, %bb60 ], [ %tmp114, %bb88 ]
// -->   %tmp91 = phi float [ 0.000000e+00, %bb60 ], [ %tmp115, %bb88 ]
// -->   %tmp92 = phi float [ 0.000000e+00, %bb60 ], [ %tmp116, %bb88 ]
// -->   %tmp93 = phi float [ 0.000000e+00, %bb60 ], [ %tmp117, %bb88 ]
// Slice:
// -->   %tmp114 = extractelement <8 x float> %tmp113, i64 0
// -->   %tmp115 = extractelement <8 x float> %tmp113, i64 1
// -->   %tmp116 = extractelement <8 x float> %tmp113, i64 2
// -->   %tmp117 = extractelement <8 x float> %tmp113, i64 3
//
// if you have to make sense of what is happening I RECOMMEND YOU
// to check the logs: IGC_DumpToCustomDir=Dump IGC_ShaderDumpEnable=1 IGC_VectorizerLog=1
// they will be present inside the Dump folder


char IGCVectorizer::ID = 0;

#define PASS_FLAG2 "igc-vectorizer"
#define PASS_DESCRIPTION2 "prints register pressure estimation"
#define PASS_CFG_ONLY2 false
#define PASS_ANALYSIS2 false
IGC_INITIALIZE_PASS_BEGIN(IGCVectorizer, PASS_FLAG2, PASS_DESCRIPTION2,
                          PASS_CFG_ONLY2, PASS_ANALYSIS2)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(IGCVectorizer, PASS_FLAG2, PASS_DESCRIPTION2,
                        PASS_CFG_ONLY2, PASS_ANALYSIS2)

#define DEBUG IGC_IS_FLAG_ENABLED(VectorizerLog)
#define PRINT_LOG(Str) if (DEBUG) OutputLogStream << Str;
#define PRINT_LOG_NL(Str) if (DEBUG) OutputLogStream << Str << "\n";
#define PRINT_INST(I) if (DEBUG) { I->print(OutputLogStream, false); }
#define PRINT_INST_NL(I) if (DEBUG) { I->print(OutputLogStream, false); OutputLogStream << "\n"; }
#define PRINT_DS(Str, DS) if (DEBUG) { for (auto DS_EL : DS) { { PRINT_LOG(Str); } { PRINT_INST_NL(DS_EL); } } }

IGCVectorizer::IGCVectorizer() : FunctionPass(ID) {
    initializeIGCVectorizerPass(*PassRegistry::getPassRegistry());
};

void IGCVectorizer::writeLog() {
    if (IGC_IS_FLAG_ENABLED(VectorizerLog) && OutputLogFile->is_open())
        *OutputLogFile << OutputLogStream.str();

    OutputLogStream.str().clear();
}

void IGCVectorizer::initializeLogFile(Function &F) {
    if (!IGC_IS_FLAG_ENABLED(VectorizerLog))
        return;

    std::stringstream ss;
    ss << F.getName().str() << "_"
       << "Vectorizer";
    auto Name = Debug::DumpName(IGC::Debug::GetShaderOutputName())
                    .Hash(CGCtx->hash)
                    .Type(CGCtx->type)
                    .Retry(CGCtx->m_retryManager.GetRetryId())
                    .Pass(ss.str().c_str())
                    .Extension("ll");

    OutputLogFile = std::make_unique<std::ofstream>(Name.str());
}

void IGCVectorizer::findInsertElementsInDataFlow(llvm::Instruction *I,
                                                 VecArr &Chain) {
    std::queue<llvm::Instruction *> BFSQ;
    BFSQ.push(I);
    std::unordered_set<llvm::Instruction *> Explored;

