1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMWarningsPush.hpp"
#include "llvm/Config/llvm-config.h"
#include <llvm/ADT/STLExtras.h>
#include <llvmWrapper/Analysis/InstructionSimplify.h>
#include <llvmWrapper/Analysis/MemoryLocation.h>
#include <llvmWrapper/Analysis/TargetLibraryInfo.h>
#include <llvm/Analysis/AliasAnalysis.h>
#include "llvm/Analysis/AliasSetTracker.h"
#include <llvm/Analysis/InstructionSimplify.h>
#include <llvm/Analysis/ScalarEvolution.h>
#include <llvm/Analysis/ScalarEvolutionExpressions.h>
#include <llvm/Analysis/ValueTracking.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/GetElementPtrTypeIterator.h>
#include <llvm/IR/GlobalAlias.h>
#include <llvmWrapper/IR/IRBuilder.h>
#include <llvm/Pass.h>
#include <llvmWrapper/Support/Alignment.h>
#include <llvmWrapper/IR/DerivedTypes.h>
#include <llvm/Support/Debug.h>
#include <llvm/Support/DebugCounter.h>
#include <llvm/Support/raw_ostream.h>
#include "llvm/Support/CommandLine.h"
#include <llvm/Transforms/Utils/Local.h>
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CISACodeGen/OpenCLKernelCodeGen.hpp"
#include "Compiler/CISACodeGen/SLMConstProp.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CISACodeGen/WIAnalysis.hpp"
#include "Compiler/InitializePasses.h"
#include "Compiler/CISACodeGen/MemOpt.h"
#include "Probe/Assertion.h"
#include <DebugInfo/DwarfDebug.cpp>
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
static cl::opt<bool> EnableRemoveRedBlockreads(
"remove-red-blockreads", cl::init(false), cl::Hidden,
cl::desc("Enable removal of redundant blockread instructions."));
DEBUG_COUNTER(MergeLoadCounter, "memopt-merge-load",
"Controls count of merged loads");
DEBUG_COUNTER(MergeStoreCounter, "memopt-merge-store",
"Controls count of merged stores");
namespace {
// This pass merge consecutive loads/stores within a BB when it's safe:
// - Two loads (one of them is denoted as the leading load if it happens
// before the other one in the program order) are safe to be merged, i.e.
// the non-leading load is merged into the leading load, iff there's no
// memory dependency between them which may results in different loading
// result.
// - Two stores (one of them is denoted as the tailing store if it happens
// after the other one in the program order) are safe to be merged, i.e.
// the non-tailing store is merged into the tailing one, iff there's no
// memory dependency between them which may results in different result.
//
class MemOpt : public FunctionPass {
const DataLayout* DL;
AliasAnalysis* AA;
ScalarEvolution* SE;
WIAnalysis* WI;
CodeGenContext* CGC;
TargetLibraryInfo* TLI;
bool AllowNegativeSymPtrsForLoad = false;
bool AllowVector8LoadStore = false;
// Map of profit vector lengths per scalar type. Each entry specifies the
// profit vector length of a given scalar type.
// NOTE: Prepare the profit vector lengths in the *DESCENDING* order.
typedef DenseMap<unsigned int, SmallVector<unsigned, 4> > ProfitVectorLengthsMap;
ProfitVectorLengthsMap ProfitVectorLengths;
// A list of memory references (within a BB) with the distance to the begining of the BB.
typedef std::vector<std::pair<Instruction*, unsigned> > MemRefListTy;
typedef std::vector<Instruction*> TrivialMemRefListTy;
public:
static char ID;
MemOpt(bool AllowNegativeSymPtrsForLoad = false, bool AllowVector8LoadStore = false) :
FunctionPass(ID), DL(nullptr), AA(nullptr), SE(nullptr), WI(nullptr),
CGC(nullptr), AllowNegativeSymPtrsForLoad(AllowNegativeSymPtrsForLoad),
AllowVector8LoadStore(AllowVector8LoadStore)
{
initializeMemOptPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function& F) override;
StringRef getPassName() const override { return "MemOpt"; }
private:
void getAnalysisUsage(AnalysisUsage& AU) const override {
AU.setPreservesCFG();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<WIAnalysis>();
}
void buildProfitVectorLengths(Function& F);
bool mergeLoad(LoadInst* LeadingLoad, MemRefListTy::iterator MI,
MemRefListTy& MemRefs, TrivialMemRefListTy& ToOpt);
bool mergeStore(StoreInst* LeadingStore, MemRefListTy::iterator MI,
MemRefListTy& MemRefs, TrivialMemRefListTy& ToOpt);
bool removeRedBlockRead(GenIntrinsicInst* LeadingLoad, MemRefListTy::iterator MI,
MemRefListTy& MemRefs, TrivialMemRefListTy& ToOpt, unsigned& SimdSize);
Optional<unsigned> chainedSelectAndPhis(Instruction* Inst, unsigned depth,
llvm::DenseMap<Instruction*, unsigned> &depthTracking);
void removeVectorBlockRead(Instruction* BlockReadToOptimize, Instruction* BlockReadToRemove,
Value* SgId, llvm::IRBuilder<>& Builder, unsigned& sg_size);
void removeScalarBlockRead(Instruction* BlockReadToOptimize, Instruction* BlockReadToRemove,
Value* SgId, llvm::IRBuilder<>& Builder);
Value* getShuffle(Value* ShflId, Instruction* BlockReadToOptimize,
Value* SgId, llvm::IRBuilder<>& Builder, unsigned& ToOptSize);
unsigned getNumElements(Type* Ty) const {
return Ty->isVectorTy() ? (unsigned)cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements() : 1;
}
Type* getVectorElementType(Type* Ty) const {
return isa<VectorType>(Ty) ? cast<VectorType>(Ty)->getElementType() : Ty;
}
MemoryLocation getLocation(Instruction* I) const {
if (LoadInst * LI = dyn_cast<LoadInst>(I))
return MemoryLocation::get(LI);
if (StoreInst * SI = dyn_cast<StoreInst>(I))
return MemoryLocation::get(SI);
if (isa<LdRawIntrinsic>(I))
return llvm::MemoryLocation::getForArgument(llvm::cast<llvm::CallInst>(I), 0, TLI);
if (isa<StoreRawIntrinsic>(I))
return llvm::MemoryLocation::getForArgument(llvm::cast<llvm::CallInst>(I), 0, TLI);
if (GenIntrinsicInst* GInst = dyn_cast<GenIntrinsicInst>(I)) {
if (GInst->getIntrinsicID() == GenISAIntrinsic::GenISA_simdBlockRead) {
return llvm::MemoryLocation::getForArgument(llvm::cast<llvm::CallInst>(I), 0, TLI);
}
}
// TODO: Do coarse-grained thing so far. Need better checking for
// non load or store instructions which may read/write memory.
return MemoryLocation();
}
bool hasSameSize(Type* A, Type* B) const {
// Shortcut if A is equal to B.
if (A == B)
return true;
return DL->getTypeStoreSize(A) == DL->getTypeStoreSize(B);
}
Value* createBitOrPointerCast(Value* V, Type* DestTy,
IRBuilder<>& Builder) const {
if (V->getType() == DestTy)
return V;
if (V->getType()->isPointerTy() && DestTy->isPointerTy()) {
PointerType* SrcPtrTy = cast<PointerType>(V->getType());
PointerType* DstPtrTy = cast<PointerType>(DestTy);
if (SrcPtrTy->getPointerAddressSpace() !=
DstPtrTy->getPointerAddressSpace())
return Builder.CreateAddrSpaceCast(V, DestTy);
}
if (V->getType()->isPointerTy()) {
if (DestTy->isIntegerTy()) {
return Builder.CreatePtrToInt(V, DestTy);
}
else if (DestTy->isFloatingPointTy()) {
uint32_t Size = (uint32_t)DestTy->getPrimitiveSizeInBits();
Value* Cast = Builder.CreatePtrToInt(
V, Builder.getIntNTy(Size));
return Builder.CreateBitCast(Cast, DestTy);
}
}
if (DestTy->isPointerTy()) {
if (V->getType()->isIntegerTy()) {
return Builder.CreateIntToPtr(V, DestTy);
}
else if (V->getType()->isFloatingPointTy()) {
uint32_t Size = (uint32_t)V->getType()->getPrimitiveSizeInBits();
Value* Cast = Builder.CreateBitCast(
V, Builder.getIntNTy(Size));
return Builder.CreateIntToPtr(Cast, DestTy);
}
}
return Builder.CreateBitCast(V, DestTy);
}
bool isSafeToMergeLoad(const LoadInst* Ld,
const SmallVectorImpl<Instruction*>& checkList) const;
bool isSafeToMergeStores(
const SmallVectorImpl<std::tuple<StoreInst*, int64_t, MemRefListTy::iterator>>& Stores,
const SmallVectorImpl<Instruction*>& checkList) const;
bool shouldSkip(const Value* Ptr) const {
PointerType* PtrTy = cast<PointerType>(Ptr->getType());
unsigned AS = PtrTy->getPointerAddressSpace();
if (PtrTy->getPointerAddressSpace() != ADDRESS_SPACE_PRIVATE) {
if (CGC->type != ShaderType::OPENCL_SHADER) {
// For non-OpenCL shader, skip constant buffer accesses.
bool DirectIndex = false;
unsigned BufID = 0;
BufferType BufTy = DecodeAS4GFXResource(AS, DirectIndex, BufID);
if (BufTy == CONSTANT_BUFFER &&
UsesTypedConstantBuffer(CGC, BufTy))
return true;
}
return false;
}
return false;
}
/// Skip irrelevant instructions.
bool shouldSkip(const Instruction* I) const {
if (!I->mayReadOrWriteMemory())
return true;
if (auto GInst = dyn_cast<GenIntrinsicInst>(I)) {
if (GInst->getIntrinsicID() == GenISAIntrinsic::GenISA_simdBlockRead) {
return shouldSkip(I->getOperand(0));
}
}
if (auto LD = dyn_cast<LoadInst>(I))
return shouldSkip(LD->getPointerOperand());
if (auto ST = dyn_cast<StoreInst>(I))
return shouldSkip(ST->getPointerOperand());
return false;
}
template <typename AccessInstruction>
bool checkAlignmentBeforeMerge(const AccessInstruction* inst,
SmallVector<std::tuple<AccessInstruction*, int64_t, MemRefListTy::iterator>, 8> & AccessIntrs,
unsigned& NumElts)
{
auto alignment = IGCLLVM::getAlignmentValue(inst);
if (alignment == 0)
{
// SROA LLVM pass may sometimes set a load/store alignment to 0. It happens when
// deduced alignment (based on GEP instructions) matches an alignment specified
// in datalayout for a specific type. It can be problematic as MemOpt merging
// logic is implemented in a way that a product of merging inherits an alignment
// from the leading load/store. It results in creating memory instruction with
// different type, without alignment set, therefore the information about the
// correct alignment gets lost.
CGC->EmitWarning("MemOpt expects alignment to be always explicitly set for the leading instruction!");
}
if (alignment < 4 && !WI->isUniform(inst))
{
llvm::Type* dataType = isa<LoadInst>(inst) ? inst->getType() : inst->getOperand(0)->getType();
unsigned scalarTypeSizeInBytes = unsigned(DL->getTypeSizeInBits(dataType->getScalarType()) / 8);
// Need the first offset value (not necessarily zero)
int64_t firstOffset = std::get<1>(AccessIntrs[0]);
int64_t mergedSize = 0;
for (auto rit = AccessIntrs.rbegin(),
rie = AccessIntrs.rend(); rit != rie; ++rit)
{
int64_t accessSize = 0;
int64_t cur_offset = std::get<1>(*rit);
auto acessInst = std::get<0>(*rit);
if (isa<LoadInst>(acessInst))
accessSize = int64_t(DL->getTypeSizeInBits(acessInst->getType())) / 8;
else
accessSize = int64_t(DL->getTypeSizeInBits(acessInst->getOperand(0)->getType())) / 8;
mergedSize = cur_offset - firstOffset + accessSize;
// limit the size of merge when alignment < 4
if (mergedSize > 8)
AccessIntrs.pop_back();
else
break;
}
if (AccessIntrs.size() < 2)
return false;
for (auto rit = AccessIntrs.rbegin(),
rie = AccessIntrs.rend(); rit != rie; ++rit)
{
if (IGCLLVM::getAlignmentValue(std::get<0>(*rit)) >= 4)
return false;
}
// Need to subtract the last offset by the first offset and add one to
// get the new size of the vector
NumElts = unsigned(mergedSize / scalarTypeSizeInBytes);
}
return true;
}
// This is for enabling the mergeload improvement (comparing GEP's last
// index instead) as it requires to turn off GEP canonicalization.
bool EnableCanonicalizeGEP() const {
IGC_ASSERT(CGC != nullptr);
// The new mergeload improvement is intended for PVC+ for now.
if (CGC->platform.getPlatformInfo().eProductFamily != IGFX_PVC &&
!CGC->platform.isProductChildOf(IGFX_PVC)) {
// No mergeload improvement
return true;
}
switch (IGC_GET_FLAG_VALUE(MemOptGEPCanon)) {
case 1:
return false;
case 2:
{
if (CGC->type == ShaderType::OPENCL_SHADER)
return false;
break;
}
default:
break;
}
return true;
}
/// Canonicalize the calculation of 64-bit pointer by performing the
/// following transformations to help SCEV to identify the constant offset
/// between pointers.
///
/// (sext (add.nsw LHS RHS)) => (add.nsw (sext LHS) (sext RHS))
/// (zext (add.nuw LHS RHS)) => (add.nuw (zext LHS) (zext RHS))
///
/// For SLM (and potentially private) memory, we could ignore `nsw`/`nuw`
/// as there are only 32 significant bits.
bool canonicalizeGEP64(Instruction*) const;
/// Optimize the calculation of 64-bit pointer by performing the following
/// transformations to reduce instruction strength.
///
/// (add.nsw (sext LHS) (sext RHS)) => (sext (add.nsw LHS RHS))
/// (add.nuw (zext LHS) (zext RHS)) => (zext (add.nuw LHS RHS))
///
/// In fact, this's the reverse operation of 64-bit pointer
/// canonicalization, which helps SCEV analysis but increases instruction
/// strength on 64-bit integer operations.
bool optimizeGEP64(Instruction*) const;
};
template<int M>
struct less_tuple {
template <typename T> bool operator()(const T& LHS, const T& RHS) const {
return std::get<M>(LHS) < std::get<M>(RHS);
}
};
// SymbolicPtr represents how a pointer is calculated from the following
// equation:
//
// Ptr := BasePtr + \sum_i Scale_i * Index_i + Offset
//
// where Scale_i and Offset are constants.
//
enum ExtensionKind {
EK_NotExtended,
EK_SignExt,
EK_ZeroExt,
};
typedef PointerIntPair<Value*, 2, ExtensionKind> SymbolicIndex;
struct Term {
SymbolicIndex Idx;
int64_t Scale;
bool operator==(const Term& Other) const {
return Idx == Other.Idx && Scale == Other.Scale;
}
bool operator!=(const Term& Other) const {
return !operator==(Other);
}
};
struct SymbolicPointer {
const Value* BasePtr;
int64_t Offset;
SmallVector<Term, 8> Terms;
// getConstantOffset - Return the constant offset between two memory
// locations.
bool getConstantOffset(const SymbolicPointer& Other, int64_t& Off) {
if (!BasePtr || !Other.BasePtr)
return true;
if (BasePtr != Other.BasePtr &&
(!isa<ConstantPointerNull>(BasePtr) ||
!isa<ConstantPointerNull>(Other.BasePtr)))
return true;
if (Terms.size() != Other.Terms.size())
return true;
// Check each term has occurrence in Other. Since, they have the same
// number of terms, it's safe to say they are equal if all terms are
// found in Other.
// TODO: Replace this check with a non-quadratic one.
for (unsigned i = 0, e = Terms.size(); i != e; ++i) {
bool Found = false;
for (unsigned j = 0, f = Other.Terms.size(); !Found && j != f; ++j) {
if (Terms[i] == Other.Terms[j])
Found = true;
}
if (!Found)
return true;
}
Off = Offset - Other.Offset;
return false;
}
static Value* getLinearExpression(Value* Val, APInt& Scale, APInt& Offset,
ExtensionKind& Extension, unsigned Depth,
const DataLayout* DL);
static bool decomposePointer(const Value* Ptr, SymbolicPointer& SymPtr,
CodeGenContext* DL);
static const unsigned MaxLookupSearchDepth = 6;
};
}
FunctionPass* IGC::createMemOptPass(bool AllowNegativeSymPtrsForLoad, bool AllowVector8LoadStore) {
return new MemOpt(AllowNegativeSymPtrsForLoad, AllowVector8LoadStore);
}
#define PASS_FLAG "igc-memopt"
#define PASS_DESC "IGC Memory Optimization"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(MemOpt, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_END(MemOpt, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
char MemOpt::ID = 0;
void MemOpt::buildProfitVectorLengths(Function& F) {
ProfitVectorLengths.clear();
if (AllowVector8LoadStore)
{
ProfitVectorLengths[64].push_back(4);
ProfitVectorLengths[32].push_back(8);
}
// 64-bit integer
ProfitVectorLengths[64].push_back(2);
// 32-bit integer and Float
ProfitVectorLengths[32].push_back(4);
ProfitVectorLengths[32].push_back(3);
ProfitVectorLengths[32].push_back(2);
// 16-bit integer and Hald
ProfitVectorLengths[16].push_back(8);
ProfitVectorLengths[16].push_back(6);
ProfitVectorLengths[16].push_back(4);
ProfitVectorLengths[16].push_back(2);
// 8-bit integer
ProfitVectorLengths[8].push_back(16);
ProfitVectorLengths[8].push_back(12);
ProfitVectorLengths[8].push_back(8);
ProfitVectorLengths[8].push_back(4);
ProfitVectorLengths[8].push_back(2);
}
bool MemOpt::runOnFunction(Function& F) {
// Skip non-kernel function.
MetaDataUtils* MDU = nullptr;
MDU = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
auto FII = MDU->findFunctionsInfoItem(&F);
if (FII == MDU->end_FunctionsInfo())
return false;
DL = &F.getParent()->getDataLayout();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
WI = &getAnalysis<WIAnalysis>();
CGC = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
if (ProfitVectorLengths.empty())
buildProfitVectorLengths(F);
// If LdStCombining is on, no need to do memopt.
const bool DisableMergeStore =
(doLdStCombine(CGC) && IGC_IS_FLAG_ENABLED(DisableMergeStore));
bool Changed = false;
IGC::IGCMD::FunctionInfoMetaDataHandle funcInfoMD = MDU->getFunctionsInfoItem(&F);
unsigned SimdSize = funcInfoMD->getSubGroupSize()->getSIMDSize();
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
// Find all instructions with memory reference. Remember the distance one
// by one.
