1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/CISACodeGen/LoopCountAnalysis.hpp"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/helper.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Analysis/LoopInfo.h>
#include <llvmWrapper/Transforms/Utils/LoopUtils.h>
#include <llvm/Analysis/ScalarEvolutionAliasAnalysis.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/InstrTypes.h>
#include "common/LLVMWarningsPop.hpp"
#include <algorithm>
using namespace llvm;
using namespace IGC;
using IGC::CollectLoopCount;
namespace
{
class LoopCountAnalysis : public FunctionPass
{
public:
static char ID; // Pass identification, replacement for typeid
LoopCountAnalysis();
struct LoopBoundInfo {
Value* m_initVal;
Value* m_stepVal;
Value* m_finalVal;
bool signedCmp;
bool decreasingIdx;
LoopBoundInfo(Value* I, Value* S, Value* F, bool sign, bool dec)
: m_initVal(I), m_stepVal(S), m_finalVal(F), signedCmp(sign), decreasingIdx(dec) {}
};
StringRef getPassName() const override { return "LoopCount"; }
bool runOnFunction(Function& F) override;
void getAnalysisUsage(AnalysisUsage& AU) const override
{
AU.setPreservesAll();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<CollectLoopCount>();
}
ScalarEvolution* SE;
const DataLayout* dl;
private:
// Loops are numbered from 0 and up, in program order.
DenseMap<Loop*, int> LoopNum;
// L::getBounds() does not work after breakCriticalEdges due to
// a dummy block as latch block.
// The following member functions are copied from llvm::Loop member
// functions with minor changes to handle this dummy block.
ICmpInst* getLatchCmpInst(Loop* L) const;
PHINode* getInductionVariable(Loop* L, ScalarEvolution& SE, bool& signedCM, bool& decCompare) const;
Value* findFinalIVValue(Loop& L, PHINode& IndVar, Instruction& StepInst) const;
Optional<LoopBoundInfo> getBounds(Loop* L, ScalarEvolution& SE);
void processLoop(Loop* L);
CollectLoopCount* collectCount;
};
}
// Register pass to igc-opt
#define PASS_FLAG "igc-collectLoopCount"
#define PASS_DESCRIPTION "Collect loop count."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(CollectLoopCount, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(CollectLoopCount, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char CollectLoopCount::ID = 0;
CollectLoopCount::CollectLoopCount() : ImmutablePass(ID) {
initializeCollectLoopCountPass(*PassRegistry::getPassRegistry());
}
FunctionPass* IGC::createLoopCountAnalysisPass()
{
return new LoopCountAnalysis();
}
#undef PASS_FLAG
#undef PASS_DESCRIPTION
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG "igc-loopcount"
#define PASS_DESCRIPTION "Loop count analysis."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(LoopCountAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(CollectLoopCount)
IGC_INITIALIZE_PASS_END(LoopCountAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char LoopCountAnalysis::ID = 0;
LoopCountAnalysis::LoopCountAnalysis() : FunctionPass(ID)
{
initializeLoopCountAnalysisPass(*PassRegistry::getPassRegistry());
}
bool LoopCountAnalysis::runOnFunction(Function& F)
{
LoopInfo& LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
collectCount = &getAnalysis<CollectLoopCount>();
Module* M = F.getParent();
dl = &(M->getDataLayout());
if (LI.empty())
{
return false;
}
int numLoops = 0;
for (BasicBlock& BB : F) {
Loop* L = LI.getLoopFor(&BB);
if (L && L->getHeader() == &BB) {
SmallVector<Loop*, 4> loops;
do {
loops.push_back(L);
L = L->getParentLoop();
} while (L && L->getHeader() == &BB);
for (int i = (int)loops.size() - 1; i >= 0; i--)
{
processLoop(loops[i]);
numLoops++;
}
}
}
if (IGC_IS_FLAG_ENABLED(EnableKernelCostDebug)) {
dbgs() << "Total number of loops: " << numLoops << "\n";
}
return false;
}
//add LCE to loopCountExpression
void CollectLoopCount::addLCE(int argNo, int byteOffset, int sizeInBytes, bool isInDirect, float factor, float C) {
ArgSym argSym(argNo, byteOffset, sizeInBytes, isInDirect);
//Check if argument symbol already exists
//if it doesn't exist push argSym to loopArgs
auto argSymIt = std::find(loopArgs.begin(), loopArgs.end(), argSym);
int argSymIndex = -1;
if (argSymIt != loopArgs.end()) {
argSymIndex = std::distance(loopArgs.begin(), argSymIt);
}
else {
if (argNo != -1) {
loopArgs.push_back(argSym);
argSymIndex = loopArgs.size() - 1;
}
}
LCE lce(factor, argSymIndex, C);
loopCountExpressions.push_back(lce);
}
std::vector<CollectLoopCount::LCE>& CollectLoopCount::getLCE() {
return loopCountExpressions;
}
std::vector<CollectLoopCount::ArgSym>& CollectLoopCount::getloopArgs() {
return loopArgs;
}
// mimic Loop::getBounds() and others
// The difference is that these function will handle the dummy latch BB that has
// unconditional branch. This dummy latch BB is created by BreakCriticalEdges pass.