    Chain.push_back(I);
    if (llvm::isa<InsertElementInst>(I))
        return;

    while (!BFSQ.empty()) {
        llvm::Instruction *CurrI = BFSQ.front();
        BFSQ.pop();
        for (unsigned int i = 0; i < CurrI->getNumOperands(); ++i) {
            Instruction *Op = llvm::dyn_cast<Instruction>(CurrI->getOperand(i));
            if (!Op)
                continue;

            bool IsConstant = llvm::isa<llvm::Constant>(Op);
            bool IsExplored = Explored.count(Op);
            bool IsInsertElement = llvm::isa<InsertElementInst>(Op);

            if (IsInsertElement)
                Chain.push_back(Op);

            bool Skip = IsConstant || IsExplored || IsInsertElement;
            if (Skip)
                continue;

            Chain.push_back(Op);
            Explored.insert(Op);
            BFSQ.push(Op);
        }
    }
}

unsigned int getConstantValueAsInt(Value *I) {
    ConstantInt *Value = static_cast<ConstantInt *>(I);
    unsigned int Result = Value->getSExtValue();
    return Result;
}

unsigned int getVectorSize(Instruction *I) {
    IGCLLVM::FixedVectorType *VecType =
        llvm::dyn_cast<IGCLLVM::FixedVectorType>(I->getType());
    if (!VecType)
        return 0;
    unsigned int NumElements = VecType->getNumElements();
    return NumElements;
}

bool isSafeToVectorize(Instruction *I) {
    // this is a very limited approach for vectorizing
    // but it's safe
    bool Result = llvm::isa<PHINode>(I) || llvm::isa<ExtractElementInst>(I) ||
                  llvm::isa<InsertElementInst>(I);

    return Result;
}

bool IGCVectorizer::compareOperands(Value *A, Value *B) {
    Constant *ConstA = llvm::dyn_cast<Constant>(A);
    Constant *ConstB = llvm::dyn_cast<Constant>(B);

    Instruction *InstA = llvm::dyn_cast<Instruction>(A);
    Instruction *InstB = llvm::dyn_cast<Instruction>(B);

    if (ConstA && ConstB) {
        bool BothZero = ConstA->isZeroValue() && ConstB->isZeroValue();
        BothZero &= !(ConstA->isNegativeZeroValue() || ConstB->isNegativeZeroValue());
        return BothZero;
    } else if (InstA && InstB) {
        if (!ScalarToVector.count(InstA)) {
            PRINT_LOG_NL("some elements weren't even vectorized");
            return false;
        }
        bool Same = ScalarToVector[InstA] == ScalarToVector[InstB];
        return Same;
    }
    return false;
}

bool IGCVectorizer::handlePHI(VecArr &Slice, Type *VectorType) {
    PHINode *ScalarPhi = static_cast<PHINode *>(Slice[0]);

    if (!checkPHI(ScalarPhi, Slice))
        return false;

    llvm::Constant *zeroInitializer =
        llvm::ConstantAggregateZero::get(VectorType);
    PHINode *Phi = PHINode::Create(VectorType, 2);
    Phi->setName("vectorized_phi");

    for (auto& BB : ScalarPhi->blocks()) {
        Value *Val = ScalarPhi->getIncomingValueForBlock(BB);
        Constant *Const = llvm::dyn_cast<Constant>(Val);
        Instruction *Inst = llvm::dyn_cast<Instruction>(Val);

        if (Const && Const->isZeroValue())
            Phi->addIncoming(zeroInitializer, BB);
        else if (Inst)
            Phi->addIncoming(ScalarToVector[Inst], BB);
        else {
            PRINT_LOG_NL("malformed PHI, no vectorization");
            return false;
        }
    }

    auto BB = ScalarPhi->getParent();
    Phi->setDebugLoc(ScalarPhi->getDebugLoc());
    BB->getInstList().insert(BB->begin(), Phi);
    CreatedVectorInstructions.push_back(Phi);

    for (auto &El : Slice)
        ScalarToVector[El] = Phi;
    PRINT_LOG("PHI created: ");
    PRINT_INST_NL(Phi);
    return true;
}

bool IGCVectorizer::handleInsertElement(VecArr &Slice, Instruction* Final) {
    Instruction *First = Slice.front();
    if (!checkInsertElement(First, Slice))
        return false;