BasicBlock* BB = &*BBI;
MemRefListTy MemRefs;
TrivialMemRefListTy MemRefsToOptimize;
unsigned Distance = 0;
for (auto BI = BB->begin(), BE = BB->end(); BI != BE; ++BI, ++Distance) {
Instruction* I = &(*BI);
// Make sure we don't count debug info intrinsincs
// This is required to keep debug and non-debug optimizations identical
if (isDbgIntrinsic(I)) {
Distance--;
continue;
}
// Skip irrelevant instructions.
if (shouldSkip(I))
continue;
MemRefs.push_back(std::make_pair(I, Distance));
}
// Skip BB with no more than 2 loads/stores.
if (MemRefs.size() < 2)
continue;
if (EnableCanonicalizeGEP()) {
// Canonicalize 64-bit GEP to help SCEV find constant offset by
// distributing `zext`/`sext` over safe expressions.
for (auto& M : MemRefs)
Changed |= canonicalizeGEP64(M.first);
}
for (auto MI = MemRefs.begin(), ME = MemRefs.end(); MI != ME; ++MI) {
Instruction* I = MI->first;
// Skip already merged one.
if (!I)
continue;
if (LoadInst * LI = dyn_cast<LoadInst>(I))
Changed |= mergeLoad(LI, MI, MemRefs, MemRefsToOptimize);
else if (StoreInst* SI = dyn_cast<StoreInst>(I)) {
if (!DisableMergeStore)
Changed |= mergeStore(SI, MI, MemRefs, MemRefsToOptimize);
}
else if (EnableRemoveRedBlockreads) {
if (GenIntrinsicInst* GInst = dyn_cast<GenIntrinsicInst>(I)) {
if (GInst->getIntrinsicID() == GenISAIntrinsic::GenISA_simdBlockRead) {
Changed |= removeRedBlockRead(GInst, MI, MemRefs, MemRefsToOptimize, SimdSize);
}
}
}
}
if (EnableCanonicalizeGEP()) {
// Optimize 64-bit GEP to reduce strength by factoring out `zext`/`sext`
// over safe expressions.
for (auto I : MemRefsToOptimize)
Changed |= optimizeGEP64(I);
}
}
DL = nullptr;
AA = nullptr;
SE = nullptr;
return Changed;
}
//This function removes redundant blockread instructions
//if they read from addresses with the same base.
//It replaces redundant blockread with a set of shuffle instructions.
//
//For example,
//
//before:
// %0 = inttoptr i64 %i64input to i32 addrspace(1)*
// %1 = inttoptr i64 %i64input to i8 addrspace(1)*
// %2 = call i32 @llvm.genx.GenISA.simdBlockRead.i32.p1i32(i32 addrspace(1)* %0)
// %3 = call i8 @llvm.genx.GenISA.simdBlockRead.i8.p1i8(i8 addrspace(1)* %1)
// store i32 %2, i32 addrspace(1)* %i32addr, align 4
// store i8 %3, i8 addrspace(1)* %i8addr, align 1
//
//after:
// %0 = inttoptr i64 %i64input to i32 addrspace(1)*
// %1 = inttoptr i64 %i64input to i8 addrspace(1)*
// %2 = call i32 @llvm.genx.GenISA.simdBlockRead.i32.p1i32(i32 addrspace(1)* %0)
// %3 = call i16 @llvm.genx.GenISA.simdLaneId()
// %4 = zext i16 %3 to i32
// %5 = lshr i32 %4, 2
// %6 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %2, i32 %5, i32 0)
// %7 = and i32 %4, 3
// %8 = mul i32 %7, 8
// %9 = lshr i32 %6, %8
// %10 = trunc i32 %9 to i8
// store i32 %2, i32 addrspace(1)* %i32addr, align 4
// store i8 %10, i8 addrspace(1)* %i8addr, align 1
bool MemOpt::removeRedBlockRead(GenIntrinsicInst* LeadingBlockRead,
MemRefListTy::iterator aMI, MemRefListTy& MemRefs,
TrivialMemRefListTy& ToOpt, unsigned& sg_size)
{
MemRefListTy::iterator MI = aMI;
const unsigned Limit = IGC_GET_FLAG_VALUE(MemOptWindowSize);
const unsigned windowEnd = Limit + MI->second;
auto ME = MemRefs.end();
MemoryLocation LeadingBlockReadMemLoc = getLocation(cast<Instruction>(LeadingBlockRead));
Type* LeadingBlockReadType = LeadingBlockRead->getType();
Value* LeadingBlockReadBase = LeadingBlockRead->getOperand(0)->stripPointerCasts();
Instruction* BlockReadToOptimize = LeadingBlockRead;
MemRefListTy::iterator MIToOpt = aMI;
llvm::SmallVector<std::tuple<Instruction*, MemRefListTy::iterator>, 8> BlockReadToRemove;
uint64_t MaxBlockReadSize = LeadingBlockReadType->getPrimitiveSizeInBits();
//Go through MemRefs to collect blockreads that can be removed.
for (++MI; MI != ME && MI->second <= windowEnd; ++MI) {
Instruction* NextMemRef = MI->first;
if (!NextMemRef) {
continue;
}
if (GenIntrinsicInst* GInst = dyn_cast<GenIntrinsicInst>(NextMemRef)) {
if (GInst->getIntrinsicID() == GenISAIntrinsic::GenISA_simdBlockRead) {
Type* GInstType = GInst->getType();
uint64_t NextSize = GInstType->getPrimitiveSizeInBits();
Value* NextBlockReadBase = NextMemRef->getOperand(0)->stripPointerCasts();
if (isa<IntToPtrInst>(LeadingBlockReadBase) && isa<IntToPtrInst>(NextBlockReadBase)) {
LeadingBlockReadBase = cast<IntToPtrInst>(LeadingBlockReadBase)->getOperand(0);
NextBlockReadBase = cast<IntToPtrInst>(NextBlockReadBase)->getOperand(0);
}
if (LeadingBlockReadBase == NextBlockReadBase) {
if (NextSize > MaxBlockReadSize) {
BlockReadToRemove.push_back(std::make_tuple(BlockReadToOptimize, MIToOpt));
MaxBlockReadSize = NextSize;
BlockReadToOptimize = NextMemRef;
MIToOpt = MI;
}
else {
BlockReadToRemove.push_back(std::make_tuple(NextMemRef, MI));
}
}
}
}
else if (NextMemRef->mayWriteToMemory()) {
MemoryLocation WriteInstrMemLoc = getLocation(NextMemRef);
if (!WriteInstrMemLoc.Ptr || !LeadingBlockReadMemLoc.Ptr || AA->alias(WriteInstrMemLoc, LeadingBlockReadMemLoc)) {
break;
}
}
}
if (BlockReadToRemove.size() == 0) {
return false;
}
IRBuilder<> Builder(LeadingBlockRead);
//Raise the blockread, which we will not remove, in place of the leading blockread.
if (BlockReadToOptimize != LeadingBlockRead) {
Type* ArgType = BlockReadToOptimize->getOperand(0)->getType();
BlockReadToOptimize->moveBefore(LeadingBlockRead);
Builder.SetInsertPoint(BlockReadToOptimize);
Value* BitCast = Builder.CreateBitCast(LeadingBlockRead->getOperand(0), ArgType);
BlockReadToOptimize->setOperand(0, BitCast);
aMI->first = BlockReadToOptimize;
}
Builder.SetInsertPoint(BlockReadToOptimize->getNextNonDebugInstruction());
Value* subgroupLocalInvocationId = nullptr;
//Go through the collected blockreads to replace them with shuffles
for (const auto& ITuple : BlockReadToRemove) {
Instruction* I = std::get<0>(ITuple);
if (BlockReadToOptimize != I) {
if (!subgroupLocalInvocationId) {
Function* simdLaneIdIntrinsic = GenISAIntrinsic::getDeclaration(
BlockReadToOptimize->getModule(),
GenISAIntrinsic::GenISA_simdLaneId);
subgroupLocalInvocationId = Builder.CreateZExtOrTrunc(
Builder.CreateCall(simdLaneIdIntrinsic),
Builder.getInt32Ty());
}
//Case when one of blockreads is vector
if (I->getType()->isVectorTy() || BlockReadToOptimize->getType()->isVectorTy()) {
MemOpt::removeVectorBlockRead(BlockReadToOptimize, I, subgroupLocalInvocationId, Builder, sg_size);
} //Case when blockreads are scalars
else {
MemOpt::removeScalarBlockRead(BlockReadToOptimize, I, subgroupLocalInvocationId, Builder);
}
std::get<1>(ITuple)->first = nullptr;
I->eraseFromParent();
Builder.SetInsertPoint(BlockReadToOptimize->getNextNonDebugInstruction());
}
}
aMI->first = BlockReadToOptimize;
return true;
}
//Removes redundant blockread if both blockreads are scalar.
void MemOpt::removeScalarBlockRead(Instruction* BlockReadToOptimize,
Instruction* BlockReadToRemove, Value* SgId,
llvm::IRBuilder<>& Builder)
{
Type* BlockReadToOptType = BlockReadToOptimize->getType();
unsigned ToOptSize = (unsigned)(BlockReadToOptType->getPrimitiveSizeInBits());
Type* BlockReadToRemoveType = BlockReadToRemove->getType();
int rat = (int)(ToOptSize / (2 * BlockReadToRemoveType->getPrimitiveSizeInBits()));
Value* LShr = Builder.CreateLShr(SgId, Builder.getInt32(rat));
Value* shuffle = getShuffle(LShr, BlockReadToOptimize, SgId, Builder, ToOptSize);
Value* and_instr = Builder.CreateAnd(SgId, Builder.getInt32(rat * 2 - 1));
Value* shift = Builder.CreateMul(and_instr, Builder.getInt32((int)(BlockReadToRemoveType->getPrimitiveSizeInBits())));
Value* extr_elem = Builder.CreateLShr(shuffle, Builder.CreateZExtOrTrunc(shift, BlockReadToOptType));
Value* TypeConvInstr = Builder.CreateTrunc(extr_elem, cast<Type>(BlockReadToRemoveType));
BlockReadToRemove->replaceAllUsesWith(TypeConvInstr);
}
//Removes redundant blockreads if one of the pair is a vector blockread.
void MemOpt::removeVectorBlockRead(Instruction* BlockReadToOptimize,
Instruction* BlockReadToRemove, Value* SgId,
llvm::IRBuilder<>& Builder, unsigned& sg_size)
{
Type* BlockReadToOptType = BlockReadToOptimize->getType();
Type* BlockReadToRemoveType = BlockReadToRemove->getType();
unsigned ToOptSize = BlockReadToOptType->getScalarSizeInBits();
if (BlockReadToOptType->getScalarSizeInBits() < BlockReadToRemoveType->getScalarSizeInBits()) {
unsigned step = BlockReadToRemoveType->getScalarSizeInBits() / BlockReadToOptType->getScalarSizeInBits();
unsigned ToRemoveNumElem = getNumElements(BlockReadToRemoveType);
Type* ElemType = getVectorElementType(BlockReadToRemoveType);
Function* shufflefn = GenISAIntrinsic::getDeclaration(
BlockReadToOptimize->getModule(),
GenISAIntrinsic::GenISA_WaveShuffleIndex,
getVectorElementType(BlockReadToOptType));
unsigned LimitElem = step * ToRemoveNumElem;
std::vector<Instruction*> ExtractElemInstrVector;
//Extracting elements from BlockReadToOptimize to use them in shuffles
for (unsigned i = 0; i < LimitElem; i++) {
Instruction* ExtrElemInstr = cast<Instruction>(Builder.CreateExtractElement(BlockReadToOptimize, Builder.getInt32(i)));
ExtractElemInstrVector.push_back(ExtrElemInstr);
}
Type* NewType = VectorType::get(getVectorElementType(BlockReadToOptType), LimitElem * sg_size, false);
std::vector<Instruction*> ShuffleInstrVector;
Value* CollectedData = nullptr;
//Generating set of shuffles and collecting them in vector
for (unsigned index = 0; index < LimitElem; index++) {
for (unsigned id = 0; id < sg_size; id++) {
SmallVector<Value*, 3> Args;
Args.push_back(cast<Value>(ExtractElemInstrVector[index]));
Args.push_back(Builder.getInt32(id));
Args.push_back(Builder.getInt32(0));
if (index == 0 && id == 0) {
Value* ShuffleInstr = Builder.CreateCall(shufflefn, Args);
Value* InsertIndex = cast<Value>(Builder.getInt64(0));
CollectedData = Builder.CreateInsertElement(UndefValue::get(NewType), ShuffleInstr, InsertIndex);
}
else {
Value* ShuffleInstr = Builder.CreateCall(shufflefn, Args);
Value* InsertIndex = cast<Value>(Builder.getInt64(id + index * sg_size));
CollectedData = Builder.CreateInsertElement(CollectedData, ShuffleInstr, InsertIndex);
}
}
}
Value* offset = Builder.CreateMul(SgId, Builder.getInt32(step));
Type* TypeVectForBitCast = VectorType::get(getVectorElementType(BlockReadToOptType), step, false);
Value* ResVect = nullptr;
//Getting the result of a blockread that has been deleted
for (unsigned k = 0; k < ToRemoveNumElem; k++) {
Value* VectForBitCast = nullptr;
Value* Index = Builder.CreateAdd(offset, Builder.getInt32(k * sg_size * step));
for (unsigned i = 0; i < step; i++) {
Value* AddInstr = Builder.CreateAdd(Index, Builder.getInt32(i));
Value* extr_elem = cast<Instruction>(Builder.CreateExtractElement(CollectedData, AddInstr));
if (i == 0) {
VectForBitCast = Builder.CreateInsertElement(UndefValue::get(TypeVectForBitCast), extr_elem, cast<Value>(Builder.getInt64(0)));
}
else {
VectForBitCast = Builder.CreateInsertElement(VectForBitCast, extr_elem, cast<Value>(Builder.getInt64(i)));
}
}
Value* BitCastInstr = Builder.CreateBitCast(VectForBitCast, ElemType);
if (BlockReadToRemoveType->isVectorTy()) {
if (k == 0) {
ResVect = Builder.CreateInsertElement(UndefValue::get(BlockReadToRemoveType), BitCastInstr, cast<Value>(Builder.getInt64(0)));
}
else {
ResVect = Builder.CreateInsertElement(ResVect, BitCastInstr, cast<Value>(Builder.getInt64(k)));
}
}
else {
ResVect = BitCastInstr;
}
}
BlockReadToRemove->replaceAllUsesWith(ResVect);
}
else if (BlockReadToOptType->getScalarSizeInBits() > BlockReadToRemoveType->getScalarSizeInBits()) {
unsigned step = BlockReadToOptType->getScalarSizeInBits() / BlockReadToRemoveType->getScalarSizeInBits();
unsigned ToRemoveNumElem = getNumElements(BlockReadToRemoveType);
Type* IElemType = getVectorElementType(BlockReadToRemoveType);
unsigned tmp = step;
int pw = 0;
while (tmp >>= 1) ++pw;
Value* SgidDivStep = Builder.CreateLShr(SgId, Builder.getInt32(pw));
Value* SimdDivStep = Builder.CreateLShr(Builder.getInt32(sg_size), Builder.getInt32(pw));
unsigned LimitElem = ToRemoveNumElem / step;
if (ToRemoveNumElem % step) {
LimitElem++;
}
std::vector<Instruction*> ExtractElemInstrVector;
//Extracting elements from BlockReadToOptimize to use them in shuffles
for (unsigned i = 0; i < LimitElem; i++) {
if (BlockReadToOptType->isVectorTy()) {
Instruction* ExtrElemInstr = cast<Instruction>(Builder.CreateExtractElement(BlockReadToOptimize, Builder.getInt32(i)));
ExtractElemInstrVector.push_back(ExtrElemInstr);
}
else {
ExtractElemInstrVector.push_back(BlockReadToOptimize);
}
}
std::vector<Instruction*> ShuffleInstrVector;
unsigned LimitId = step;
if (ToRemoveNumElem < step) {
LimitId = ToRemoveNumElem;
}
//Generating set of shuffles and collecting them in vector
for (unsigned k = 0; k < LimitElem; k++) {
for (unsigned i = 0; i < LimitId; i++) {
Value* SgIdShfl = Builder.CreateAdd(SgidDivStep, Builder.CreateMul(SimdDivStep, Builder.getInt32(i)));
Value* shuffle = getShuffle(SgIdShfl, ExtractElemInstrVector[k], SgId, Builder, ToOptSize);
ShuffleInstrVector.push_back(cast<Instruction>(shuffle));
}
}
unsigned ShufflesNum = LimitElem * LimitId;
Type* TypeVectForBitCast = VectorType::get(IElemType, step, false);
Value* ResVect = nullptr;
//Getting the result of a blockread that has been deleted
for (unsigned ShfflCnt = 0; ShfflCnt < ShufflesNum; ShfflCnt++) {
Value* VectBitcast = Builder.CreateBitCast(ShuffleInstrVector[ShfflCnt], TypeVectForBitCast);
Value* Index = Builder.CreateAnd(SgId, Builder.CreateSub(Builder.getInt32(step), Builder.getInt32(1)));
Value* Elem = Builder.CreateExtractElement(VectBitcast, Index);
if (BlockReadToRemoveType->isVectorTy()) {
if (ShfflCnt == 0) {
ResVect = Builder.CreateInsertElement(UndefValue::get(BlockReadToRemoveType), Elem, Builder.getInt32(0));
}
else {
ResVect = Builder.CreateInsertElement(ResVect, Elem, Builder.getInt32(ShfflCnt));
}
}
else {
ResVect = Elem;
}
}
BlockReadToRemove->replaceAllUsesWith(ResVect);
}
else {
BlockReadToRemove->replaceAllUsesWith(BlockReadToOptimize);
}
}
//This function return shuffle instruction(if BlockedToOptimize size < 64)
//or it returns value which is concatenation of two shuffle instructions.
Value* MemOpt::getShuffle(Value* ShflId,
Instruction* BlockReadToOptimize,
Value* SgId, llvm::IRBuilder<>&Builder,
unsigned& ToOptSize)
{
Value* shuffle = nullptr;
Type* BlockReadToOptType = BlockReadToOptimize->getType();
if (ToOptSize < 64) {
Type* shufflefntype = getVectorElementType(BlockReadToOptType);
Function* shufflefn = GenISAIntrinsic::getDeclaration(
BlockReadToOptimize->getModule(),
GenISAIntrinsic::GenISA_WaveShuffleIndex,
shufflefntype);
SmallVector<Value*, 3> Args;
Args.push_back(cast<Value>(BlockReadToOptimize));
Args.push_back(ShflId);
Args.push_back(Builder.getInt32(0));
shuffle = Builder.CreateCall(shufflefn, Args);
}
else if (ToOptSize == 64) {
Type* NewType = VectorType::get(Builder.getInt32Ty(), 2, false);
Instruction* BitCastInstr = cast<Instruction>(Builder.CreateBitCast(BlockReadToOptimize, cast<Type>(NewType)));
Instruction* ExtractElemInstr0 = cast<Instruction>(Builder.CreateExtractElement(BitCastInstr, Builder.getInt32(0)));
Instruction* ExtractElemInstr1 = cast<Instruction>(Builder.CreateExtractElement(BitCastInstr, Builder.getInt32(1)));
Function* shufflefn = GenISAIntrinsic::getDeclaration(
BlockReadToOptimize->getModule(),
GenISAIntrinsic::GenISA_WaveShuffleIndex,
Builder.getInt32Ty());
SmallVector<Value*, 3> Args0;
Args0.push_back(cast<Value>(ExtractElemInstr0));
Args0.push_back(ShflId);
Args0.push_back(Builder.getInt32(0));
Value* shuffle0 = Builder.CreateCall(shufflefn, Args0);
SmallVector<Value*, 3> Args1;
Args1.push_back(cast<Value>(ExtractElemInstr1));
Args1.push_back(ShflId);
Args1.push_back(Builder.getInt32(0));
Value* shuffle1 = Builder.CreateCall(shufflefn, Args1);
Value* ins_elem0 = Builder.CreateInsertElement(UndefValue::get(NewType), shuffle0, cast<Value>(Builder.getInt64(0)));
Value* ins_elem1 = Builder.CreateInsertElement(ins_elem0, shuffle1, Builder.getInt64(1));
shuffle = Builder.CreateBitCast(ins_elem1, BlockReadToOptType);
}
return shuffle;
}
// The following function "chainedSelectAndPhis" is designed to avoid going into SCEV in special circumstances
// when the shader has a large set of chained phi nodes and selects. One of the downsides of SCEV is it is a
// recursive approach and can cause a stack overflow when tracing back instructions.