/// Get the latch condition instruction.
ICmpInst* LoopCountAnalysis::getLatchCmpInst(Loop* L) const
{
BasicBlock* Latch = L->getLoopLatch();
if (!Latch)
return nullptr;
if (BranchInst* BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) {
if (BI->isConditional()) {
return dyn_cast<ICmpInst>(BI->getCondition());
}
else if (BasicBlock* PreBB = Latch->getUniquePredecessor()) {
if (BranchInst* br = dyn_cast_or_null<BranchInst>(PreBB->getTerminator())) {
if (br->isConditional()) {
if (ICmpInst* icmpInst = dyn_cast<ICmpInst>(br->getCondition())) {
return icmpInst;
}
//return dyn_cast<ICmpInst>(br->getCondition());
}
}
}
}
return nullptr;
}
PHINode* LoopCountAnalysis::getInductionVariable(Loop* L, ScalarEvolution& SE, bool& signedComp, bool& decComp) const
{
if (!L->isLoopSimplifyForm())
return nullptr;
BasicBlock* Header = L->getHeader();
assert(Header && "Expected a valid loop header");
BasicBlock* Latch = L->getLoopLatch();
if (!Latch)
return nullptr;
// If Latch is a dummy latch, get the real one
ICmpInst* CmpInst = getLatchCmpInst(L);
if (!CmpInst)
return nullptr;
Value* LatchCmpOp0 = CmpInst->getOperand(0);
Value* LatchCmpOp1 = CmpInst->getOperand(1);
signedComp = CmpInst->isSigned();
if (CmpInst->getPredicate() == ICmpInst::ICMP_SGT || CmpInst->getPredicate() == ICmpInst::ICMP_UGT
|| CmpInst->getPredicate() == ICmpInst::ICMP_SGE || CmpInst->getPredicate() == ICmpInst::ICMP_UGE) {
decComp = true;
}
//Operands that are extended from i32 to i64
if (ZExtInst* zextInst = dyn_cast<ZExtInst>(LatchCmpOp0)) {
LatchCmpOp0 = zextInst->getOperand(0);
}
for (PHINode& IndVar : Header->phis()) {
InductionDescriptor IndDesc;
if (!InductionDescriptor::isInductionPHI(&IndVar, L, &SE, IndDesc))
continue;
Value* StepInst = IndVar.getIncomingValueForBlock(Latch);
// case 1:
// IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
// StepInst = IndVar + step
// cmp = StepInst < FinalValue
if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
return &IndVar;
// case 2:
// IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
// StepInst = IndVar + step
// cmp = IndVar < FinalValue
if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
return &IndVar;
}
return nullptr;
}
/// Return the final value of the loop induction variable if found.