    // we can handle case with more than 1 value
    // but it wasn't tested
    if (!Final->hasOneUse())
        return false;

    PRINT_LOG_NL("InsertElement substituted with vectorized instruction");
    Value *Compare = ScalarToVector[First->getOperand(1)];
    *(Final->use_begin()) = Compare;
    return true;
}

// this basicaly seeds the chain
bool IGCVectorizer::handleExtractElement(VecArr &Slice) {
    Instruction *First = Slice.front();
    if (!checkExtractElement(First, Slice))
        return false;

    Value *Source = First->getOperand(0);
    for (auto &el : Slice)
        ScalarToVector[el] = Source;
    return true;
}

bool IGCVectorizer::processChain(InsertStruct &InSt) {
    std::reverse(InSt.Chain.begin(), InSt.Chain.end());

    for (auto &Slice : InSt.Chain) {
        PRINT_LOG_NL("Process slice: ");
        PRINT_DS("Slice: ", Slice);

        // this contains common checks for any slice
        if (!checkSlice(Slice, InSt))
            return false;

        Instruction *First = Slice[0];
        if (llvm::isa<PHINode>(First)) {
            if (!handlePHI(Slice, InSt.Final->getType())) return false;
        } else if (llvm::isa<ExtractElementInst>(First)) {
            if (!handleExtractElement(Slice)) return false;
        } else if (llvm::isa<InsertElementInst>(First)) {
            if (!handleInsertElement(Slice, InSt.Final)) return false;
        } else {
            IGC_ASSERT("we should not be here");
        }
    }
    return true;
}

void IGCVectorizer::clusterInsertElement(
    InsertElementInst* HeadInsertEl, InsertStruct &InSt) {
    InSt.Final = HeadInsertEl;
    Instruction *Head = HeadInsertEl;

    while (true) {
        InSt.Vec.push_back(Head);
        Head = llvm::dyn_cast<Instruction>(Head->getOperand(0));
        if (!Head)
            break;
        if (!llvm::isa<InsertElementInst>(Head))
            break;
    }

    // purely convenience feature I want first insert to be at 0 index in
    // array
    std::reverse(InSt.Vec.begin(), InSt.Vec.end());

    PRINT_LOG("fin: ");
    PRINT_INST_NL(InSt.Final);
    PRINT_DS("vec: ", InSt.Vec);
    PRINT_LOG_NL("--------------------------");
}

void IGCVectorizer::collectScalarPath(VecArr &V, VectorSliceChain &Chain) {
    typedef std::pair<Instruction *, unsigned int> Pair;
    std::queue<Pair> BFSQ;

    Chain.push_back({});
    for (auto &Insert : V) {
        BFSQ.push({Insert, 0});
        Chain[0].push_back(Insert);
    }
    std::unordered_set<llvm::Instruction *> Explored;

    while (!BFSQ.empty()) {
        llvm::Instruction *CurrI = BFSQ.front().first;
        unsigned int Level = BFSQ.front().second;
        BFSQ.pop();

        for (unsigned int i = 0; i < CurrI->getNumOperands(); ++i) {
            Instruction *Op = llvm::dyn_cast<Instruction>(CurrI->getOperand(i));
            if (!Op)
                continue;

            bool IsConstant = llvm::isa<llvm::Constant>(Op);
            bool IsExplored = Explored.count(Op);
            bool IsVector = Op->getType()->isVectorTy();
            bool IsNotSafeToVectorize = !isSafeToVectorize(Op);
            bool IsExtractEl = llvm::isa<llvm::ExtractElementInst>(Op);

            if (IsExtractEl) {
                if (Chain.size() <= (Level + 1))
                    Chain.push_back({});
                Chain[Level + 1].push_back(Op);
                InstructionToSlice[Op] = &Chain[Level + 1];
            }

            bool Skip = IsConstant || IsExplored || IsVector || IsExtractEl || IsNotSafeToVectorize;
            if (Skip)
                continue;

            if (Chain.size() <= (Level + 1))
                Chain.push_back({});
            Chain[Level + 1].push_back(Op);
            InstructionToSlice[Op] = &Chain[Level + 1];