Optional<unsigned> MemOpt::chainedSelectAndPhis(Instruction* Inst , unsigned depth,
llvm::DenseMap<Instruction*, unsigned> &depthTracking)
{
//Max depth set to 300
if (depth >= 300)
{
return None;
}
if (auto I = depthTracking.find(Inst); I != depthTracking.end())
{
if ((depth + I->second) >= 300)
return None;
return I->second;
}
unsigned MaxRemDepth = 0;
for (auto& operand : Inst->operands())
{
if (auto* op_inst = dyn_cast<Instruction>(operand))
{
if (isa<PHINode>(op_inst) || isa<SelectInst>(op_inst))
{
Optional<unsigned> RemDepth = chainedSelectAndPhis(op_inst, depth + 1, depthTracking);
if (!RemDepth)
return None;
MaxRemDepth = std::max(MaxRemDepth, *RemDepth + 1);
}
}
}
depthTracking[Inst] = MaxRemDepth;
return MaxRemDepth;
}
bool MemOpt::mergeLoad(LoadInst* LeadingLoad,
MemRefListTy::iterator aMI, MemRefListTy& MemRefs,
TrivialMemRefListTy& ToOpt)
{
MemRefListTy::iterator MI = aMI;
// For cases like the following:
// ix0 = sext i32 a0 to i64
// addr0 = gep base, i64 ix0
//
// ix1 = sext i32 a1 to i64
// addr1 = gep base, i64 ix1
// Since SCEV does not do well with sext/zext/longer expression on
// comparing addr0 with addr1, this function compares a0 with a1 instead.
// In doing so, it skip sext/zext and only on the last index (thus shorter
// expression). The condition for doing so is that if all indices are
// identical except the last one.
//
// Return value: byte offset to LeadLastIdx. Return 0 if unknown.
auto getGEPIdxDiffIfAppliable = [this](const SCEV*& LeadLastIdx,
LoadInst* LeadLd, LoadInst* NextLd)
{
// Only handle single-index GEP for now.
auto LeadGEP = dyn_cast<GetElementPtrInst>(LeadLd->getPointerOperand());
auto NextGEP = dyn_cast<GetElementPtrInst>(NextLd->getPointerOperand());
if (LeadGEP && NextGEP &&
LeadGEP->getPointerOperand() == NextGEP->getPointerOperand() &&
LeadGEP->getNumIndices() == NextGEP->getNumIndices() &&
LeadLd->getType() == NextLd->getType() &&
LeadGEP->getNumIndices() > 0) {
const int N = LeadGEP->getNumIndices();
for (int i = 1; i < N; ++i) {
// GEP 0:base, 1:1st_index, 2:2nd_index, ..., N:Nth_index
Value* ix0 = LeadGEP->getOperand(i);
Value* ix1 = NextGEP->getOperand(i);
if (ix0 == ix1)
continue;
ConstantInt* Cix0 = dyn_cast<ConstantInt>(ix0);
ConstantInt* Cix1 = dyn_cast<ConstantInt>(ix1);
if (Cix0 && Cix1 && Cix0->getSExtValue() == Cix1->getSExtValue())
continue;
// don't handle, skip
return (int64_t)0;
}
// Make sure the last index is to the array (indexed type is array
// element type).
// For N = 1, the type is an implicit array of the pointee type
// of GEP's pointer operand. But N > 1, need to check as the last
// index might be to a struct.
if (N > 1) {
// get type of the second index from the last.
SmallVector<Value*, 4> Indices (LeadGEP->idx_begin(), std::prev(LeadGEP->idx_end()));
Type* srcEltTy = LeadGEP->getSourceElementType();
Type* Idx2Ty = GetElementPtrInst::getIndexedType(srcEltTy, Indices);
if (!Idx2Ty || !Idx2Ty->isArrayTy())
return (int64_t)0;
}
CastInst* lastIx0 = dyn_cast<CastInst>(LeadGEP->getOperand(N));
CastInst* lastIx1 = dyn_cast<CastInst>(NextGEP->getOperand(N));
if (lastIx0 && lastIx1 &&
lastIx0->getOpcode() == lastIx1->getOpcode() &&
(isa<SExtInst>(lastIx0) || isa<ZExtInst>(lastIx0)) &&
lastIx0->getType() == lastIx1->getType() &&
lastIx0->getSrcTy() == lastIx1->getSrcTy()) {
if (!LeadLastIdx)
LeadLastIdx = SE->getSCEV(lastIx0->getOperand(0));
const SCEV* NextIdx = SE->getSCEV(lastIx1->getOperand(0));
auto Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(NextIdx, LeadLastIdx));
if (Diff) {
// This returns 16 for <3 x i32>, not 12!
uint32_t LoadedBytes = (uint32_t)DL->getTypeStoreSize(NextLd->getType());
int64_t eltDiff = Diff->getValue()->getSExtValue();
return (int64_t)(eltDiff * LoadedBytes);
}
}
}
return (int64_t)0;
};
// Push the leading load into the list to be optimized (after
// canonicalization.) It will be swapped with the new one if it's merged.
ToOpt.push_back(LeadingLoad);
if (!LeadingLoad->isSimple())
return false;
if (!LeadingLoad->isUnordered())
return false;
if (LeadingLoad->getType()->isPointerTy()) {
unsigned int AS = LeadingLoad->getType()->getPointerAddressSpace();
if (CGC->getRegisterPointerSizeInBits(AS) != DL->getPointerSizeInBits(AS)) {
// we cannot coalesce pointers which have been reduced as they are
// bigger in memory than in register
return false;
}
}
Type* LeadingLoadType = LeadingLoad->getType();
Type* LeadingLoadScalarType = LeadingLoadType->getScalarType();
unsigned TypeSizeInBits =
unsigned(DL->getTypeSizeInBits(LeadingLoadScalarType));
if (!ProfitVectorLengths.count(TypeSizeInBits))
return false;
SmallVector<unsigned, 8> profitVec;
// FIXME: Enable for OCL shader only as other clients have regressions but
// there's no way to trace down.
bool isUniformLoad = (CGC->type == ShaderType::OPENCL_SHADER) && (WI->isUniform(LeadingLoad));
if (isUniformLoad) {
unsigned C = IGC_GET_FLAG_VALUE(UniformMemOpt4OW);
C = (C == 1) ? 512 : 256;
C /= TypeSizeInBits;
for (; C >= 2; --C)
profitVec.push_back(C);
}
else {
SmallVector<unsigned, 4> & Vec = ProfitVectorLengths[TypeSizeInBits];
profitVec.append(Vec.begin(), Vec.end());
}
unsigned LdSize = unsigned(DL->getTypeStoreSize(LeadingLoadType));
unsigned LdScalarSize = unsigned(DL->getTypeStoreSize(LeadingLoadScalarType));
// NumElts: num of elts if all candidates are actually merged.
unsigned NumElts = getNumElements(LeadingLoadType);
if (NumElts > profitVec[0])
return false;
if (auto* Ptr = dyn_cast<Instruction>(LeadingLoad->getPointerOperand()))
{
llvm::DenseMap<Instruction*, unsigned> depthTracking;
if (!chainedSelectAndPhis(Ptr, 0, depthTracking))
{
return false;
}
}
const SCEV* LeadingPtr = SE->getSCEV(LeadingLoad->getPointerOperand());
if (isa<SCEVCouldNotCompute>(LeadingPtr))
return false;
const SCEV* LeadingLastIdx = nullptr; // set on-demand
bool DoCmpOnLastIdx = false;
if (!EnableCanonicalizeGEP()) {
auto aGEP = dyn_cast<GetElementPtrInst>(LeadingLoad->getPointerOperand());
if (aGEP && aGEP->hasIndices()) {
// index starts from 1
Value* ix = aGEP->getOperand(aGEP->getNumIndices());
DoCmpOnLastIdx = (isa<SExtInst>(ix) || isa<ZExtInst>(ix));
}
}
// LoadInst, Offset, MemRefListTy::iterator, LeadingLoad's int2PtrOffset
SmallVector<std::tuple<LoadInst*, int64_t, MemRefListTy::iterator>, 8>
LoadsToMerge;
LoadsToMerge.push_back(std::make_tuple(LeadingLoad, 0, MI));
// Loads to be merged is scanned in the program order and will be merged into
// the leading load. So two edges of that consecutive region are checked
// against the leading load, i.e.
// - the left-side edge, the leading load to the first load (mergable load
// with the minimal offset)
// - the right-side edge, the last load (mergable load with the maximal
// offset) to the leading load.
//
// A check list is maintained from the leading load to the current
// instruction as the list of instrucitons which may read or write memory but
// is not able to be merged into that leading load. Since we merge
// consecutive loads into the leading load, that check list is accumulated
// and each consecutive load needs to check against that accumulated check
// list.
// Two edges of the region where loads are merged into.
int64_t HighestOffset = LdSize;
int64_t LowestOffset = 0;
// List of instructions need dependency check.
SmallVector<Instruction*, 8> CheckList;
const unsigned Limit = IGC_GET_FLAG_VALUE(MemOptWindowSize);
// Given the Start position of the Window is MI->second,
// the End postion of the Window is "limit + Windows' start".
const unsigned windowEnd = Limit + MI->second;
auto ME = MemRefs.end();
for (++MI; MI != ME && MI->second <= windowEnd; ++MI) {
Instruction* NextMemRef = MI->first;
// Skip already merged one.
if (!NextMemRef)
continue;
CheckList.push_back(NextMemRef);
LoadInst* NextLoad = dyn_cast<LoadInst>(NextMemRef);
// Skip non-load instruction.
if (!NextLoad)
continue;
// Bail out if that load is not a simple one.
if (!NextLoad->isSimple())
break;
// If we get an ordered load (such as a cst_seq atomic load/store) dont
// merge.
if (!NextLoad->isUnordered())
break;
// Skip if that load is from different address spaces.
if (NextLoad->getPointerAddressSpace() !=
LeadingLoad->getPointerAddressSpace())
continue;
Type* NextLoadType = NextLoad->getType();
// Skip if they have different sizes.
if (!hasSameSize(NextLoadType->getScalarType(), LeadingLoadScalarType))
continue;
const SCEV* NextPtr = SE->getSCEV(NextLoad->getPointerOperand());
if (isa<SCEVCouldNotCompute>(NextPtr))
continue;
int64_t Off = 0;
const SCEVConstant* Offset
= dyn_cast<SCEVConstant>(SE->getMinusSCEV(NextPtr, LeadingPtr));
// If addr cmp fails, try whether index cmp can be applied.
if (DoCmpOnLastIdx && Offset == nullptr)
Off = getGEPIdxDiffIfAppliable(LeadingLastIdx, LeadingLoad, NextLoad);
// Skip load with non-constant distance.
// If Off != 0, it is already a constant via index cmp
if (Off == 0) {
if (!Offset) {
SymbolicPointer LeadingSymPtr;
SymbolicPointer NextSymPtr;
if (SymbolicPointer::decomposePointer(LeadingLoad->getPointerOperand(),
LeadingSymPtr, CGC) ||
SymbolicPointer::decomposePointer(NextLoad->getPointerOperand(),
NextSymPtr, CGC) ||
NextSymPtr.getConstantOffset(LeadingSymPtr, Off)) {
continue;
}
else {
if (!AllowNegativeSymPtrsForLoad && LeadingSymPtr.Offset < 0)
continue;
}
}
else {
Off = Offset->getValue()->getSExtValue();
}
}
unsigned NextLoadSize = unsigned(DL->getTypeStoreSize(NextLoadType));
// By assuming dead load elimination always works correctly, if the load on
// the same location is observed again, that is probably because there is
// an instruction with global effect between them. Bail out directly.
if (Off == 0 && LdSize == NextLoadSize)
break;
int64_t newHighestOffset = std::max(Off + NextLoadSize, HighestOffset);
int64_t newLowestOffset = std::min(Off, LowestOffset);
uint64_t newNumElts = uint64_t((newHighestOffset - newLowestOffset) /
LdScalarSize);
// Ensure that the total size read evenly divides the element type.
// For example, we could have a packed struct <{i64, i32, i64}> that
// would compute a size of 20 but, without this guard, would set
// 'NumElts' to 2 as if the i32 wasn't present.
if (uint64_t(newHighestOffset - newLowestOffset) % LdScalarSize != 0)
continue;
// Bail out if the resulting vector load is already not profitable.
if (newNumElts > profitVec[0])
continue;
HighestOffset = newHighestOffset;
LowestOffset = newLowestOffset;
NumElts = static_cast<unsigned>(newNumElts);
// This load is to be merged. Remove it from check list.
CheckList.pop_back();
// If the candidate load cannot be safely merged, merge mergable loads
// currently found.
if (!isSafeToMergeLoad(NextLoad, CheckList))
break;
LoadsToMerge.push_back(std::make_tuple(NextLoad, Off, MI));
}
unsigned s = LoadsToMerge.size();
if (s < 2)
return false;
IGCLLVM::IRBuilder<> Builder(LeadingLoad);
// Start to merge loads.
IGC_ASSERT_MESSAGE(1 < NumElts, "It's expected to merge into at least 2-element vector!");
// Sort loads based on their offsets (to the leading load) from the smallest to the largest.
// And then try to find the profitable vector length first.
std::sort(LoadsToMerge.begin(), LoadsToMerge.end(), less_tuple<1>());
unsigned MaxElts = profitVec[0];
for (unsigned k = 1, e = profitVec.size();
NumElts != MaxElts && k != e && s != 1;) {
// Try next legal vector length.
while (NumElts < MaxElts && k != e) {
MaxElts = profitVec[k++];
}
if (EnableCanonicalizeGEP()) {
// Guard under the key to distinguish new code (GEPCanon is off) from the old.
// Note: not sure about the reason for the following check.
if (NumElts == 3 && (LeadingLoadScalarType->isIntegerTy(16) || LeadingLoadScalarType->isHalfTy())) {
return false;
}
}
// Try remove loads to be merged.
while (NumElts > MaxElts && s != 1) {
Type* Ty = std::get<0>(LoadsToMerge[--s])->getType();
NumElts -= getNumElements(Ty);
}
}
if (NumElts != MaxElts || s < 2)
return false;
LoadsToMerge.resize(s);
// Loads to be merged will be merged into the leading load. However, the
// pointer from the first load (with the minimal offset) will be used as the
// new pointer.
LoadInst* FirstLoad = std::get<0>(LoadsToMerge.front());
int64_t FirstOffset = std::get<1>(LoadsToMerge.front());
IGC_ASSERT_MESSAGE(FirstOffset <= 0, "The 1st load should be either the leading load or load with smaller offset!");
// Next we need to check alignment
if (!checkAlignmentBeforeMerge(FirstLoad, LoadsToMerge, NumElts))
return false;
if (!DebugCounter::shouldExecute(MergeLoadCounter))
return false;
// Calculate the new pointer. If the leading load is not the first load,
// re-calculate it from the leading pointer.
// Alternatively, we could schedule instructions calculating the first
// pointer ahead the leading load. But it's much simpler to re-calculate
// it due to the constant offset.
Value* Ptr = LeadingLoad->getPointerOperand();
if (FirstOffset < 0) {
// If the first load is not the leading load, re-calculate the pointer
// from the pointer of the leading load.
IGC_ASSERT(LdScalarSize);
IGC_ASSERT_MESSAGE(FirstOffset % LdScalarSize == 0, "Remainder is expected to be 0!");
Value* Idx = Builder.getInt64(FirstOffset / LdScalarSize);
Type* Ty =
PointerType::get(LeadingLoadScalarType,
LeadingLoad->getPointerAddressSpace());
Ptr = Builder.CreateBitCast(Ptr, Ty);
GEPOperator* FirstGEP =
dyn_cast<GEPOperator>(FirstLoad->getPointerOperand());
if (FirstGEP && FirstGEP->isInBounds())
Ptr = Builder.CreateInBoundsGEP(LeadingLoadScalarType, Ptr, Idx);
else
Ptr = Builder.CreateGEP(LeadingLoadScalarType, Ptr, Idx);
}
Type* NewLoadType = IGCLLVM::FixedVectorType::get(LeadingLoadScalarType, NumElts);
Type* NewPointerType =
PointerType::get(NewLoadType, LeadingLoad->getPointerAddressSpace());
Value* NewPointer = Builder.CreateBitCast(Ptr, NewPointerType);
LoadInst* NewLoad =
Builder.CreateAlignedLoad(NewLoadType, NewPointer, IGCLLVM::getAlign(*FirstLoad));
NewLoad->setDebugLoc(LeadingLoad->getDebugLoc());
// Unpack the load value to their uses. For original vector loads, extracting
// and inserting is necessary to avoid tracking uses of each element in the
// original vector load value.
unsigned Pos = 0;
MDNode* mdLoadInv = nullptr;
bool allInvariantLoads = true;
MDNode* nonTempMD = LeadingLoad->getMetadata("nontemporal");
for (auto& I : LoadsToMerge) {
Type* Ty = std::get<0>(I)->getType();
Type* ScalarTy = Ty->getScalarType();
IGC_ASSERT(hasSameSize(ScalarTy, LeadingLoadScalarType));
mdLoadInv = std::get<0>(I)->getMetadata(LLVMContext::MD_invariant_load);
if (!mdLoadInv)
{
allInvariantLoads = false;
}
nonTempMD = MDNode::concatenate(std::get<0>(I)->getMetadata("nontemporal"), nonTempMD);
Pos = unsigned((std::get<1>(I) - FirstOffset) / LdScalarSize);
if (Ty->isVectorTy()) {
if (Pos + cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements() > NumElts) {
// This implies we're trying to extract an element from our new load
// with an index > the size of the new load. If this happens,
// we'll generate correct code if it does since we don't remove the
// original load for this element.
continue;
}
Value* Val = UndefValue::get(Ty);
for (unsigned i = 0, e = (unsigned)cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements(); i != e; ++i) {
Value* Ex = Builder.CreateExtractElement(NewLoad, Builder.getInt32(Pos + i));
Ex = createBitOrPointerCast(Ex, ScalarTy, Builder);
Val = Builder.CreateInsertElement(Val, Ex, Builder.getInt32(i));
}
std::get<0>(I)->replaceAllUsesWith(Val);
}
else {
if (Pos + 1 > NumElts) {
continue;
}
Value* Val = Builder.CreateExtractElement(NewLoad,
Builder.getInt32(Pos));
Val = createBitOrPointerCast(Val, ScalarTy, Builder);
std::get<0>(I)->replaceAllUsesWith(Val);
}
}
if (allInvariantLoads)
{
NewLoad->setMetadata(LLVMContext::MD_invariant_load, mdLoadInv);
}
// Transfer !nontemporal metadata to the new load
if (nonTempMD)
{
NewLoad->setMetadata("nontemporal", nonTempMD);
}
// Replace the list to be optimized with the new load.
Instruction* NewOne = NewLoad;
std::swap(ToOpt.back(), NewOne);
for (auto& I : LoadsToMerge) {
LoadInst* LD = cast<LoadInst>(std::get<0>(I));
Value* Ptr = LD->getPointerOperand();
// make sure the load was merged before actually removing it
if (LD->use_empty()) {
LD->eraseFromParent();
}
RecursivelyDeleteTriviallyDeadInstructions(Ptr);
// Mark it as already merged.
// Also, skip updating distance as the Window size is just a heuristic.
std::get<2>(I)->first = nullptr;
}
// Add merged load into the leading load position in MemRefListTy
// so that MemRefList is still valid and can be reused.
aMI->first = NewOne;
return true;
}
bool MemOpt::mergeStore(StoreInst* LeadingStore,
MemRefListTy::iterator MI, MemRefListTy& MemRefs,
TrivialMemRefListTy& ToOpt) {
// Push the leading store into the list to be optimized (after
// canonicalization.) It will be swapped with the new one if it's merged.