Value* LoopCountAnalysis::findFinalIVValue(Loop& L, PHINode& IndVar,
Instruction& StepInst) const
{
ICmpInst* LatchCmpInst = getLatchCmpInst(&L);
if (!LatchCmpInst)
return nullptr;
Value* Op0 = LatchCmpInst->getOperand(0);
Value* Op1 = LatchCmpInst->getOperand(1);
//Operands that are extended from i32 to i64
if (ZExtInst* zextInst = dyn_cast<ZExtInst>(Op0)) {
Op0 = zextInst->getOperand(0);
}
if (Op0 == &IndVar || Op0 == &StepInst)
return Op1;
if (Op1 == &IndVar || Op1 == &StepInst)
return Op0;
return nullptr;
}
Optional<LoopCountAnalysis::LoopBoundInfo> LoopCountAnalysis::getBounds(
Loop* L, ScalarEvolution& SE)
{
bool signedComp = false;
bool decComp = false;
if (PHINode* IndVar = getInductionVariable(L, SE, signedComp, decComp)) {
InductionDescriptor IndDesc;
if (!InductionDescriptor::isInductionPHI(IndVar, L, &SE, IndDesc))
return None;
Value* InitialIVValue = IndDesc.getStartValue();
Instruction* StepInst = IndDesc.getInductionBinOp();
if (!InitialIVValue || !StepInst)
return None;
const SCEV* Step = IndDesc.getStep();
Value* StepInstOp1 = StepInst->getOperand(1);
Value* StepInstOp0 = StepInst->getOperand(0);
Value* StepValue = nullptr;
if (SE.getSCEV(StepInstOp1) == Step)
StepValue = StepInstOp1;
else if (SE.getSCEV(StepInstOp0) == Step)
StepValue = StepInstOp0;
Value* FinalIVValue = findFinalIVValue(*L, *IndVar, *StepInst);
if (!FinalIVValue)
return None;
return LoopBoundInfo(InitialIVValue, StepValue, FinalIVValue, signedComp, decComp);
}
return None;
}
//return argument from loop end value
const Argument* getArgumentFromEndValue(Value* In, ConstantInt** addValue) {
const Argument* arg = nullptr;
//if loop end value is a load instruction
if (const LoadInst* loadinst = dyn_cast<LoadInst>(In)) {
arg = dyn_cast<Argument>(loadinst->getOperand(0));
if (!arg) {
if (IntToPtrInst* I2P = dyn_cast<IntToPtrInst>(loadinst->getOperand(0))) {
if (Instruction* addI = dyn_cast<Instruction>(I2P->getOperand(0))) {
if (PtrToIntInst* P2I = dyn_cast<PtrToIntInst>(addI->getOperand(0)))
{
if ((*addValue = dyn_cast<ConstantInt>(addI->getOperand(1)))) {
arg = dyn_cast<Argument>(P2I->getOperand(0));
}
}
}
}
}
}
else
{
arg = dyn_cast<Argument>(In);
}
return arg;
}
//update sizeInBytes and isInDirect value for ArgSym
void updateArgSym(const Argument* arg, ConstantInt* addValue, int& argumentIndex, int& byteOffset, int& sizeInBytes, bool& isInDirect, const DataLayout& dl) {
argumentIndex = arg->getArgNo();
if (arg->getType()->isIntegerTy()) {
unsigned bitWidth = arg->getType()->getIntegerBitWidth();
sizeInBytes = bitWidth / 8;
}
else if (arg->getType()->isPointerTy()) {
if (addValue) {
byteOffset = addValue->getSExtValue();
}
sizeInBytes = dl.getTypeSizeInBits(arg->getType()) / 8;
isInDirect = true;
}
}
//get initial value for loop and update C for LCE
void updateLCEfactor(ConstantInt* stepInt, float& factor, LoopCountAnalysis::LoopBoundInfo* LB) {
//Find Factor for LCE
factor = 1;
int stepCount = 1;
if (LB->signedCmp) {
stepCount = stepInt->getSExtValue();
}
else {
stepCount = stepInt->getZExtValue();
}
if (stepCount > 1) {
factor = (float)factor / (float)stepCount;
}
else if (stepCount < 0) {
factor = (float)factor / (-1 * (float)stepCount);
}
}
//get initial value for loop and update C for LCE
void updateLCEConstant(ConstantInt* initialValue, float& C, float factor, LoopCountAnalysis::LoopBoundInfo* LB) {
int initial = 0;
if (initialValue->getBitWidth() <= 64) {
if (LB->signedCmp) {
initial = initialValue->getSExtValue();
}
else
{
initial = initialValue->getZExtValue();
}
if (initial) {
C = -1 * ((float)(initial)*factor);
}
}
}
void getMultiplicationFactorFromValue(Value* val, Value** shlOperand, uint64_t& multiplicationFactor) {
if (ZExtInst* zextInst = dyn_cast<ZExtInst>(val)) {
val = zextInst->getOperand(0);
}
if (auto* shlInst = dyn_cast<BinaryOperator>(val)) {
*shlOperand = shlInst->getOperand(0);
Value* shlfactor = shlInst->getOperand(1);
if (auto* constInt = dyn_cast<ConstantInt>(shlfactor)) {
uint64_t shiftValue = constInt->getZExtValue();
multiplicationFactor = 1ULL << shiftValue;
}
else {
*shlOperand = nullptr;
}
}
}
// loop bounds with constant value. End value and step bounded by the same variable
// for (size_t j = 0; j < sgSize * 16; j += sgSize)
//
// Return true if it finds constant count; return false otherwise.