            Explored.insert(Op);
            BFSQ.push({Op, Level + 1});
        }
    }
}


bool IGCVectorizer::checkPHI(Instruction *Compare, VecArr &Slice) {
    PHINode *ComparePHI = static_cast<PHINode *>(Slice[0]);
    if (ComparePHI->getNumIncomingValues() != 2) {
        PRINT_LOG_NL("Only 2-way phi supported");
        return false;
    }

    for (auto BB : ComparePHI->blocks()) {
        for (auto &El : Slice) {
            PHINode *ElPHI = static_cast<PHINode *>(El);
            Value *Val = ElPHI->getIncomingValueForBlock(BB);
            Value *CompareVal = ComparePHI->getIncomingValueForBlock(BB);
            if (!compareOperands(CompareVal, Val)) {
                PRINT_LOG_NL("couldn't vectorize PHI, operands do not converge");
                return false;
            }
        }
    }

    for (auto &BB : ComparePHI->blocks()) {
        Value *Val = ComparePHI->getIncomingValueForBlock(BB);
        Instruction *Inst = llvm::dyn_cast<Instruction>(Val);
        if (Inst) {
            if (!ScalarToVector.count(Inst)) {
                PRINT_LOG_NL("can't vectorize, operand hasn't been vectorized");
                return false;
            }
        }
    }
    return true;
}

bool IGCVectorizer::checkInsertElement(Instruction *First, VecArr &Slice) {
    for (unsigned int i = 0; i < Slice.size(); ++i) {
        auto *InsertionIndex = Slice[i]->getOperand(2);
        unsigned int Index = getConstantValueAsInt(InsertionIndex);
        // elements are stored so index of the array
        // corresponds with the way how final data should be laid out
        if (Index != i) {
            PRINT_LOG_NL("Not supported index swizzle");
            return false;
        }
    }

    // we check that all the scalar elements in the slice are
    // already present inside generated vector element
    if (!ScalarToVector.count(First->getOperand(1))) {
        PRINT_LOG_NL("some elements weren't even vectorized");
        return false;
    }
    Value *Compare = ScalarToVector[First->getOperand(1)];
    for (auto &El : Slice) {
        Value *Val = El->getOperand(1);
        Value *ValCompare = ScalarToVector[Val];
        if (ValCompare != Compare) {
            PRINT_LOG("InsertCompare: "); PRINT_INST_NL(Compare);
            PRINT_LOG("InsertVal: "); PRINT_INST_NL(ValCompare);
            PRINT_LOG_NL("Insert Element, operands do not converge");
            return false;
        }
    }
    return true;
}

bool IGCVectorizer::checkExtractElement(Instruction *Compare, VecArr &Slice) {
    Value *CompareSource = Slice[0]->getOperand(0);

    if (!llvm::isa<Instruction>(CompareSource)) {
        PRINT_LOG_NL("Source is not an instruction");
        return false;
    }

    for (unsigned int i = 0; i < Slice.size(); ++i) {
        if (CompareSource != Slice[i]->getOperand(0)) {
            PRINT_LOG_NL("Source operand differ between extract elements");
            return false;
        }
        unsigned int Index = getConstantValueAsInt(Slice[i]->getOperand(1));
        // elements are stored so index of the array
        // corresponds with the way how final data should be laid out
        if (Index != i) {
            PRINT_LOG_NL("Not supported index swizzle");
            return false;
        }
    }
    return true;
}

bool IGCVectorizer::checkSlice(VecArr &Slice, InsertStruct &InSt) {
    if (Slice.size() != getVectorSize(InSt.Final)) {
        PRINT_LOG_NL("vector size isn't equal to the width of the vector tree");
        return false;
    }