ToOpt.push_back(LeadingStore);
if (!LeadingStore->isSimple())
return false;
if (!LeadingStore->isUnordered())
return false;
if (LeadingStore->getValueOperand()->getType()->isPointerTy()) {
unsigned AS =
LeadingStore->getValueOperand()->getType()->getPointerAddressSpace();
if (CGC->getRegisterPointerSizeInBits(AS) != DL->getPointerSizeInBits(AS)) {
// we cannot coalesce pointers which have been reduced as they are
// bigger in memory than in register
return false;
}
}
unsigned NumElts = 0;
Value* LeadingStoreVal = LeadingStore->getValueOperand();
Type* LeadingStoreType = LeadingStoreVal->getType();
Type* LeadingStoreScalarType = LeadingStoreType->getScalarType();
unsigned StSize = unsigned(DL->getTypeStoreSize(LeadingStoreType));
unsigned typeSizeInBits =
unsigned(DL->getTypeSizeInBits(LeadingStoreScalarType));
if (!ProfitVectorLengths.count(typeSizeInBits))
return false;
SmallVector<unsigned, 4 > & profitVec = ProfitVectorLengths[typeSizeInBits];
NumElts += getNumElements(LeadingStoreType);
if (NumElts >= profitVec[0])
return false;
const SCEV* LeadingPtr = SE->getSCEV(LeadingStore->getPointerOperand());
if (isa<SCEVCouldNotCompute>(LeadingPtr))
return false;
// StoreInst, Offset, MemRefListTy::iterator, LeadingStore's int2PtrOffset
SmallVector<std::tuple<StoreInst*, int64_t, MemRefListTy::iterator>, 8>
StoresToMerge;
StoresToMerge.push_back(std::make_tuple(LeadingStore, 0, MI));
// Stores to be merged are scanned in the program order from the leading store
// but need to be merged into the tailing store. So two edges of that
// consecutive region are checked against the leading store, i.e.
// - the left-side edge, the leading store to the first store (mergable store
// with the minimal offset)
// - the right-side edge, the last store (mergable store with the maximal
// offset) to the leading store.
//
// A check list is maintained from a previous tailing mergable store to the
// new tailing store instruction because all those stores will be merged into
// the new tailing store. That is, we need to check all mergable stores each
// time a "new" tailing store is found. However, that check list needs not
// accumulating as we already check that all stores to be merged are safe to
// be merged into the "previous" tailing store.
// Two edges of the region where stores are merged into.
int64_t LastToLeading = StSize, LastToLeading4Transpose = 0;
int64_t LeadingToFirst = 0;
// List of instructions need dependency check.
SmallVector<Instruction*, 8> CheckList;
const unsigned Limit = IGC_GET_FLAG_VALUE(MemOptWindowSize);
// Given the Start position of the Window is MI->second,
// the End postion of the Window is "limit + Windows' start".
const unsigned windowEnd = Limit + MI->second;
auto ME = MemRefs.end();
for (++MI; MI != ME && MI->second <= windowEnd; ++MI) {
Instruction* NextMemRef = MI->first;
// Skip already merged one.
if (!NextMemRef)
continue;
CheckList.push_back(NextMemRef);
StoreInst* NextStore = dyn_cast<StoreInst>(NextMemRef);
// Skip non-store instruction.
if (!NextStore)
continue;
// Bail out if that store is not a simple one.
if (!NextStore->isSimple())
break;
// If we get an ordered store (such as a cst_seq atomic load/store) dont
// merge.
if (!NextStore->isUnordered())
break;
// Skip if that store is from different address spaces.
if (NextStore->getPointerAddressSpace() !=
LeadingStore->getPointerAddressSpace())
continue;
Value* NextStoreVal = NextStore->getValueOperand();
Type* NextStoreType = NextStoreVal->getType();
// Skip if they have different sizes.
if (!hasSameSize(NextStoreType->getScalarType(), LeadingStoreScalarType))
continue;
const SCEV* NextPtr = SE->getSCEV(NextStore->getPointerOperand());
if (isa<SCEVCouldNotCompute>(NextPtr))
continue;
int64_t Off = 0;
const SCEVConstant* Offset
= dyn_cast<SCEVConstant>(SE->getMinusSCEV(NextPtr, LeadingPtr));
// Skip store with non-constant distance.
if (!Offset) {
SymbolicPointer LeadingSymPtr;
SymbolicPointer NextSymPtr;
if (SymbolicPointer::decomposePointer(
LeadingStore->getPointerOperand(), LeadingSymPtr, CGC) ||
SymbolicPointer::decomposePointer(NextStore->getPointerOperand(),
NextSymPtr, CGC) ||
NextSymPtr.getConstantOffset(LeadingSymPtr, Off))
continue;
}
else
Off = Offset->getValue()->getSExtValue();
// By assuming dead store elimination always works correctly, if the store
// on the same location is observed again, that is probably because there
// is an instruction with global effect between them. Bail out directly.
if (Off == 0)
break;
unsigned NextStoreSize = unsigned(DL->getTypeStoreSize(NextStoreType));
if ((Off > 0 && Off != LastToLeading) ||
(Off < 0 && (-Off) != (LeadingToFirst + NextStoreSize)))
// Check it's consecutive to the current stores to be merged.
continue;
NumElts += getNumElements(NextStoreType);
// Bail out if the resulting vector store is already not profitable.
if (NumElts > profitVec[0])
break;
// This store is to be merged. Remove it from check list.
CheckList.pop_back();
// If the candidate store cannot be safely merged, merge mergable stores
// currently found.
if (!isSafeToMergeStores(StoresToMerge, CheckList))
break;
// Clear check list.
CheckList.clear();
StoresToMerge.push_back(std::make_tuple(NextStore, Off, MI));
if (Off > 0) {
LastToLeading = Off + NextStoreSize;
LastToLeading4Transpose = Off;
}
else
LeadingToFirst = (-Off);
// Early out if the maximal profitable vector length is reached.
if (NumElts == profitVec[0])
break;
}
unsigned s = StoresToMerge.size();
if (s < 2)
return false;
// Tailing store is always the last one in the program order.
StoreInst* TailingStore = std::get<0>(StoresToMerge.back());
IGCLLVM::IRBuilder<> Builder(TailingStore);
// Start to merge stores.
NumElts = 0;
for (auto& I : StoresToMerge) {
Type* Ty = std::get<0>(I)->getValueOperand()->getType();
NumElts += getNumElements(Ty);
}
IGC_ASSERT_MESSAGE(1 < NumElts, "It's expected to merge into at least 2-element vector!");
// Try to find the profitable vector length first.
unsigned MaxElts = profitVec[0];
for (unsigned k = 1, e = profitVec.size();
NumElts != MaxElts && k != e && s != 1;) {
// Try next legal vector length.
while (NumElts < MaxElts && k != e)
MaxElts = profitVec[k++];
// Try remove stores to be merged.
while (NumElts > MaxElts && s != 1) {
Type* Ty = std::get<0>(StoresToMerge[--s])->getValueOperand()->getType();
NumElts -= getNumElements(Ty);
}
}
if (NumElts != MaxElts || s < 2)
return false;
// Resize stores to be merged to the profitable length and sort them based on
// their offsets to the leading store.
StoresToMerge.resize(s);
std::sort(StoresToMerge.begin(), StoresToMerge.end(), less_tuple<1>());
// Stores to be merged will be merged into the tailing store. However, the
// pointer from the first store (with the minimal offset) will be used as the
// new pointer.
StoreInst* FirstStore = std::get<0>(StoresToMerge.front());
// Next we need to check alignment
if (!checkAlignmentBeforeMerge(FirstStore, StoresToMerge, NumElts))
return false;
Type* NewStoreType = IGCLLVM::FixedVectorType::get(LeadingStoreScalarType, NumElts);
Value* NewStoreVal = UndefValue::get(NewStoreType);
MDNode* NonTempMD = TailingStore->getMetadata("nontemporal");
// Pack the store value from their original store values. For original vector
// store values, extracting and inserting is necessary to avoid tracking uses
// of each element in the original vector store value.
unsigned Pos = 0;
for (auto& I : StoresToMerge) {
Value* Val = std::get<0>(I)->getValueOperand();
Type* Ty = Val->getType();
Type* ScalarTy = Ty->getScalarType();
IGC_ASSERT(hasSameSize(ScalarTy, LeadingStoreScalarType));
NonTempMD = MDNode::concatenate(std::get<0>(I)->getMetadata("nontemporal"), NonTempMD);
if (Ty->isVectorTy()) {
for (unsigned i = 0, e = (unsigned)cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements(); i != e; ++i) {
Value* Ex = Builder.CreateExtractElement(Val, Builder.getInt32(i));
Ex = createBitOrPointerCast(Ex, LeadingStoreScalarType, Builder);
NewStoreVal = Builder.CreateInsertElement(NewStoreVal, Ex,
Builder.getInt32(Pos++));
}
}
else if (Ty->isPointerTy()) {
if (ScalarTy != LeadingStoreScalarType) {
if (LeadingStoreScalarType->isPointerTy()) {
Val =
Builder.CreatePointerBitCastOrAddrSpaceCast(Val,
LeadingStoreScalarType);
}
else {
Val =
Builder.CreatePtrToInt(Val,
Type::getIntNTy(Val->getContext(),
(unsigned int)LeadingStoreScalarType->getPrimitiveSizeInBits()));
// LeadingStoreScalarType may not be an integer type, bitcast it to
// the appropiate type.
Val = Builder.CreateBitCast(Val, LeadingStoreScalarType);
}
}
NewStoreVal = Builder.CreateInsertElement(NewStoreVal, Val,
Builder.getInt32(Pos++));
}
else {
Val = createBitOrPointerCast(Val, LeadingStoreScalarType, Builder);
NewStoreVal = Builder.CreateInsertElement(NewStoreVal, Val,
Builder.getInt32(Pos++));
}
}
if (!DebugCounter::shouldExecute(MergeStoreCounter))
return false;
// We don't need to recalculate the new pointer as we merge stores to the
// tailing store, which is dominated by all mergable stores' address
// calculations.
Type* NewPointerType =
PointerType::get(NewStoreType, LeadingStore->getPointerAddressSpace());
Value* NewPointer =
Builder.CreateBitCast(FirstStore->getPointerOperand(), NewPointerType);
StoreInst* NewStore =
Builder.CreateAlignedStore(NewStoreVal, NewPointer,
IGCLLVM::getAlign(*FirstStore));
NewStore->setDebugLoc(TailingStore->getDebugLoc());
// Transfer !nontemporal metadata to the new store
if (NonTempMD)
NewStore->setMetadata("nontemporal", NonTempMD);
// Clone metadata
llvm::SmallVector<std::pair<unsigned, llvm::MDNode*>, 4> MDs;
TailingStore->getAllMetadata(MDs);
for (llvm::SmallVectorImpl<std::pair<unsigned, llvm::MDNode*> >::iterator
MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
{
NewStore->setMetadata(MI->first, MI->second);
}
// Replace the list to be optimized with the new store.
Instruction* NewOne = NewStore;
std::swap(ToOpt.back(), NewOne);
for (auto& I : StoresToMerge) {
StoreInst* ST = cast<StoreInst>(std::get<0>(I));
Value* Ptr = ST->getPointerOperand();
// Stores merged in the previous iterations can get merged again, so we need
// to update ToOpt vector to avoid null instruction in there
ToOpt.erase(std::remove(ToOpt.begin(), ToOpt.end(), ST), ToOpt.end());
ST->eraseFromParent();
RecursivelyDeleteTriviallyDeadInstructions(Ptr);
// Also, skip updating distance as the Window size is just a heuristic.
if (std::get<2>(I)->first == TailingStore)
// Writing NewStore to MemRefs for correct isSafeToMergeLoad working.
// For example if MemRefs contains this sequence: S1, S2, S3, L5, L6, L7, S4, L4
// after stores merge MemRefs contains : L5, L6, L7, S1234, L4 and loads are
// merged to L567, final instructions instructions sequence is L567, S1234, L4.
// Otherwise the sequence could be merged to sequence L4567, S1234 with
// unordered L4,S4 accesses.
std::get<2>(I)->first = NewStore;
else {
// Mark it as already merged.
std::get<2>(I)->first = nullptr;
}
}
return true;
}
/// isSafeToMergeLoad() - checks whether there is any alias from the specified
/// load to any one in the check list, which may write to that location.
bool MemOpt::isSafeToMergeLoad(const LoadInst* Ld,
const SmallVectorImpl<Instruction*>& CheckList) const {
MemoryLocation A = MemoryLocation::get(Ld);
for (auto* I : CheckList) {
// Skip instructions never writing to memory.
if (!I->mayWriteToMemory())
continue;
MemoryLocation B = getLocation(I);
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
return false;
}
return true;
}
/// isSafeToMergeStores() - checks whether there is any alias from the
/// specified store set to any one in the check list, which may read/write to
/// that location.
bool MemOpt::isSafeToMergeStores(
const SmallVectorImpl<std::tuple<StoreInst*, int64_t, MemRefListTy::iterator> >& Stores,
const SmallVectorImpl<Instruction*>& CheckList) const {
// Arrange CheckList as the outer loop to favor the case where there are
// back-to-back stores only.
for (auto* I : CheckList) {
if (I->getMetadata(LLVMContext::MD_invariant_load))
continue;
MemoryLocation A = getLocation(I);
for (auto& S : Stores) {
MemoryLocation B = getLocation(std::get<0>(S));
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
return false;
}
}
return true;
}
class ExtOperator : public Operator {
public:
static inline bool classof(const Instruction* I) {
return I->getOpcode() == Instruction::SExt ||
I->getOpcode() == Instruction::ZExt;
}
static inline bool classof(const ConstantExpr* CE) {
return CE->getOpcode() == Instruction::SExt ||
CE->getOpcode() == Instruction::ZExt;
}
static inline bool classof(const Value* V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
bool isZExt() const { return getOpcode() == Instruction::ZExt; }
bool isSExt() const { return getOpcode() == Instruction::SExt; }
~ExtOperator() = delete;
};
class OverflowingAdditiveOperator : public Operator {
public:
static inline bool classof(const Instruction* I) {
return I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Sub;
}
static inline bool classof(const ConstantExpr* CE) {
return CE->getOpcode() == Instruction::Add ||
CE->getOpcode() == Instruction::Sub;
}
static inline bool classof(const Value* V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
bool hasNoUnsignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}
bool hasNoSignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}
~OverflowingAdditiveOperator() = delete;
};
class OrOperator : public ConcreteOperator<BinaryOperator, Instruction::Or>
{
~OrOperator() = delete;
};
class BitCastOperator : public ConcreteOperator<Operator, Instruction::BitCast>
{
~BitCastOperator() = delete;
};
bool MemOpt::canonicalizeGEP64(Instruction* I) const {
Value* Ptr = nullptr;
if (auto LD = dyn_cast<LoadInst>(I))
Ptr = LD->getPointerOperand();
else if (auto ST = dyn_cast<StoreInst>(I))
Ptr = ST->getPointerOperand();
// Skip non 64-bit or non GEP-based pointers if any.
if (auto Cast = dyn_cast_or_null<llvm::BitCastOperator>(Ptr))
Ptr = Cast->getOperand(0);
GEPOperator* GEPOp = dyn_cast_or_null<GEPOperator>(Ptr);
if (!GEPOp)
return false;
if (CGC->getRegisterPointerSizeInBits(GEPOp->getPointerAddressSpace()) != 64)
return false;
bool Changed = false;
for (auto U = GEPOp->idx_begin(), E = GEPOp->idx_end(); U != E; ++U) {
Value* Idx = U->get();
Type* IdxTy = Idx->getType();
IRBuilder<> Builder(isa<Instruction>(GEPOp) ? cast<Instruction>(GEPOp) : I);
if (!IdxTy->isIntegerTy(64))
continue;
auto ExtOp = dyn_cast<ExtOperator>(Idx);
if (!ExtOp)
continue;
auto CastOpcode = Instruction::CastOps(ExtOp->getOpcode());
// Distribute `ext` over binary operator with corresponding `nsw`/`nuw`
// flags.
auto BinOp = dyn_cast<OverflowingAdditiveOperator>(ExtOp->getOperand(0));
if (!BinOp) {
auto OrOp = dyn_cast<OrOperator>(ExtOp->getOperand(0));
if (!OrOp)
continue;
Value* LHS = OrOp->getOperand(0);
Value* RHS = OrOp->getOperand(1);
ConstantInt* RHSC = dyn_cast<ConstantInt>(RHS);
if (!RHSC || !MaskedValueIsZero(LHS, RHSC->getValue(), *DL))
continue;
// Treat `or` as `add.nsw` or `add.nuw`.
LHS = Builder.CreateCast(CastOpcode, LHS, IdxTy);
RHS = Builder.CreateCast(CastOpcode, RHS, IdxTy);
bool HasNUW = ExtOp->isZExt();
bool HasNSW = ExtOp->isSExt();
U->set(Builder.CreateAdd(LHS, RHS, ".or", HasNUW, HasNSW));
RecursivelyDeleteTriviallyDeadInstructions(ExtOp);
Changed = true;
}
else if ((ExtOp->isSExt() && BinOp->hasNoSignedWrap()) ||
(ExtOp->isZExt() && BinOp->hasNoUnsignedWrap())) {
Value* BinOpVal = cast<Value>(BinOp);
// We want to check if we should create a separate BinOp instruction for this gep instruction.
bool NeedToChangeBinOp = BinOpVal->hasOneUse();
if (NeedToChangeBinOp)
Builder.SetInsertPoint(cast<Instruction>(ExtOp));
auto BinOpcode = BinaryOperator::BinaryOps(BinOp->getOpcode());
Value* LHS = BinOp->getOperand(0);
Value* RHS = BinOp->getOperand(1);
LHS = Builder.CreateCast(CastOpcode, LHS, IdxTy);
RHS = Builder.CreateCast(CastOpcode, RHS, IdxTy);
auto BO = Builder.CreateBinOp(BinOpcode, LHS, RHS);
// BO can be a constant if both sides are constants
if (auto BOP = dyn_cast<BinaryOperator>(BO)) {
if (BinOp->hasNoUnsignedWrap())
BOP->setHasNoUnsignedWrap();
if (BinOp->hasNoSignedWrap())
BOP->setHasNoSignedWrap();
}
if (NeedToChangeBinOp)
ExtOp->replaceAllUsesWith(BO);
U->set(BO);
RecursivelyDeleteTriviallyDeadInstructions(ExtOp);
Changed = true;
}
}
return Changed;
}
bool MemOpt::optimizeGEP64(Instruction* I) const {
Value* Ptr = nullptr;
if (auto LD = dyn_cast<LoadInst>(I))
Ptr = LD->getPointerOperand();
else if (auto ST = dyn_cast<StoreInst>(I))
Ptr = ST->getPointerOperand();
// Skip non 64-bit or non GEP-based pointers if any.
if (auto Cast = dyn_cast_or_null<llvm::BitCastOperator>(Ptr))
Ptr = Cast->getOperand(0);
GEPOperator* GEPOp = dyn_cast_or_null<GEPOperator>(Ptr);
if (!GEPOp)
return false;
if (CGC->getRegisterPointerSizeInBits(GEPOp->getPointerAddressSpace()) != 64)
return false;
IRBuilder<> Builder(isa<Instruction>(GEPOp) ? cast<Instruction>(GEPOp) : I);
bool Changed = false;
for (auto U = GEPOp->idx_begin(), E = GEPOp->idx_end(); U != E; ++U) {
Value* Idx = U->get();
Type* IdxTy = Idx->getType();
if (!IdxTy->isIntegerTy(64))
continue;
// Factor out `ext` through binary operator with corresponding `nsw`/`nuw`
// flags.