bool getConstantBoundLCE(Value* In, Value* step, float& C) {
Value* shlEndOperand = nullptr;
Value* shlStepOperand = nullptr;
uint64_t endmultiplicationFactor = 0;
uint64_t stepmultiplicationFactor = 1;
getMultiplicationFactorFromValue(In, &shlEndOperand, endmultiplicationFactor);
getMultiplicationFactorFromValue(step, &shlStepOperand, stepmultiplicationFactor);
if (shlEndOperand) {
//end = shl nsw i32 %endShl, 4
//step = shl nsw i32 %stepShl, 2
//check if end shift operand and step shift operand are the same
if (shlStepOperand && shlEndOperand == shlStepOperand) {
C = (float)endmultiplicationFactor / (float)stepmultiplicationFactor;
return true;
}
//end = shl nuw nsw i32 %endShl, 4
//step = phi instruction
//Check if endOperand and step are the same
if (shlEndOperand == step) {
C = float(endmultiplicationFactor);
return true;
}
//end = zext i32 %endZext to i64
// %endZext = shl nsw i32 %endShl, 4
//step = sext i32 %stepSext to i64
//check if %endShl and %stepSext have the same operand
else if (SExtInst* sextStepInst = dyn_cast<SExtInst>(step)) {
Value* sextOperand = sextStepInst->getOperand(0);
if (shlEndOperand == sextOperand) {
C = float(endmultiplicationFactor);
return true;
}
}
}
return false;
}
bool checkLegalArgument(const Argument* arg) {
return arg && (arg->getType()->isIntegerTy() || arg->getType()->isPointerTy());
}
void LoopCountAnalysis::processLoop(Loop* L) {
raw_ostream& output = llvm::outs();
Optional<LoopBoundInfo> bounds = getBounds(L, *SE);
//Values used for Nested loop analysis
if (IGC_IS_FLAG_ENABLED(EnableKernelCostDebug)) {
dbgs() << "Loop at depth " << L->getLoopDepth() << " with header " << L->getHeader()->getName() << "\n";
}
if (bounds.hasValue()) {
LoopBoundInfo* LB = bounds.getPointer();
//Values for ArgSym
//Argumnent Index will be -1 for loops with untracable argument
int argumentIndex = -1;
int byteOffset = 0;
int sizeInBytes = 4;
bool isInDirect = false;
//Values for LCE
float factor = 0;
float C = 0;
Value* I0 = LB->m_initVal;
Value* In = LB->m_finalVal;
Value* step = LB->m_stepVal;
if (LB->decreasingIdx) {
I0 = LB->m_finalVal;
In = LB->m_initVal;
}
if (IGC_IS_FLAG_ENABLED(EnableKernelCostDebug)) {
dbgs() << " init value: ";
I0->print(output);
dbgs() << "\n";
dbgs() << " end value: ";
In->print(output);
dbgs() << "\n";
dbgs() << " step value: ";
step->print(output);
dbgs() << "\n";
}
ConstantInt* addValue = nullptr;
ConstantInt* initialValue = dyn_cast<ConstantInt>(I0);
ConstantInt* stepInt = dyn_cast<ConstantInt>(step);
//get argument for end value if argument is tracable to argument list and update addValue if argument is pointer
const Argument* arg = getArgumentFromEndValue(In, &addValue);
bool hasCount = true;
//Check if argument is legal and initial value is constant
if (checkLegalArgument(arg) && initialValue && stepInt) {
//update argument symbol based on argument and addvalue
updateArgSym(arg, addValue, argumentIndex, byteOffset, sizeInBytes, isInDirect, *dl);
//update LCE factor based on step value
updateLCEfactor(stepInt, factor, LB);
//update LCE constant based on factor and initial value
updateLCEConstant(initialValue, C, factor, LB);
if (IGC_IS_FLAG_ENABLED(EnableKernelCostDebug)) {
dbgs() << "Argument symbol found with index " << argumentIndex << " isInDirect = " << isInDirect << "\n";
}
}
else {
//If loop bound is a constant
//loop bounds with constant value. End value and step bounded by the same variable
//for (size_t j = 0; j < sgSize * 16; j += sgSize)
hasCount = getConstantBoundLCE(In, step, C);
}
if (hasCount) {
collectCount->addLCE(argumentIndex, byteOffset, sizeInBytes,
isInDirect, factor, C);
} else {
collectCount->addLCE(-1, 0, 0, false, 1, 0);
}
}
}
|