    Instruction *Compare = Slice[0];
    if (!isSafeToVectorize(Compare)) {
        PRINT_LOG("instruction in a chain is not supported: ");
        PRINT_INST_NL(Compare);
        return false;
    }

    for (unsigned int i = 1; i < Slice.size(); ++i) {
        if (!Compare->isSameOperationAs(Slice[i])) {
            PRINT_LOG_NL("Not all operations in the slice are identical");
            return false;
        }
    }

    return true;
}

bool filterInstruction(GenIntrinsicInst *I) {
    if (!I)
        return false;

    GenISAIntrinsic::ID ID = I->getIntrinsicID();
    bool Pass = (ID == GenISAIntrinsic::GenISA_LSC2DBlockWrite) ||
                (ID == GenISAIntrinsic::GenISA_sub_group_dpas);

    return Pass;
}

bool hasPotentialToBeVectorized(Instruction *I) {
    bool Result = llvm::isa<InsertElementInst>(I) || llvm::isa<CastInst>(I) || llvm::isa<PHINode>(I);
    return Result;
}

void IGCVectorizer::collectInstructionToProcess(VecArr &ToProcess,
                                                Function &F) {
    for (BasicBlock &BB : F) {
        for (auto &I : BB) {

            GenIntrinsicInst *GenI = llvm::dyn_cast<GenIntrinsicInst>(&I);
            bool Pass = filterInstruction(GenI);
            if (!Pass)
                continue;

            for (unsigned int I = 0; I < GenI->getNumOperands(); ++I) {
                Instruction *Op =
                    llvm::dyn_cast<Instruction>(GenI->getOperand(I));
                if (!Op)
                    continue;
                if (!Op->getType()->isVectorTy())
                    continue;
                if (!hasPotentialToBeVectorized(Op))
                    continue;
                // we collect only vector type arguments to check
                // maybe they were combined from scalar values
                // and could be vectorized
                ToProcess.push_back(Op);
            }
        }
    }
}

bool IGCVectorizer::runOnFunction(llvm::Function &F) {
    CGCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    initializeLogFile(F);

    VecArr ToProcess;
    // we collect operands that seem promising for vectorization
    collectInstructionToProcess(ToProcess, F);
    PRINT_DS("Seed: ", ToProcess);
    PRINT_LOG_NL("\n\n");

    writeLog();

    for (auto &El : ToProcess) {
        PRINT_LOG("Candidate: ");
        PRINT_INST_NL(El);

        VecArr Chain;
        // we take the collected operands and
        // check if they have insert elements in their
        // data flow, in case they do, we collect those
        findInsertElementsInDataFlow(El, Chain);

        PRINT_DS("Chain: ", Chain);
        PRINT_LOG_NL("--------------------------");

        VecArr VecOfInsert;
        for (auto &El : Chain)
            if (llvm::isa<InsertElementInst>(El))
                VecOfInsert.push_back(El);

        // multiple clusters are supported but not tested hence disabled for now
        // #TODO write a test for multiple clusters
        if (VecOfInsert.empty() || VecOfInsert.size() != 1) {
            PRINT_LOG("Currently we support only 1 insert cluster\n\n");
            continue;
        }

        PRINT_DS("Insert: ", VecOfInsert);
        writeLog();

        // we process collected insert elements into a specific data structure
        // for convenience
        for (auto el : VecOfInsert) {
            InsertStruct InSt;
            clusterInsertElement(static_cast<InsertElementInst*>(el), InSt);
            if (InSt.Vec.size() != getVectorSize(InSt.Final)) {
                PRINT_LOG_NL("partial insert -> rejected");
                continue;
            }
            writeLog();

            collectScalarPath(InSt.Vec, InSt.Chain);
            for (auto &Slice : InSt.Chain) {
                PRINT_LOG_NL("Slice:");
                PRINT_DS("--> ", Slice);
            }
            writeLog();

            CreatedVectorInstructions.clear();
            if (!processChain(InSt)) {
                for (auto& el : CreatedVectorInstructions) {
                    PRINT_LOG("Cleaned: "); PRINT_INST_NL(el);
                    el->eraseFromParent();
                }
            }
            writeLog();
        }

        PRINT_LOG("\n\n");
    }

    writeLog();

    return true;
}