auto BinOp = dyn_cast<OverflowingAdditiveOperator>(Idx);
if (!BinOp)
continue;
auto BinOpcode = BinaryOperator::BinaryOps(BinOp->getOpcode());
Value* LHS = BinOp->getOperand(0);
Value* RHS = BinOp->getOperand(1);
auto ExtOp0 = dyn_cast<ExtOperator>(LHS);
if (!ExtOp0)
continue;
auto CastOpcode = Instruction::CastOps(ExtOp0->getOpcode());
auto ExtOp1 = dyn_cast<ExtOperator>(RHS);
if (ExtOp1 && ExtOp0->getOpcode() == ExtOp1->getOpcode() &&
((ExtOp0->isZExt() && BinOp->hasNoUnsignedWrap()) ||
(ExtOp0->isSExt() && BinOp->hasNoSignedWrap()))) {
LHS = ExtOp0->getOperand(0);
RHS = ExtOp1->getOperand(0);
unsigned LHSBitWidth = LHS->getType()->getIntegerBitWidth();
unsigned RHSBitWidth = RHS->getType()->getIntegerBitWidth();
unsigned BitWidth = std::max(LHSBitWidth, RHSBitWidth);
// Either LHS or RHS may have smaller integer, extend them before
// creating `binop` over them.
if (LHSBitWidth < BitWidth) {
Type* Ty = Builder.getIntNTy(BitWidth);
LHS = Builder.CreateCast(CastOpcode, LHS, Ty);
}
if (RHSBitWidth < BitWidth) {
Type* Ty = Builder.getIntNTy(BitWidth);
RHS = Builder.CreateCast(CastOpcode, RHS, Ty);
}
}
else if (isa<ConstantInt>(RHS)) {
LHS = ExtOp0->getOperand(0);
unsigned BitWidth = LHS->getType()->getIntegerBitWidth();
APInt Val = cast<ConstantInt>(RHS)->getValue();
if (!((ExtOp0->isZExt() && Val.isIntN(BitWidth)) ||
(ExtOp0->isSExt() && Val.isSignedIntN(BitWidth))))
continue;
if (!((ExtOp0->isZExt() && BinOp->hasNoUnsignedWrap()) ||
(ExtOp0->isSExt() && BinOp->hasNoSignedWrap())))
continue;
LHS = ExtOp0->getOperand(0);
RHS = Builder.CreateTrunc(RHS, LHS->getType());
}
else
continue;
auto BO = cast<BinaryOperator>(Builder.CreateBinOp(BinOpcode, LHS, RHS));
if (BinOp->hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (BinOp->hasNoSignedWrap())
BO->setHasNoSignedWrap();
U->set(Builder.CreateCast(CastOpcode, BO, IdxTy));
RecursivelyDeleteTriviallyDeadInstructions(BinOp);
Changed = true;
}
return Changed;
}
Value*
SymbolicPointer::getLinearExpression(Value* V, APInt& Scale, APInt& Offset,
ExtensionKind& Extension, unsigned Depth,
const DataLayout* DL) {
IGC_ASSERT(nullptr != V);
IGC_ASSERT(nullptr != V->getType());
IGC_ASSERT_MESSAGE(V->getType()->isIntegerTy(), "Not an integer value");
// Limit our recursion depth.
if (Depth == 16) {
Scale = 1;
Offset = 0;
return V;
}
if (BinaryOperator * BOp = dyn_cast<BinaryOperator>(V)) {
if (ConstantInt * RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
switch (BOp->getOpcode()) {
default: break;
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), *DL))
break;
// FALL THROUGH.
case Instruction::Add:
V = getLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
Depth + 1, DL);
Offset += RHSC->getValue();
return V;
case Instruction::Mul:
V = getLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
Depth + 1, DL);
Offset *= RHSC->getValue();
Scale *= RHSC->getValue();
return V;
case Instruction::Shl:
V = getLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
Depth + 1, DL);
Offset <<= unsigned(RHSC->getValue().getLimitedValue());
Scale <<= unsigned(RHSC->getValue().getLimitedValue());
return V;
}
}
}
// Since GEP indices are sign extended anyway, we don't care about the high
// bits of a sign or zero extended value - just scales and offsets. The
// extensions have to be consistent though.
if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
(isa<ZExtInst>(V) && Extension != EK_SignExt)) {
Value* CastOp = cast<CastInst>(V)->getOperand(0);
unsigned OldWidth = Scale.getBitWidth();
unsigned SmallWidth = (unsigned int)CastOp->getType()->getPrimitiveSizeInBits();
Scale = Scale.trunc(SmallWidth);
Offset = Offset.trunc(SmallWidth);
Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
Value* Result = getLinearExpression(CastOp, Scale, Offset, Extension,
Depth + 1, DL);
Scale = Scale.zext(OldWidth);
if (Extension == EK_SignExt)
Offset = Offset.sext(OldWidth);
else
Offset = Offset.zext(OldWidth);
return Result;
}
Scale = 1;
Offset = 0;
return V;
}
class IntToPtrOperator :
public ConcreteOperator<Operator, Instruction::IntToPtr>
{
~IntToPtrOperator() = delete;
};
bool
SymbolicPointer::decomposePointer(const Value* Ptr, SymbolicPointer& SymPtr,
CodeGenContext* pContext) {
unsigned MaxLookup = MaxLookupSearchDepth;
const DataLayout* DL = &pContext->getModule()->getDataLayout();
SymPtr.Offset = 0;
SymPtr.BasePtr = nullptr;
do {
const Operator* Op = dyn_cast<Operator>(Ptr);
if (!Op) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias * GA = dyn_cast<GlobalAlias>(Ptr)) {
if (!GA->isInterposable()) {
Ptr = GA->getAliasee();
continue;
}
}
SymPtr.BasePtr = Ptr;
return false;
}
if (Op->getOpcode() == Instruction::BitCast || Op->getOpcode() == Instruction::AddrSpaceCast) {
Ptr = Op->getOperand(0);
continue;
}
const GEPOperator* GEPOp = dyn_cast<GEPOperator>(Op);
if (!GEPOp) {
// If it's not a GEP, hand it off to simplifyInstruction to see if it
// can come up with something. This matches what GetUnderlyingObject does.
if (const Instruction * I = dyn_cast<Instruction>(Ptr))
// TODO: Get a DominatorTree and use it here.
if (const Value * Simplified =
IGCLLVM::simplifyInstruction(const_cast<Instruction*>(I), *DL)) {
Ptr = Simplified;
continue;
}
// IntToPtr is treated like gep(i8* 0, Src).
// TODO: Unify the common handling of IntToPtr & GEP into a single
// routine.
if (const IntToPtrOperator * I2POp = dyn_cast<IntToPtrOperator>(Op)) {
PointerType* PtrTy = cast<PointerType>(I2POp->getType());
unsigned int ptrSize = pContext->getRegisterPointerSizeInBits(PtrTy->getAddressSpace());
Value* Src = I2POp->getOperand(0);
Value* BasePtr = ConstantPointerNull::get(PtrTy);
// Constant pointer.
if (ConstantInt * CI = dyn_cast<ConstantInt>(Src)) {
SymPtr.Offset += CI->getSExtValue();
SymPtr.BasePtr = BasePtr;
return false;
}
// Treat that like (inttoptr (add (base offset)))
if (AddOperator * Add = dyn_cast<AddOperator>(Src)) {
// Note that we always assume LHS as the base and RHS as the offset.
// That's why GEP is invented in LLVM IR as the pointer arithmetic in
// C is always in form of (base + offset). By designating the base
// pointer, we won't run into the case where both operands are
// symmetric in `add` instruction.
if (!isa<ConstantInt>(Add->getOperand(1))) {
BasePtr = Add->getOperand(0);
Src = Add->getOperand(1);
}
}
uint64_t Scale = 1;
ExtensionKind Extension = EK_NotExtended;
unsigned Width = Src->getType()->getIntegerBitWidth();
if (ptrSize > Width)
Extension = EK_SignExt;
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Src = getLinearExpression(Src, IndexScale, IndexOffset, Extension,
0U, DL);
SymPtr.Offset += IndexOffset.getSExtValue() * Scale;
Scale *= IndexScale.getSExtValue();
SymbolicIndex Idx(Src, Extension);
// If we already had an occurrence of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = SymPtr.Terms.size(); i != e; ++i) {
if (SymPtr.Terms[i].Idx == Idx) {
Scale += SymPtr.Terms[i].Scale;
SymPtr.Terms.erase(SymPtr.Terms.begin() + i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
if (unsigned ShiftBits = 64 - ptrSize) {
Scale <<= ShiftBits;
Scale = (int64_t)Scale >> ShiftBits;
}
if (Scale) {
Term Entry = { Idx, int64_t(Scale) };
SymPtr.Terms.push_back(Entry);
}
Ptr = BasePtr;
}
SymPtr.BasePtr = Ptr;
return false;
}
// Don't attempt to analyze GEPs over unsized objects.
if (!GEPOp->getSourceElementType()->isSized()) {
SymPtr.BasePtr = Ptr;
return false;
}
// If we are lacking DataLayout information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
if (!DL) {
if (!GEPOp->hasAllZeroIndices()) {
SymPtr.BasePtr = Ptr;
return false;
}
Ptr = GEPOp->getOperand(0);
continue;
}
unsigned int ptrSize =
pContext->getRegisterPointerSizeInBits(GEPOp->getPointerAddressSpace());
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
for (User::const_op_iterator I = GEPOp->op_begin() + 1,
E = GEPOp->op_end(); I != E; ++I, ++GTI) {
Value* Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (StructType * STy = GTI.getStructTypeOrNull()) {
// For a struct, add the member offset.
unsigned FieldNo = unsigned(cast<ConstantInt>(Index)->getZExtValue());
if (FieldNo == 0) continue;
SymPtr.Offset += DL->getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (ConstantInt * CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero()) continue;
SymPtr.Offset += DL->getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
continue;
}
// In some cases the GEP might have indices that don't directly have a baseoffset
// we need to dig deeper to find these
std::vector<Value*> terms = { Index };
if (BinaryOperator * BOp = dyn_cast<BinaryOperator>(Index))
{
if (!(dyn_cast<ConstantInt>(BOp->getOperand(1))) &&
BOp->getOpcode() == Instruction::Add)
{
terms.clear();
terms.push_back(BOp->getOperand(0));
terms.push_back(BOp->getOperand(1));
}
}
for (auto Ind : terms)
{
uint64_t Scale = DL->getTypeAllocSize(GTI.getIndexedType());
ExtensionKind Extension = EK_NotExtended;
// If the integer type is smaller than the pointer size, it is implicitly
// sign extended to pointer size.
unsigned Width = Index->getType()->getIntegerBitWidth();
if (ptrSize > Width)
Extension = EK_SignExt;
// Use getLinearExpression to decompose the index into a C1*V+C2 form.
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Value* new_Ind = getLinearExpression(Ind, IndexScale, IndexOffset, Extension,
0U, DL);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
SymPtr.Offset += IndexOffset.getSExtValue() * Scale;
Scale *= IndexScale.getSExtValue();
SymbolicIndex Idx(new_Ind, Extension);
// If we already had an occurrence of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = SymPtr.Terms.size(); i != e; ++i) {
if (SymPtr.Terms[i].Idx == Idx) {
Scale += SymPtr.Terms[i].Scale;
SymPtr.Terms.erase(SymPtr.Terms.begin() + i);
break;
}
}
// Make sure that we have a scale that makes sense for this target's
// pointer size.
if (unsigned ShiftBits = 64 - ptrSize) {
Scale <<= ShiftBits;
Scale = (int64_t)Scale >> ShiftBits;
}
if (Scale) {
Term Entry = { Idx, int64_t(Scale) };
SymPtr.Terms.push_back(Entry);
}
}
}
// Analyze the base pointer next.
Ptr = GEPOp->getOperand(0);
} while (--MaxLookup);
return true;
}
// Debugging
//#define _LDST_DEBUG 1
#undef _LDST_DEBUG
#if defined(_LDST_DEBUG)
static int _bundleid = 0;
#endif
namespace {
enum class AddressModel {
BTS, A32, SLM, A64
};
struct LdStInfo {
// Load (or load intrinsic) for loadCombine().
// store (or store intrinsic) for storeCombine.
Instruction* Inst;
// Byte offset of 'Inst'->getPointerOperand() relative to
// that of the leading load/store inst.
int64_t ByteOffset;
LdStInfo(Instruction* aI, int64_t aBO) : Inst(aI), ByteOffset(aBO) {}
Type* getLdStType() const;
uint32_t getAlignment() const;
AddressModel getAddressModel(CodeGenContext* Ctx) const;
Value* getValueOperand() const;
bool isStore() const { return isa<StoreInst>(Inst); }
};
typedef SmallVector<LdStInfo, 8> InstAndOffsetPairs;
// A bundle: a group of consecutive loads or a group of consecutive stores.
// Each bundle maps to a single GEN load or store.
struct BundleInfo {
InstAndOffsetPairs LoadStores;
int bundle_eltBytes; // 1, 4, 8
int bundle_numElts;
// Valid for bundle_eltBytes = 1. It indicates whether D64 or
// D32(including D8U32 and D16U32) is used as data size.
bool useD64;
void print(raw_ostream& O, int BundleID = 0) const;
void dump() const;
};
typedef SmallVector<uint32_t, 8> BundleSize_t;
enum class LdStKind { IS_STORE, IS_LOAD };
// BundleConfig:
// To tell what vector size is legit. It may need GEN platform as input.
class BundleConfig {
public:
enum {
STORE_DEFAULT_BYTES_PER_LANE = 16, // 4 DW for non-uniform
LOAD_DEFAULT_BYTES_PER_LANE = 16 // 4 DW for non-uniform
};
BundleConfig(LdStKind K, int ByteAlign, bool Uniform,
const AddressModel AddrModel, CodeGenContext* Ctx)
{
uint32_t maxBytes = 0;
if (K == LdStKind::IS_STORE)
maxBytes = getMaxStoreBytes(Ctx);
else
maxBytes = getMaxLoadBytes(Ctx);
auto calculateSize = [=](bool Uniform)
{
int sz = (int)m_currVecSizeVar->size();
if (Uniform) {
return (uint32_t)sz;
}
int ix = 0;
for (; ix < sz; ++ix) {
uint32_t currBytes = (*m_currVecSizeVar)[ix] * m_eltSizeInBytes;
if (currBytes > maxBytes) {
break;
}
}
return (uint32_t)(ix > 0 ? ix : 1);
};
if (Ctx->platform.LSCEnabled()) {
if (ByteAlign >= 8) {
m_currVecSizeVar =
Uniform ? &m_d64VecSizes_u : &m_d64VecSizes;
m_eltSizeInBytes = 8;
m_actualSize = calculateSize(Uniform);
}
else if (ByteAlign == 4) {
m_currVecSizeVar =
Uniform ? &m_d32VecSizes_u : &m_d32VecSizes;
m_eltSizeInBytes = 4;
m_actualSize = calculateSize(Uniform);
}
else {
m_currVecSizeVar =
Uniform ? &m_d8VecSizes_u : &m_d8VecSizes;
m_eltSizeInBytes = 1;
m_actualSize = (uint32_t)m_currVecSizeVar->size();
}
}
else {
m_currVecSizeVar = &m_vecSizeVar;
if (Uniform) {
// Limit to simd8 (reasonable?), scattered read/write
if (ByteAlign >= 4) {
m_vecSizeVar = { 2, 4, 8 };
m_eltSizeInBytes = (ByteAlign >= 8 ? 8 : 4);
}
else {
m_vecSizeVar = { 2, 4, 8, 16, 32 };
m_eltSizeInBytes = 1;
}
m_actualSize = (uint32_t)m_vecSizeVar.size();
}
else {
if (ByteAlign >= 8 && AddrModel == AddressModel::A64) {
m_vecSizeVar = { 2, 4 }; // QW scattered read/write
m_eltSizeInBytes = 8;
m_actualSize = calculateSize(Uniform);
}
else if (ByteAlign < 4) {
m_vecSizeVar = { 2, 4 }; // Byte scattered read/write
m_eltSizeInBytes = 1;
m_actualSize = m_vecSizeVar.size();
}
else {
m_vecSizeVar = { 2, 3, 4 }; // untyped read/write
m_eltSizeInBytes = 4;
m_actualSize = calculateSize(Uniform);
}
}
}
m_currIndex = 0;
}
uint32_t getAndUpdateVecSizeInBytes(uint32_t Bytes) {
const BundleSize_t& Var = *m_currVecSizeVar;
int sz = (int)getSize();
int i;
uint32_t total = 0;
for (i = m_currIndex; i < sz; ++i) {
uint32_t vecsize = Var[i];
total = vecsize * m_eltSizeInBytes;
if (total >= Bytes) {
break;
}
}
if (i >= sz) {
m_currIndex = 0;
return 0;
}
// update index
m_currIndex = i;
return total;
}
uint32_t getMaxVecSizeInBytes() const {
const BundleSize_t& Var = *m_currVecSizeVar;
return Var[getSize()-1] * m_eltSizeInBytes;
}
uint32_t getCurrVecSize() const {
const BundleSize_t& Var = *m_currVecSizeVar;
IGC_ASSERT(0 <= m_currIndex && (int)getSize() > m_currIndex);
return Var[m_currIndex];
}
uint32_t getSize() const { return m_actualSize; }
//
// Legal vector sizes for load/store
//
// 64bit aligned, 64bit element (D64)
static const BundleSize_t m_d64VecSizes;
// 32bit aligned, 32bit element (D32)
static const BundleSize_t m_d32VecSizes;
// 8bit aligned, 8bit element (D16U32, D32, D64)
static const BundleSize_t m_d8VecSizes;
//
// uniform
//
// 64bit aligned, 64bit element (D64)
static const BundleSize_t m_d64VecSizes_u;
// 32bit aligned, 32bit element (D32)
static const BundleSize_t m_d32VecSizes_u;
// 8bit aligned, 8bit element (D16U32, D32, D64)
static const BundleSize_t m_d8VecSizes_u;
private:
// Special vecSize, used for pre-LSC platform.
BundleSize_t m_vecSizeVar;
const BundleSize_t* m_currVecSizeVar;
uint32_t m_eltSizeInBytes;
// m_currIndex is initialized to zero.
// m_actualSize is the actual size of BundleSize variable to use
// and it is no larger than the variable's capacity.
int m_currIndex;
int m_actualSize;
};
//
// Load and Store combine pass:
// combines consecutive loads/stores into a single load/store.
// It is based on a simple integer symbolic evaluation.
// 1. It can combine loads/stores of different element size; and
// 2. It does clean up to remove dead code after combining, thus
// no need to run DCE after this.
class LdStCombine : public FunctionPass
{
const DataLayout* m_DL;
AliasAnalysis* m_AA;
WIAnalysis* m_WI;
CodeGenContext* m_CGC;
Function* m_F;
public:
static char ID;
LdStCombine()
: FunctionPass(ID)
, m_DL(nullptr), m_AA(nullptr), m_WI(nullptr), m_CGC(nullptr)
, m_F(nullptr), m_hasLoadCombined(false), m_hasStoreCombined(false)
{
initializeLdStCombinePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function& F) override;
void getAnalysisUsage(AnalysisUsage& AU) const override {
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<WIAnalysis>();
}
StringRef getPassName() const override { return "LdStCombine"; }
void releaseMemory() override { clear(); }
private:
SymbolicEvaluation m_symEval;
bool m_hasLoadCombined;
bool m_hasStoreCombined;
//
// Caching
//
// If true, IGC needs to emulate I64.
bool m_hasI64Emu = false;
//
// Temporary reused for each BB.
//
// Inst order within a BB.
DenseMap<const Instruction*, int> m_instOrder;
// Per-BB: all insts that have been combined and will be deleted.
DenseMap<const Instruction*, int> m_combinedInsts;
// All root instructions (ie their uses are empty, including stores)
// that are to be deleted at the end of each BB.
SmallVector<Instruction*, 16> m_toBeDeleted;
void appendToBeDeleted(Instruction* I) {
if (I != nullptr)
m_toBeDeleted.push_back(I);
}
// Control the way that a load/store is handled.
// [more for future improvement]
DenseMap<const Instruction*, int> m_visited;
// a bundle : a group of loads or a group of store.
// Each bundle will be combined into a single load or single store.
std::list<BundleInfo> m_bundles;
void init(BasicBlock* BB) {
m_visited.clear();
m_instOrder.clear();
m_combinedInsts.clear();
}
void setInstOrder(BasicBlock* BB);
void setVisited(Instruction* I) { m_visited[I] = 1; }
bool isVisited(const Instruction* I) const {
return m_visited.count(I) > 0;
}
// store combining top function
void combineStores();
// load combining top function
void combineLoads();
void createBundles(BasicBlock* BB, InstAndOffsetPairs& Stores);
// Actually combining stores.
void createCombinedStores(BasicBlock* BB);
// Actually combining loads.
void createCombinedLoads(BasicBlock* BB);
// If V is vector, get all its elements (may generate extractElement
// insts; if V is not vector, just V itself.
void getOrCreateElements(Value* V,
SmallVector<Value*, 16>& EltV, Instruction* InsertBefore);
// Return true if V is vector and splitting is beneficial.
bool splitVectorType(Value* V, LdStKind K) const;
bool splitVectorTypeForGather(Value* V) const {
return splitVectorType(V, LdStKind::IS_STORE);
}
bool splitVectorTypeForScatter(Value* V) const {
return splitVectorType(V, LdStKind::IS_LOAD);
}
// GatherCopy:
// copy multiple values (arg: Vals) into a single Dst (return value)
// (It's a packed copy, thus size(all Vals) = size(Dst).
Value* gatherCopy(
const uint32_t DstEltBytes,
int NElts,
SmallVector<Value*, 16>& Vals,
Instruction* InsertBefore);
// scatterCopy:
// copy components of a single value (arg: CompositeVal) into
// multiple values (arg: Vals)
void scatterCopy(
SmallVector<Value*, 16>& Vals,
int DstEltBytes,
int NElts,
Value* CompositeVal,
Instruction* InsertBefore);
// Helper functions
bool hasAlias(AliasSetTracker& AST, MemoryLocation& MemLoc);
// Symbolic difference of two address values
// return value:
// true if A1 - A0 = constant in bytes, and return that constant as BO.
// false if A1 - A0 != constant. BO will be undefined.
// BO: byte offset
bool getDiffIfConstant(Value* A0, Value* A1, int64_t& ConstBO);
// If I0 and I1 are load/store insts, compare their address operands and return
// the constant difference if it is; return false otherwise.
bool getAddressDiffIfConstant(Instruction* I0, Instruction* I1, int64_t& ConstBO);
// Create unique identified struct type
StructType* getOrCreateUniqueIdentifiedStructType(
ArrayRef<Type*> EltTys, bool IsSOA, bool IsPacked = true);
uint32_t getNumElements(Type* Ty) const {
return Ty->isVectorTy()
? (unsigned)cast<IGCLLVM::FixedVectorType>(Ty)->getNumElements() : 1;
}
Type* generateLoadType(SmallVector<Value*, 16>& Vals,
uint32_t ValEltBytes, uint32_t ValNElts);
// For layout struct (at most 2 level), given the current member
// position specified my Indices, advance Indices to the next member.
// Return value:
// false : if the current member is already the last;
// true : otherwise.
bool advanceStructIndices(SmallVector<uint32_t, 2>& Indices,
StructType* StTy);
// Skip counting those insts as no code shall be emitted for them.
bool skipCounting(Instruction* I) {
if (auto* IntrinsicI = dyn_cast<llvm::IntrinsicInst>(I)) {
if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
return true;
}
return isDbgIntrinsic(I) || isa<BitCastInst>(I);
}
// For generating better code
bool getVecEltIfConstExtract(Value* V, SmallVector<Value*, 8>& EltV);
void mergeConstElements(
SmallVector<Value*, 4>& EltVals, uint32_t MaxMergeBytes);
void eraseDeadInsts();
void clear()
{
m_symEval.clear();
m_hasLoadCombined = false;
m_hasStoreCombined = false;
m_visited.clear();
m_instOrder.clear();
m_bundles.clear();
}
};
}
const BundleSize_t BundleConfig::m_d64VecSizes = { 2,3,4};
const BundleSize_t BundleConfig::m_d32VecSizes = { 2,3,4,8 };
const BundleSize_t BundleConfig::m_d8VecSizes = { 2,4,8 };
const BundleSize_t BundleConfig::m_d64VecSizes_u = { 2,3,4,8,16,32,64 };
const BundleSize_t BundleConfig::m_d32VecSizes_u = { 2,3,4,8,16,32,64 };
const BundleSize_t BundleConfig::m_d8VecSizes_u = { 2,4,8,16,32 };
bool IGC::doLdStCombine(const CodeGenContext* CGC) {
if (CGC->type == ShaderType::OPENCL_SHADER) {
auto oclCtx = (const OpenCLProgramContext*)CGC;
// internal flag overrides IGC key
switch (oclCtx->m_InternalOptions.LdStCombine) {
default:
break;
case 0:
return false;
case 1:
return CGC->platform.LSCEnabled();
case 2:
return true;
}
}
uint32_t keyval = IGC_GET_FLAG_VALUE(EnableLdStCombine);
if ((keyval & 0x3) == 1 && !CGC->platform.LSCEnabled())
return false;
return ((keyval & 0x3) != 0);
}
uint32_t IGC::getMaxStoreBytes(const CodeGenContext* CGC) {
if (CGC->type == ShaderType::OPENCL_SHADER) {
auto oclCtx = (const OpenCLProgramContext*)CGC;
// internal flag overrides IGC key
if (oclCtx->m_InternalOptions.MaxStoreBytes != 0)
return oclCtx->m_InternalOptions.MaxStoreBytes;
}
uint32_t bytes = IGC_GET_FLAG_VALUE(MaxStoreVectorSizeInBytes);
if (bytes == 0 &&
(IGC_IS_FLAG_ENABLED(EnableVector8LoadStore) ||
CGC->type == ShaderType::RAYTRACING_SHADER ||
CGC->hasSyncRTCalls()) &&
CGC->platform.supports8DWLSCMessage()) {
// MaxStoreVectorSizeInBytes isn't set and it is RT
// EnableVector8LoadStore from memopt is supported as well
bytes = 32; // 8 DW
}
else if (!(bytes >= 4 && bytes <= 32 && isPowerOf2_32(bytes))) {
// Use default if bytes from the key is not set or invalid
bytes = BundleConfig::STORE_DEFAULT_BYTES_PER_LANE;
}
return bytes;
}
uint32_t IGC::getMaxLoadBytes(const CodeGenContext* CGC) {
if (CGC->type == ShaderType::OPENCL_SHADER) {
auto oclCtx = (const OpenCLProgramContext*)CGC;
// internal flag overrides IGC key
if (oclCtx->m_InternalOptions.MaxLoadBytes != 0)
return oclCtx->m_InternalOptions.MaxLoadBytes;
}
uint32_t bytes = IGC_GET_FLAG_VALUE(MaxLoadVectorSizeInBytes);
if (bytes == 0 &&
(IGC_IS_FLAG_ENABLED(EnableVector8LoadStore) ||
CGC->type == ShaderType::RAYTRACING_SHADER ||
CGC->hasSyncRTCalls()) &&
CGC->platform.supports8DWLSCMessage()) {
// MaxLoadVectorSizeInBytes isn't set and it is RT
// EnableVector8LoadStore from memopt is supported as well
bytes = 32; // 8 DW
}
// Use default if bytes from the key is not set or invalid
else if (!(bytes >= 4 && bytes <= 32 && isPowerOf2_32(bytes))) {
// Use default if bytes from the key is not set or invalid
bytes = BundleConfig::LOAD_DEFAULT_BYTES_PER_LANE;
}
return bytes;
}
FunctionPass* IGC::createLdStCombinePass() {
return new LdStCombine();
}
#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG "igc-ldstcombine"
#define PASS_DESC "IGC load/store combine"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LdStCombine, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_END(LdStCombine, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
char LdStCombine::ID = 0;
Type* LdStInfo::getLdStType() const
{
if (LoadInst* LI = dyn_cast<LoadInst>(Inst))
{
return LI->getType();
}
else if (StoreInst* SI = dyn_cast<StoreInst>(Inst))
{
return SI->getValueOperand()->getType();
}
IGC_ASSERT(false);
return nullptr;
}
uint32_t LdStInfo::getAlignment() const
{
if (LoadInst* LI = dyn_cast<LoadInst>(Inst))
{
return (uint32_t)IGCLLVM::getAlignmentValue(LI);
}
else if (StoreInst* SI = dyn_cast<StoreInst>(Inst))
{
return (uint32_t)IGCLLVM::getAlignmentValue(SI);
}
IGC_ASSERT(false);
return 1;
}
Value* LdStInfo::getValueOperand() const
{
if (LoadInst* LI = dyn_cast<LoadInst>(Inst))
{
return LI;
}
else if (StoreInst* SI = dyn_cast<StoreInst>(Inst))
{
return SI->getValueOperand();
}
IGC_ASSERT(false);
return nullptr;
}
AddressModel LdStInfo::getAddressModel(CodeGenContext* Ctx) const
{
Value* Ptr = nullptr;
if (LoadInst* LI = dyn_cast<LoadInst>(Inst))
{
Ptr = LI->getPointerOperand();
}
else if (StoreInst* SI = dyn_cast<StoreInst>(Inst)) {
Ptr = SI->getPointerOperand();
}
else {
IGC_ASSERT_MESSAGE(false, "Not support yet");
}
PointerType* PTy = cast<PointerType>(Ptr->getType());
const uint32_t AS = PTy->getPointerAddressSpace();
uint bufferIndex = 0;
bool directIndexing = false;
BufferType BTy = DecodeAS4GFXResource(AS, directIndexing, bufferIndex);
AddressModel addrModel;
if (BTy == SLM) {
addrModel = AddressModel::SLM;
}
else if (BTy == ESURFACE_STATELESS) {
const bool isA32 = !IGC::isA64Ptr(PTy, Ctx);
addrModel = (isA32 ? AddressModel::A32 : AddressModel::A64);
}
else {
addrModel = AddressModel::BTS;
}
return addrModel;
}
bool LdStCombine::hasAlias(AliasSetTracker& AST, MemoryLocation& MemLoc)
{
for (auto& AS : AST)
{
if (AS.isForwardingAliasSet())
continue;
AliasResult aresult = AS.aliasesPointer(MemLoc.Ptr, MemLoc.Size, MemLoc.AATags, AST.getAliasAnalysis());
if (aresult != AliasResult::NoAlias) {
return true;
}
}
return false;
}
void LdStCombine::setInstOrder(BasicBlock* BB)
{
// Lazy initialization. Skip if it's been initialized.
if (m_instOrder.size() > 0)
return;
int i = -1;
for (auto II = BB->begin(), IE = BB->end(); II != IE; ++II)
{
Instruction* I = &*II;
m_instOrder[I] = (++i);
}
}
bool LdStCombine::getDiffIfConstant(Value* A0, Value* A1, int64_t& constBO)
{
// Using a simple integer symbolic expression (polynomial) as SCEV
// does not work well for this.
SymExpr* S0 = m_symEval.getSymExpr(A0);
SymExpr* S1 = m_symEval.getSymExpr(A1);
return m_symEval.isOffByConstant(S0, S1, constBO);
}
bool LdStCombine::getAddressDiffIfConstant(Instruction* I0, Instruction* I1, int64_t& BO)
{
if (isa<LoadInst>(I0) && isa<LoadInst>(I1))
{
LoadInst* LI0 = static_cast<LoadInst*>(I0);
LoadInst* LI1 = static_cast<LoadInst*>(I1);
return getDiffIfConstant(LI0->getPointerOperand(), LI1->getPointerOperand(), BO);
}
if (isa<StoreInst>(I0) && isa<StoreInst>(I1))
{
StoreInst* SI0 = static_cast<StoreInst*>(I0);
StoreInst* SI1 = static_cast<StoreInst*>(I1);
return getDiffIfConstant(SI0->getPointerOperand(), SI1->getPointerOperand(), BO);
}
return false;
}
bool LdStCombine::advanceStructIndices(
SmallVector<uint32_t, 2>& Indices, StructType* StTy)
{
IGC_ASSERT_MESSAGE(Indices[0] < StTy->getNumElements(),
"Indices should be valid on entry to this function!");
Type* Ty1 = StTy->getElementType(Indices[0]);
if (Ty1->isStructTy()) {
StructType* subStTy = cast<StructType>(Ty1);
uint32_t nextIdx = Indices[1] + 1;
if (nextIdx == subStTy->getNumElements()) {
nextIdx = 0;
Indices[0] += 1;
}
Indices[1] = nextIdx;
}
else {
Indices[0] += 1;
}
return Indices[0] < StTy->getNumElements();
}
bool LdStCombine::runOnFunction(Function& F)
{
m_CGC = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
// If EnableLdStCombine = 2, do it for both lsc and legacy messages.
// The plan is to do it for LSC message only, ie, EnableLdStCombine=1.
uint32_t keyval = IGC_GET_FLAG_VALUE(EnableLdStCombine);
if (F.hasOptNone() ||
((keyval & 0x1) == 1 && !m_CGC->platform.LSCEnabled()))
return false;
m_DL = &F.getParent()->getDataLayout();
m_AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
m_WI = &getAnalysis<WIAnalysis>();
if (IGC_IS_FLAG_ENABLED(DisableUniformAnalysis)) {
m_WI = nullptr;
}
else {
m_WI = &getAnalysis<WIAnalysis>();
}
m_F = &F;
// Initialize symbolic evaluation
m_symEval.setDataLayout(m_DL);
// i64Emu: mimic Emu64Ops's enabling condition. Seems conservative
// but can be improved in the future if needed.
m_hasI64Emu = (m_CGC->platform.need64BitEmulation() &&
(IGC_GET_FLAG_VALUE(Enable64BitEmulation) ||
IGC_GET_FLAG_VALUE(Enable64BitEmulationOnSelectedPlatform)));
combineStores();
combineLoads();
bool changed = (m_hasLoadCombined || m_hasStoreCombined);
return changed;
}
// getElments():
// Return all valid elements of a given vector V.
// It may need to insert ExtractElementInst.
void LdStCombine::getOrCreateElements(
Value* V, SmallVector<Value*, 16>& EltV, Instruction* InsertBefore)
{
Type* Ty = V->getType();
VectorType* VTy = dyn_cast<VectorType>(Ty);
if (!VTy) {
EltV.push_back(V);
return;
}
const int32_t nelts = getNumElements(VTy);
EltV.resize(nelts, UndefValue::get(VTy->getScalarType()));
Value* ChainVal = V;
while (!isa<Constant>(ChainVal)) {
InsertElementInst* IEI = dyn_cast<InsertElementInst>(ChainVal);
if (!IEI || !isa<ConstantInt>(IEI->getOperand(2))) {
break;
}
ConstantInt* CInt = cast<ConstantInt>(IEI->getOperand(2));
uint32_t idx = (uint32_t)CInt->getZExtValue();
// Make sure the last IEI will be recorded if an element is
// inserted multiple times.
if (isa<UndefValue>(EltV[idx])) {
EltV[idx] = IEI->getOperand(1);
}
ChainVal = IEI->getOperand(0);
}
if (isa<UndefValue>(ChainVal)) {
// All valid elements known. For example,
// v0 = extelt undef, s0, 0
// v1 = extelt v0, s1, 1
// v2 = extelt v1, s2, 2
// V = extelt v2, s3, 3
// EltV[] = { s0, s1, s2, s3 }
return;
}
if (ConstantVector* CV = dyn_cast<ConstantVector>(ChainVal)) {
// Get valid elements from the final constant vector, for example.
// v0 = extelt {1, 2, 3, 4}, s0, 0
// V = extelt v0, s2, 2
// EltV[] = { s0, 2, s2, 4}
for (int i = 0; i < nelts; ++i) {
Value* v = CV->getOperand(i);
if (isa<UndefValue>(EltV[i]) && !isa<UndefValue>(v)) {
EltV[i] = v;
}
}
return;
}
// Not all elements known, get remaining unknown elements
// LV = load
// v0 = extelt LV, s0, 0
// V = extelt v0, s2, 1
// EltV[] = {s0, s1, 'extElt LV, 2', 'extElt LV, 3' }
IRBuilder<> builder(InsertBefore);
for (int i = 0; i < nelts; ++i) {
if (isa<UndefValue>(EltV[i])) {
Value* v = builder.CreateExtractElement(V, builder.getInt32(i));
EltV[i] = v;
}
}
}
// Return value:
// true:
// if V is a vector and it is only used in ExtractElement with const index.
// 'EltV has all its elements.
// false: otherwise. 'EltV' has 'V' only.
// Note: unused elements are returned as UndefValue.
bool LdStCombine::getVecEltIfConstExtract(Value* V, SmallVector<Value*, 8>& EltV)
{
auto useOrigVector = [&EltV, V]() {
EltV.clear();
EltV.push_back(V);
};
Type* Ty = V->getType();
VectorType* VTy = dyn_cast<VectorType>(Ty);
if (!VTy) {
useOrigVector();
return false;
}
uint32_t N = getNumElements(VTy);
Value* undef = UndefValue::get(Ty->getScalarType());
EltV.assign(N, undef);
for (auto UI : V->users()) {
ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(UI);
if (!EEI) {
useOrigVector();
return false;
}
ConstantInt *CI = dyn_cast<ConstantInt>(EEI->getIndexOperand());
if (!CI) {
useOrigVector();
return false;
}
uint32_t ix = (uint32_t)CI->getZExtValue();
if (!isa<UndefValue>(EltV[ix])) {
useOrigVector();
return false;
}
EltV[ix] = EEI;
}
return true;
}
void LdStCombine::combineStores()
{
// All store candidates with addr = common-base + const-offset
// All stores have the same common-base but different const-offset.
InstAndOffsetPairs Stores;
auto isStoreCandidate = [&](Instruction* I)
{
if (StoreInst* SI = dyn_cast<StoreInst>(I))
{
// Sanity check
Type* eTy = SI->getValueOperand()->getType()->getScalarType();
if (!isPowerOf2_32((uint32_t)m_DL->getTypeStoreSize(eTy))) {
return false;
}
// Only original, not-yet-visited store can be candidates.
const bool isOrigSt = (m_instOrder.size() == 0 ||
m_instOrder.count(I) > 0);
uint32_t eBytes = (uint32_t)m_DL->getTypeStoreSize(eTy);
const bool legitSize = isPowerOf2_32(eBytes);
return (isOrigSt && !isVisited(I) &&
SI->isSimple() && SI->isUnordered());
}
return false;
};
// If all Stores can move down across I, return true;
// otherwise, return false.
auto canCombineStoresAcross = [this](AliasSetTracker& aAST, Instruction* I)
{
// Can't combine for non-debug fence like instructions
if (I->isFenceLike() && !IsDebugInst(I))
return false;
if (isa<LoadInst>(I) ||
isa<StoreInst>(I) ||
I->mayReadOrWriteMemory()) {
MemoryLocation memloc = MemoryLocation::get(I);
return !hasAlias(aAST, memloc);
}
return true;
};
// If 'aI' with offset 'aStart' overlaps with any store in aStores,
// return true; otherwise, return false.
// Note: once we know the offset is constant, this checking is precise
// and better than using alias analysis (basicaa).
auto hasOverlap = [this](InstAndOffsetPairs& aStores,
Instruction* aI, int64_t aStart) {
StoreInst* aSI = dyn_cast<StoreInst>(aI);
if (aSI == nullptr)
return true;
Type* Ty = aSI->getValueOperand()->getType();
uint32_t TyBytes = (uint32_t)m_DL->getTypeStoreSize(Ty);
int64_t aEnd = aStart + TyBytes;
// 'aSI' byte range [aStart, aEnd)
for (auto& lsinfo : aStores) {
IGC_ASSERT(lsinfo.isStore());
Type* aTy = lsinfo.getLdStType();
uint32_t aTyBytes = (uint32_t)m_DL->getTypeStoreSize(aTy);
// 'lsinfo' byte range: [thisStart, thisEnd)
int64_t thisStart = lsinfo.ByteOffset;
int64_t thisEnd = thisStart + aTyBytes;
if ((aStart >= thisStart && aStart < thisEnd) ||
(thisStart >= aStart && thisStart < aEnd))
return true;
}
return false;
};
// Only handle stores within the given instruction window.
constexpr uint32_t WINDOWSIZE = 150;
m_hasStoreCombined = false;
for (auto& BB : *m_F)
{
init(&BB);
auto IE = BB.end();
for (auto II = BB.begin(); II != IE; ++II)
{
Instruction* base = &*II;
if (!isStoreCandidate(base))
{
continue;
}
uint32_t numInsts = 1;
Stores.push_back(LdStInfo(base, 0));
// Keep store candidates for checking alias to see if those
// stores can be moved to the place of the last store.
AliasSetTracker AST(*m_AA);
AST.add(base);
for (auto JI = std::next(II); JI != IE; ++JI) {
Instruction* I = &*JI;
if (!skipCounting(I))
++numInsts;
if (numInsts > WINDOWSIZE)
break;
// Check if any store in AST may be aliased to I
bool mayAlias = (!canCombineStoresAcross(AST, I));
int64_t offset;
if (isStoreCandidate(I) &&
getAddressDiffIfConstant(base, I, offset)) {
// If both mayAlias and hasOverlap are true, stop
if (mayAlias && hasOverlap(Stores, I, offset))
break;
Stores.push_back(LdStInfo(I, offset));
AST.add(I);
}
else if (mayAlias) {
break;
}
}
// Create bundles from those stores.
// Note: createBundles() will markt all stores as visited when
// it is returend, meaning each store is considered only
// once. For example,
// store a
// store b
// store c // alias to store a
// store d
// As 'store c' aliases to 'store a', candidate 'Stores' stop
// growing at 'store c', giving the first set {a, b} for
// combining. Even if {a, b} cannot be combined, but {b, c, d}
// can; it will go on with the next candidate set {c, d}, not
// {b, c, d}; missing opportunity to combine {b, c, d}.
// So far, this is fine as this case isn't important.
createBundles(&BB, Stores);
}
// Actually combining them.
createCombinedStores(&BB);
}
}
void LdStCombine::combineLoads()
{
// this check's for testing, and to be removed when stable.
if ((IGC_GET_FLAG_VALUE(EnableLdStCombine) & 0x4) == 0)
return;
// Start with OCL, then apply to other APIs.
if (m_CGC->type != ShaderType::OPENCL_SHADER)
return;
// All load candidates with addr = common-base + const-offset
InstAndOffsetPairs Loads;
auto isLoadCandidate = [&](Instruction* I)
{
if (LoadInst* LI = dyn_cast<LoadInst>(I))
{
// Sanity check
Type* eTy = LI->getType()->getScalarType();
if (!isPowerOf2_32((uint32_t)m_DL->getTypeStoreSize(eTy))) {
return false;
}
// Only original, not-yet-visited load can be candidates.
bool isOrigLd = (m_instOrder.size() == 0 ||
m_instOrder.count(I) > 0);
return (isOrigLd && !isVisited(I) &&
LI->isSimple() && LI->isUnordered());
}
return false;
};
// If 'I' can be moved up accross all inst in aAST, return true.
auto canMoveUp = [this](AliasSetTracker& aAST, Instruction* I)
{
if (isa<LoadInst>(I)) {
MemoryLocation memloc = MemoryLocation::get(I);
return !hasAlias(aAST, memloc);
}
return true;
};
// Only handle loads within the given instruction window.
constexpr uint32_t LDWINDOWSIZE = 150;
m_hasLoadCombined = false;
for (auto& BB : *m_F)
{
init(&BB);
auto IE = BB.end();
for (auto II = BB.begin(); II != IE; ++II)
{
Instruction* base = &*II;
if (!isLoadCandidate(base)) {
continue;
}
uint32_t numInsts = 1;
Loads.push_back(LdStInfo(base, 0));
// Keep store/maywritemem/fence insts for checking alias to see if those
// stores block load candidates from moving to the first (leading) load.
AliasSetTracker AST(*m_AA);
for (auto JI = std::next(II); JI != IE; ++JI) {
Instruction* I = &*JI;
if (!skipCounting(I))
++numInsts;
// cannot merge beyond fence or window limit
if (I->isFenceLike() || numInsts > LDWINDOWSIZE) {
break;
}
if (isa<StoreInst>(I) || I->mayWriteToMemory()) {
AST.add(I);
continue;
}
if (isLoadCandidate(I)) {
int64_t offset;
if (getAddressDiffIfConstant(base, I, offset)) {
if (canMoveUp(AST, I)) {
Loads.push_back(LdStInfo(I, offset));
} else {
// If it cannot be moved up, either keep going or
// stopping. Choose stop for now.
break;
}
}
}
}
// Note: For now, each load is considered once. For example,
// load a
// store x : alias to load c
// load b
// load c
// load d
// As 'load c' aliases to 'store x', candidate 'Loads' stop
// growing at 'load b', giving the first set {a, b}. Even
// though {a, b} cannot be combined, 'load b' will not be
// reconsidered for a potential merging of {b, c, d}.
//
// This is controlled by setting visited. A better way of setting
// visited can overcome the above issue.
createBundles(&BB, Loads);
}
// Actually combining them.
createCombinedLoads(&BB);
}
}
void LdStCombine::createBundles(BasicBlock* BB, InstAndOffsetPairs& LoadStores)
{
//
// SelectD32OrD64:
// a utility class to select whether to use data element D32 or D64 when
// the alignment is 8 bytes or 1 bytes. Not used when alignment is 4.
// (Here, data element refers to data element in load/store messages.)
// 0) Don't use D64 if i64 is not nativaly supported (no Q mov).
// 1) use D32 if any store in the bundle has byte-element access (either
// scalar or element type of a vector), and the store is non-uniform,
// as D64 might require stride=8, which is not legit, to merge byte
// elements; or
// 2) use D64 if there are more D64 elements than D32 elements (thus
// less move instructions); or
// 3) use D64 if VecSize = 3 and there is at least one D64 store
// (note that V3D64 has no equivalent D32 messages).
// 4) otherwise, either D32 or D64 based on uniformity and size
// (details in useD64()).
//
class SelectD32OrD64 {
uint32_t LastNumD64, LastNumD32;
uint32_t currNumD64, currNumD32;
// If byte element is present, save its index.
int32_t lastStoreIdxWithByteElt;
// Whether this store is uniform or not.
const bool isUniform;
// Do tracking only for 8byte-aligned D64 or 1byte-aligned
const bool doTracking;
const CodeGenContext* Ctx;
const DataLayout* DL;
public:
SelectD32OrD64(const CodeGenContext* aCtx,
const DataLayout* aDL, bool aUniform, uint32_t aAlign)
: Ctx(aCtx), DL(aDL)
, LastNumD64(0), LastNumD32(0)
, currNumD64(0), currNumD32(0)
, lastStoreIdxWithByteElt(-1)
, isUniform(aUniform)
, doTracking(aAlign == 8 || aAlign == 1)
{}
// LSI: the store to be tracked.
// LSIIdx: this store's index in the bundle.
// ByteOffset: starting offset of this LSI in the coalesced var.
void track(const LdStInfo* LSI, int32_t LSIIdx, uint32_t ByteOffset) {
if (!doTracking)
return;
Type* Ty = LSI->getLdStType();
Type* eTy = Ty->getScalarType();
// sanity check
if (!(eTy->isIntOrPtrTy() || eTy->isFloatingPointTy()))
return;
uint32_t eBytes = (uint32_t)DL->getTypeStoreSize(eTy);
uint32_t nElts = 1;
if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
auto fVTy = cast<IGCLLVM::FixedVectorType>(VTy);
nElts = (uint32_t)fVTy->getNumElements();
}
// If ByteOffset is odd, need to use byte mov to pack coalesced var
// (packed struct). so, treat this the same as byte-element access.
if (eBytes == 1 || (ByteOffset & 1) != 0) {
lastStoreIdxWithByteElt = LSIIdx;
}
else if (eBytes == 4) {
currNumD32 += nElts;
}
else if (eBytes == 8) {
currNumD64 += nElts;
}
}
void save() {
if (!doTracking)
return;
LastNumD32 = currNumD32;
LastNumD64 = currNumD64;
}
bool useD64(uint32_t VecEltBytes, uint32_t VecSizeInElt) {
if (!doTracking)
return false;
if (VecEltBytes == 1) {
if (hasByteElement()) {
if (!isUniform) {
IGC_ASSERT(VecSizeInElt <= 4);
}
return false;
}
if (VecSizeInElt == 8 && !isUniform) {
return true;
}
// Currently, emit uses d32/d64 scatter for uniform store/load
// and is limited to simd8.
// Use LastNumD64 as the bundle has been found
if (isUniform &&
(VecSizeInElt > (4 * 8) ||
(LastNumD64 > 0 && (2 * LastNumD64 > LastNumD32)))) {
return true;
}
}
return false;
}
bool hasByteElement() const { return lastStoreIdxWithByteElt >= 0; }
bool skip(uint32_t VecEltBytes, uint32_t VecSizeInElt) const {
if (!doTracking)
return false;
if (VecEltBytes == 8 ||
(VecEltBytes == 1 && VecSizeInElt == 8)) {
if (hasByteElement() && !isUniform) {
// case 1: check whether to skip D64.
return true;
}
}
if (VecEltBytes == 8) {
// use currNumD64 during finding the bundle
if (currNumD64 > 0 && VecSizeInElt == 3) {
// case 2, check whether to skip D64.
return false;
}
if (currNumD64 > 0 && (2 * currNumD64 > currNumD32)) {
// case 3: check whether to skip D64.
return false;
}
// otherwise, skip 8byte-aligned D64
return true;
}
// VecEltBytes == 1; either D32 or D64 is okay, thus no skip.
// useD64() will select which one to use.
return false;
}
};
auto markVisited = [this](InstAndOffsetPairs& LoadStores) {
int32_t SZ = (int)LoadStores.size();
for (int i = 0; i < SZ; ++i)
{
const LdStInfo* lsi = &LoadStores[i];
setVisited(lsi->Inst);
}
LoadStores.clear();
};
int32_t SZ = (int)LoadStores.size();
if (SZ <= 1) {
markVisited(LoadStores);
return;
}
auto isBundled = [](const LdStInfo* LSI, DenseMap<const Instruction*, int>& L) {
return (L.count(LSI->Inst) > 0);
};
auto setBundled = [&isBundled](LdStInfo* LSI,
DenseMap<const Instruction*, int>& L) {
if (!isBundled(LSI, L)) {
L[LSI->Inst] = 1;
}
};
setInstOrder(BB);
// Sort loads/stores in the order of increasing ByteOffset
std::sort(LoadStores.begin(), LoadStores.end(),
[](const LdStInfo& A, const LdStInfo& B) {
return A.ByteOffset < B.ByteOffset;
});
const LdStInfo* lsi0 = &LoadStores[0];
LoadInst* LI = dyn_cast<LoadInst>(lsi0->Inst);
StoreInst* SI = dyn_cast<StoreInst>(lsi0->Inst);
LdStKind Kind = LI ? LdStKind::IS_LOAD : LdStKind::IS_STORE;
bool isUniform = false;
if (m_WI)
{
isUniform = m_WI->isUniform(
LI ? LI->getPointerOperand() : SI->getPointerOperand());
}
const AddressModel AddrModel = lsi0->getAddressModel(m_CGC);
// Starting from the largest alignment (favor larger alignment)
const uint32_t bundleAlign[] = { 8, 4, 1 };
const uint32_t aligns = (int)(sizeof(bundleAlign)/sizeof(bundleAlign[0]));
// keep track of the number of unmerged loads
uint32_t numRemainingLdSt = SZ;
for (int ix = 0; ix < aligns && numRemainingLdSt > 1; ++ix)
{
const uint32_t theAlign = bundleAlign[ix];
// If i64 insts are not supported, don't do D64 as it might
// require i64 mov in codegen emit (I64 Emu only handles 1-level
// insertvalue and extractvalue so far).
if (m_hasI64Emu && theAlign > 4)
continue;
// Use alignment as element size, which maps to gen load/store element
// size as follows:
// 1) For byte-aligned, use vecEltBytes = 1 with different
// number of vector elements to map D16U32, D32, D64. The final
// store's type would be <2xi8> or i16 for D16U32, i32 for D32,
// and i64 for D64. For uniform, multiple of D32/D64 can be
// merged and store's type would be <n x i32> or <n x i64>.
// 2) 4-byte aligned D32. vecEltBytes = 4.
// The final store's type is <n x i32>
// 3) 8-byte aligned D64. vecEltBytes = 8.
// The final store's type is <n x i64>
const uint32_t vecEltBytes = theAlign;
int32_t i = 0;
while (i < SZ)
{
// 1. The first one is the leading store.
const LdStInfo* leadLSI = &LoadStores[i];
if (isBundled(leadLSI, m_combinedInsts) ||
(i+1) == SZ) /* skip for last one */ {
++i;
continue;
}
if (m_WI && isUniform &&
!m_WI->isUniform(leadLSI->getValueOperand())) {
// no combining for *uniform-ptr = non-uniform value
++i;
continue;
}
Type* leadTy = leadLSI->getLdStType();
Type* eltTy = leadTy->getScalarType();
uint32_t eltBytes = (uint32_t)(m_DL->getTypeStoreSize(eltTy));
const uint32_t align = leadLSI->getAlignment();
// Skip if align is less than the current alignment. Also, avoid
// merging non-uniform stores whose size >= 4 bytes when checking
// byte-aligned bundling.
if (align < theAlign ||
(theAlign == 1 && eltBytes >= 4 && !isUniform)) {
++i;
continue;
}
BundleConfig BC(Kind, theAlign, isUniform, AddrModel, m_CGC);
const uint32_t maxBytes = BC.getMaxVecSizeInBytes();
uint32_t totalBytes = (uint32_t)m_DL->getTypeStoreSize(leadTy);
SelectD32OrD64 D32OrD64(m_CGC, m_DL, isUniform, theAlign);
D32OrD64.track(leadLSI, i, 0);
if (totalBytes >= maxBytes) {
++i;
continue;
}
// 2. grow this bundle as much as possible
// [i, e]: the range of stores form a legit bundle (e > i).
int e = -1;
uint32_t vecSize = -1;
for (int j = i + 1; j < SZ; ++j) {
const LdStInfo* LSI = &LoadStores[j];
if (isBundled(LSI, m_combinedInsts) ||
(leadLSI->ByteOffset + totalBytes) != LSI->ByteOffset)
{
// stop as remaining stores are not contiguous
break;
}
if (m_WI && isUniform &&
!m_WI->isUniform(LSI->getValueOperand())) {
// no combining for *uniform-ptr = non-uniform value
break;
}
Type* aTy = LSI->getLdStType();
uint32_t currByteOffset = totalBytes;
totalBytes += (uint32_t)m_DL->getTypeStoreSize(aTy);
if (totalBytes > maxBytes) {
break;
}
D32OrD64.track(LSI, j, currByteOffset);
int nextBytes = BC.getAndUpdateVecSizeInBytes(totalBytes);
if (m_hasI64Emu && vecEltBytes == 1 && nextBytes == 8) {
// If I64 emu is on, skip D64 as I64 emu would result
// in inefficient code.
continue;
}
if (totalBytes == nextBytes &&
!D32OrD64.skip(vecEltBytes, BC.getCurrVecSize())) {
e = j;
vecSize = BC.getCurrVecSize();
D32OrD64.save();
}
}
// If any ldst has byte element, skip D64 to avoid byte mov
// with dst-stride = 8.
if (vecEltBytes == 8 && D32OrD64.hasByteElement()) {
// go to next iteration with D32.
break;
}
const int bundle_nelts = e - i + 1;
if (e >= 0 && bundle_nelts > 1) {
// Have a bundle, save it.
m_bundles.emplace_back(BundleInfo());
BundleInfo& newBundle = m_bundles.back();
newBundle.bundle_eltBytes = vecEltBytes;
newBundle.bundle_numElts = vecSize;
newBundle.useD64 =
(theAlign == 1)
? D32OrD64.useD64(vecEltBytes, vecSize)
: false;
for (int k = i; k <= e; ++k)
{
LdStInfo& tlsi = LoadStores[k];
newBundle.LoadStores.push_back(tlsi);
setBundled(&tlsi, m_combinedInsts);
if (tlsi.isStore()) {
appendToBeDeleted(tlsi.Inst);
}
setVisited(tlsi.Inst);
}
i = e + 1;
numRemainingLdSt -= bundle_nelts;
if (numRemainingLdSt < 2) {
// No enough loads/stores to merge
break;
}
}
else {
++i;
}
}
}
markVisited(LoadStores);
}
// A member of layout struct can be a vector type. This function will decide
// if the vector type or a sequence of its elements' types shall be used as
// the layout struct's member types. If spliting a vector type into a sequence
// of its elements' types is beneficial (ie, likely results in less mov
// instructions), return true; otherwise, return false.
//
// For example:
//
// Not split <2xi32> split <2xi32>
// ----------------- -------------
// struct SOA { struct SOA {
// <2 x i32> x; i32 x0;
// i32 x1;
// float y; float y;
// struct AOS { struct AOS {
// i16 a, i16 b} z; i16 a, i16 b} z;
// } }
//
// args:
// V : value to be checked
// K : indicate if V is a stored value or a loaded value.
// (special case: return false if V is null or V is scalar.)
bool LdStCombine::splitVectorType(Value* V, LdStKind K) const
{
if (V == nullptr) {
return false;
}
Type* Ty = V->getType();
// Not vector, always return false;
if (!Ty->isVectorTy()) {
return false;
}
// If vector size isn't packed (store size != alloc size), must split to
// avoid holes in the layout struct.
// For example, alloc size(<3 x i32>) = 16B, not 12B
// struct { <3xi32>, float } : size = 20 Bytes
// struct { i32, i32, i32, float} : size = 16 bytes.
if (!isa<Constant>(V) &&
m_DL->getTypeStoreSize(Ty) != m_DL->getTypeAllocSize(Ty)) {
return true;
}
Value* val = V;
if (K == LdStKind::IS_STORE) {
while (auto IEI = dyn_cast<InsertElementInst>(val)) {
if (!isa<Constant>(IEI->getOperand(2))) {
return false;
}
val = IEI->getOperand(0);
}
if (isa<Constant>(val)) {
return true;
}
}
else {
for (auto U : val->users()) {
Value* user = U;
if (auto EEI = dyn_cast<ExtractElementInst>(user)) {
if (isa<Constant>(EEI->getIndexOperand())) {
continue;
}
}
return false;
}
return true;
}
return false;
}
// mergeConstElements
// If EltVals has constant elements consecutively, merge them if possible.
// The merged constant's size is no more than MaxMergeByte.
void LdStCombine::mergeConstElements(
SmallVector<Value*, 4>& EltVals, uint32_t MaxMergeBytes)
{
// If all sub values are constants, coalescing them into a single
// constant of type DstEltTy.
//
// Merge goes with 2 bytes, 4 bytes, up to EltBytes (DstEltTy).
// For example: DstEltTy = i64
// {i8 1, i8 2, i16 0x77, i8 3, i8 4, i8 5, i8 %y}
// b = 2:
// { i16 0x201, i16 0x77, i16 0x403, i8 5, i8 %y}
// b = 4:
// { i32 0x770201, i16 0x403, i8 5, i8 %y}
// b = 8 :
// no change.
auto isValidConst = [](Value* v){
return isa<ConstantInt>(v) || isa<ConstantFP>(v) ||
isa<ConstantPointerNull>(v);
};
// Check if it has two consecutive constants, skip if not.
// This is a quick check to skip for majority of cases.
bool isCandidate = false;
for (int i = 0, sz = (int)EltVals.size() - 1; i < sz; ++i) {
if (isValidConst(EltVals[i]) && isValidConst(EltVals[i + 1])) {
isCandidate = true;
break;
}
}
if (!isCandidate) {
return;
}
// If there is a vector constant, expand it with its components
bool hasMerged = false;
std::list<Value*> mergedElts(EltVals.begin(), EltVals.end());
// b : the number of bytes of the merged value.
for (uint32_t b = 2; b <= MaxMergeBytes; b *= 2) {
int currOff = 0;
auto NI = mergedElts.begin();
for (auto II = NI; II != mergedElts.end(); II = NI) {
++NI;
if (NI == mergedElts.end()) {
break;
}
// Try to merge (II, NI)
Value* elt0 = *II;
Type* ty0 = elt0->getType();
const uint32_t sz0 = (uint32_t)m_DL->getTypeStoreSize(ty0);
// Merged value shall be naturally aligned.
if ((currOff % b) != 0 || sz0 >= b) {
currOff += sz0;
continue;
}
Value* elt1 = *NI;
Type* ty1 = elt1->getType();
const uint32_t sz1 = (uint32_t)m_DL->getTypeStoreSize(ty1);
Constant* C0 = dyn_cast<Constant>(elt0);
Constant* C1 = dyn_cast<Constant>(elt1);
if (!C0 || !C1 || (sz0 + sz1) != b ||
!isValidConst(C0) || !isValidConst(C1)) {
currOff += sz0;
continue;
}
IGC_ASSERT_MESSAGE(!C0->getType()->isVectorTy() &&
!C1->getType()->isVectorTy(), "Vector Constant not supported!");
uint64_t imm0 = GetImmediateVal(C0);
uint64_t imm1 = GetImmediateVal(C1);
imm0 &= maxUIntN(sz0 * 8);
imm1 &= maxUIntN(sz1 * 8);
uint64_t imm = ((imm1 << (sz0 * 8)) | imm0);
Type* ty = IntegerType::get(ty0->getContext(), (sz0 + sz1) * 8);
Constant* nC = ConstantInt::get(ty, imm, false);
mergedElts.insert(II, nC);
auto tII = NI;
++NI;
mergedElts.erase(II);
mergedElts.erase(tII);
hasMerged = true;
}
}
if (!hasMerged) {
return;
}
EltVals.clear();
EltVals.insert(EltVals.end(), mergedElts.begin(), mergedElts.end());
}
// This is to make sure to reuse the layout types. Two identified structs have
// the same layout if
// 1. both are SOA or both are AOS; and
// 2. both are packed; and
// 3, element types are matched in order.
StructType* LdStCombine::getOrCreateUniqueIdentifiedStructType(
ArrayRef<Type*> EltTys, bool IsSOA, bool IsPacked)
{
auto& layoutStructTypes = m_CGC->getLayoutStructTypes();
for (auto II : layoutStructTypes) {
StructType* stTy = II;
if (IsPacked == stTy->isPacked() &&
IsSOA == isLayoutStructTypeSOA(stTy) &&
stTy->elements() == EltTys)
return stTy;
}
// Create one
StructType* StTy = StructType::create(EltTys,
IsSOA ? getStructNameForSOALayout() : getStructNameForAOSLayout(),
IsPacked);
layoutStructTypes.push_back(StTy);
return StTy;
}
// gatherCopy():
// Generate the final value by coalescing given values. The final value is
// of either struct type or vector type.
// Arguments:
// DstEltBytes: size of vector element if the final value is a vector.
// If the final value is a struct, its struct member size
// must be the same as DstEltBytes.
// DstNElts: the num of elements if the final value is a vector or
// the num of direct members if the final value is a struct.
// Vals: a list of values to be coalesced into the final value.
// InsertBefore: inserting pos for new instructions.
//
// DstEltTy: not an argument, but used often in this function and comments.
// It is the element type if the final value is a vector; or int type if
// the final value is a struct. For a struct, it could be
// 1. int64: DstEltBytes == 8; or // D64
// 2. int32: DstEltBytes == 4, or // D32
// 3. int16: DstEltBytes == 2. // D16U32
//
// Examples:
// 1. vector type;
// given DstEltBytes=4 and DstNElts=4
// Vals = { i32 a, i64 b, int c }
//
// 'b' is split into two i32, the final value is a vector and DstEltTy
// is i32.
//
// <4xi32> returnVal = {
// a,
// extractElement bitcast (i64 b to <2xi32>), 0
// extractElement bitcast (i64 b to <2xi32>), 1
// c
// };
// 2. struct type (multiple of 4 bytes)
// given DstNElts x DstEltBytes = 8x4B.
// Vals = { 4xi8 a, i64 b, 4xfloat c, i16 d, i8 e, i8 f}
//
// This function generates a val of struct type:
//
// struct {
// struct { // indexes
// i8 d0; // (0, 0): extElt <4xi8> a, 0
// i8 d1; // (0, 1): extElt <4xi8> a, 1
// i8 d2; // (0, 2): extElt <4xi8> a, 2
// i8 d3; // (0, 3): extElt <4xi8> a, 3
// } E0;
// i32 E1; // (1): extElt bitcast (i64 b to <2xi32>), 0
// i32 E2; // (2): extElt bitcast (i64 b to <2xi32>), 1
// float E3; // (3): extElt <4xfloat> c, 0
// float E4; // (4): extElt <4xfloat> c, 1
// float E5; // (5): extElt <4xfloat> c, 2
// float E6; // (6): extElt <4xfloat> c, 3
// struct {
// i16 d0; // (7, 0): d
// i8 d1; // (7, 1): e
// i8 d2; // (7, 2): f
// } E7;
// } returnVal;
//
// As DstEltBytes == 4, DstEltTy is i32.
//
// The struct layout:
// The direct members are in SOA. If its direct members are struct, those
// struct members (their size is either 32bit or 64bit) are in AOS. This
// is consistent with viewing struct as a vector < DstNElts x DstEltTy >
// from layout point of view.
//
// To distinguish the struct generated here from other structs, the struct
// generated here are identified with reserved names, returned by
// getStructNameForSOALayout() or getStructNameForAOSLayout().
//
Value* LdStCombine::gatherCopy(
const uint32_t DstEltBytes,
int DstNElts,
SmallVector<Value*, 16>& Vals,
Instruction* InsertBefore)
{
// AllEltVals:
// each entry is one direct member of struct or vector. If an entry has
// more than one elements, it is either D32 or D64 in size, and likely a
// member of type struct.
// The final value is either a struct or a vector. Its total size and its
// GRF layout is the same as vector type <DstNElts x DstEltTy>.
SmallVector<SmallVector<Value*, 4>, 16> allEltVals;
// eltVals:
// Pending values that are going to form a single element in allEltVals.
// Once all pending values is complete, save it into allEltVals.
SmallVector<Value*, 4> eltVals;
// worklist:
// initialized to all input values in this bundle. Its values are
// gradually moved to AllEltVals one by one until it is empty.
std::list<Value*> worklist(Vals.begin(), Vals.end());
IRBuilder<> irBuilder(InsertBefore);
// remainingBytes:
// initialize to be the size of DstEltTy. It is the size of each
// member of the struct or vector.
uint remainingBytes = DstEltBytes;
while (!worklist.empty()) {
Value* v = worklist.front();
worklist.pop_front();
if (v->getType()->isVectorTy())
{
IGC_ASSERT((v->getType()->getScalarSizeInBits() % 8) == 0);
uint32_t eBytes = (v->getType()->getScalarSizeInBits() / 8);
uint32_t n = getNumElements(v->getType());
// true if v is a legal vector at level 1
bool isLvl1 = (remainingBytes == DstEltBytes && eBytes == DstEltBytes);
// true if v is a legal vector at level 2
bool isLvl2 = (remainingBytes >= (eBytes * n));
bool keepVector = !splitVectorTypeForGather(v);
if (isLvl1 && keepVector)
{ // case 1
// 1st level vector member
eltVals.push_back(v);
allEltVals.push_back(eltVals);
eltVals.clear();
}
else if (isLvl2 && keepVector)
{ // case 2
// 2nd level vector member
eltVals.push_back(v);
remainingBytes -= (eBytes * n);
if (remainingBytes == 0) {
mergeConstElements(eltVals, DstEltBytes);
allEltVals.push_back(eltVals);
// Initialization for the next element
eltVals.clear();
remainingBytes = DstEltBytes;
}
}
else
{ // case 3
SmallVector<Value*, 16> elts;
getOrCreateElements(v, elts, InsertBefore);
worklist.insert(worklist.begin(), elts.begin(), elts.end());
}
continue;
}
Type* eTy = v->getType();
const uint32_t eBytes = (uint32_t)m_DL->getTypeStoreSize(eTy);
if (eTy->isPointerTy()) {
// need ptrtoint cast as bitcast does not work
IGC_ASSERT(eBytes == 8 || eBytes == 4 || eBytes == 2);
eTy = IntegerType::get(eTy->getContext(), eBytes * 8);
v = irBuilder.CreateCast(Instruction::PtrToInt, v, eTy);
}
// If v isn't element-size aligned in GRF at this offset, cannot
// generate a mov instruction. v must be split into small chunks
// that are aligned for mov to work.
uint32_t currAlign =
(uint32_t)MinAlign(DstEltBytes, DstEltBytes - remainingBytes);
if (currAlign < eBytes) {
// Two cases:
// 1. DstEltBytes = 4
// store i32 p
// store i32 p+4
// store i64 p+8 <- v : i64
// Need to split i64 by casting i64 --> 2xi32
// 2. DstEltBytes = 4, packed struct
// store i8 p
// store i16 p+1 <- v : i16
// store i8 p+2
// Need to split i16 into 2xi8
IGC_ASSERT((eBytes % currAlign) == 0);
int n = eBytes / currAlign;
Type* newETy = IntegerType::get(m_F->getContext(), currAlign * 8);
VectorType* nVTy = VectorType::get(newETy, n, false);
Value* new_v = irBuilder.CreateCast(Instruction::BitCast, v, nVTy);
auto insPos = worklist.begin();
for (int i = 0; i < n; ++i) {
Value* v = irBuilder.CreateExtractElement(new_v, irBuilder.getInt32(i));
worklist.insert(insPos, v);
}
continue;
}
// v should fit into this remainingByts as v is element-size aligned.
IGC_ASSERT(remainingBytes >= eBytes);
eltVals.push_back(v);
remainingBytes -= eBytes;
if (remainingBytes == 0) {
// Found one element of size DstEltBytes.
mergeConstElements(eltVals, DstEltBytes);
allEltVals.push_back(eltVals);
// Initialization for the next element
eltVals.clear();
remainingBytes = DstEltBytes;
}
}
IGC_ASSERT(eltVals.empty());
Type* DstEltTy = nullptr;
// A new coalesced value could be one of two types
// 1 a vector type < DstNElts x DstEltTy >
// If all elements are of the same type (which is DstEltTy). It
// could be a float or integer type.
// 2 a struct type
// An integer type is used as DstEltTy whose size is DstEltBytes.
// All its members, include struct members, must be this same size.
// The struct nesting is at most 2 levels.
//
// More examples:
// 1) vector type (i64 as element)
// store i64 a, p; store i64 b, p+8; store i64 c, p+16
// -->
// store <3xi64> <a, b, c>, p
//
// Another example,
// store float a, p; store float b, p+4
// -->
// store <2xfloat> <a,b>, p
// 2)struct type (i32 as element type)
// store i32 a, p; store i32 b, p+4
// store i8 c0, p+8; store i8 c1, p+9;
// store i8 c2, p+10; store i8 c3, p+11
// store i32 d, p+12
// -->
// struct __StructSOALayout_ {
// i32, i32, struct {i8, i8, i16}, i32}
// }
// store __StructSOALayout__ <{a, b, <{c0, c1, c2, c3}>, d}>, p
//
// Instead of store on struct type, a vector store is used to take
// advantage of the existing vector store of codegen emit.
// let stVal = __StructSOALayout__ <{a, b, <{c0, c1, c2, c3}>, d}>
//
// val = call <4xi32> bitcastfromstruct( __StructSOALayout__ %stVal)
// store <4xi32> %val, p
//
// The "bitcastfromstruct" is no-op intrinsic (by dessa).
//
// Another example:
// store float a, p; store i32 b, p+4
// -->
// store __StructSOALayout__ <{float a, int b}>, p
// Note in this case, we can do
// store <2xi32> <bitcast(float a to i32), b>, p
// but this will introduce additional bitcast. And struct is
// preferred.
//
auto isLvl2Vecmember = [=](Type* ty) {
uint32_t n = (uint32_t)m_DL->getTypeStoreSize(ty->getScalarType());
return ty->isVectorTy() && n < DstEltBytes;
};
bool hasStructMember = false;
bool hasVecMember = false;
const int32_t sz = (int)allEltVals.size();
SmallVector<Type*, 16> StructTys;
for (int i = 0; i < sz; ++i) {
SmallVector<Value*, 4>& subElts = allEltVals[i];
int nelts = (int)subElts.size();
Type* ty = subElts[0]->getType();
uint32_t eBytes = (uint32_t)m_DL->getTypeStoreSize(ty->getScalarType());
if (nelts == 1 && !isLvl2Vecmember(ty)) {
IGC_ASSERT(eBytes == DstEltBytes);
StructTys.push_back(ty);
hasVecMember = (hasVecMember || ty->isVectorTy());
}
else {
SmallVector<Type*, 4> subEltTys;
for (auto II : subElts) {
Value* elt = II;
subEltTys.push_back(elt->getType());
hasVecMember = (hasVecMember || elt->getType()->isVectorTy());
}
// create a member of a packed and identified struct type
// whose size = DstEltBytes. Use AOS layout.
Type* eltStTy =
getOrCreateUniqueIdentifiedStructType(subEltTys, false, true);
StructTys.push_back(eltStTy);
hasStructMember = true;
}
}
// Check if a vector is preferred for the final value.
// (For reducing the number of struct types created, and also vector
// is better supported in codegen.)
if (!hasStructMember && !hasVecMember) {
// Set initial value for DstEltTy.
// Skip any const as it can be taken as either float or int.
int i = 0;
for (; i < sz; ++i) {
SmallVector<Value*, 4>& subElts = allEltVals[i];
int nelts = (int)subElts.size();
IGC_ASSERT(nelts == 1);
if (!isa<Constant>(subElts[0])) {
DstEltTy = subElts[0]->getType();
break;
}
}
if (DstEltTy != nullptr) {
for (++i; i < sz; ++i) {
SmallVector<Value*, 4>& subElts = allEltVals[i];
int nelts = (int)subElts.size();
IGC_ASSERT(nelts == 1);
Type* ty = subElts[0]->getType();
const bool isConst = isa<Constant>(subElts[0]);
if (!isConst && DstEltTy != ty) {
// Use struct is better
DstEltTy = nullptr;
break;
}
}
}
else {
DstEltTy = Type::getIntNTy(m_F->getContext(), DstEltBytes * 8);
}
}
// If DstEltTy != null, use vector; otherwise, use struct as
// the struct will likely have less mov instructions.
Type* structTy;
Value* retVal;
if (DstEltTy != nullptr)
{ // case 1
if (DstNElts == 1) {
// Constant store values are combined into a single constant
// for D16U32, D32, D64
SmallVector<Value*, 4>& eltVals = allEltVals[0];
IGC_ASSERT(eltVals.size() == 1);
retVal = eltVals[0];
}
else {
// normal vector
VectorType* newTy = VectorType::get(DstEltTy, DstNElts, false);
retVal = UndefValue::get(newTy);
for (int i = 0; i < sz; ++i) {
SmallVector<Value*, 4>& eltVals = allEltVals[i];
Value* tV = irBuilder.CreateBitCast(eltVals[0], DstEltTy);
retVal = irBuilder.CreateInsertElement(retVal, tV, irBuilder.getInt32(i));
}
}
}
else
{ // case 2
// Packed and named identified struct. Prefix "__" make sure it won't
// collide with any user types. Use SOA layout.
structTy =
getOrCreateUniqueIdentifiedStructType(StructTys, true, true);
// Create a value
retVal = UndefValue::get(structTy);
for (int i = 0; i < sz; ++i) {
SmallVector<Value*, 4>& eltVals = allEltVals[i];
const int sz1 = (int)eltVals.size();
Type* ty = eltVals[0]->getType();
if (sz1 == 1 && !isLvl2Vecmember(ty)) {
retVal = irBuilder.CreateInsertValue(retVal, eltVals[0], i);
}
else {
for (int j = 0; j < sz1; ++j) {
uint32_t idxs[2] = { (unsigned)i, (unsigned)j };
retVal =
irBuilder.CreateInsertValue(retVal, eltVals[j], idxs);
}
}
}
}
return retVal;
}
// Given a list of values in order (arg: Vals), return a new packed type
// that is composed of Vals' types. This new type is one of the following:
// 0. if all Vals have the same size of element, the new type will be
// a vector type with element size = that same size. This is to take
// advantage of extensive vector optimization in IGC; or
// 1. a vector type with element size = ValEltBytes and the number of
// elements = ValNElts; or
// 2. a struct type whose direct members are all the same size and are
// equal to ValEltBytes and the number of direct members = ValNElts.
// Note: this is for load combining as a type is needed before generating
// component values (store combining does not use this as component
// values are known before the type).
Type* LdStCombine::generateLoadType(
SmallVector<Value*, 16>& Vals,
uint32_t ValEltBytes, uint32_t ValNElts)
{
// case 0: Optimization
// For now, use vector if elements of all Vals are the same size.
// Prefer using vector as vector has been well optimized.
const bool OptimPreferVec = true;
if (OptimPreferVec && Vals.size() > 1) {
Type* ETy = Vals[0]->getType()->getScalarType();
int eBytes = (int)m_DL->getTypeStoreSize(ETy);
bool isSameEltSize = true;
for (int i = 1, sz = (int)Vals.size(); i < sz; ++i) {
Type* ty = Vals[i]->getType()->getScalarType();
int tBytes = (int)m_DL->getTypeStoreSize(ty);
if (eBytes != tBytes) {
isSameEltSize = false;
break;
}
}
if (isSameEltSize) {
Type* newETy = Type::getIntNTy(m_F->getContext(), eBytes * 8);
uint32_t nElts = (ValNElts * ValEltBytes) / eBytes;
Type* retTy = VectorType::get(newETy, nElts, false);
return retTy;
}
}
// case 1 and 2
bool isStructTy = false;
SmallVector<Type*, 16> tys;
SmallVector<Type*, 16> subEltTys;
uint32_t remainingBytes = ValEltBytes;
std::list<Type*> worklist;
for (int i = 0, sz = (int)Vals.size(); i < sz; ++i)
{
Value* V = Vals[i];
Type* Ty = V->getType();
worklist.push_back(Ty);
while (!worklist.empty())
{
Type* Ty = worklist.front();
worklist.pop_front();
Type* eTy = Ty->getScalarType();
uint32_t nElts = getNumElements(Ty);
uint32_t eBytes = (uint32_t)m_DL->getTypeStoreSize(eTy);
// true if v is either a vector or a scalar at level 1
bool isLvl1 = (remainingBytes == ValEltBytes && eBytes == ValEltBytes);
// true if v is a vector or scalar at level 2
bool isLvl2 = (remainingBytes >= (eBytes * nElts));
// It's ok not to split if V == nullptr (not original one from Vals)
// or if V is one from Vals and splitVectorTypeForScatter() returns
// false.
const bool noSplitOK = !splitVectorTypeForScatter(V);
if (noSplitOK && isLvl1) {
tys.push_back(Ty);
}
else if (noSplitOK && isLvl2) {
subEltTys.push_back(Ty);
remainingBytes -= (eBytes * nElts);
if (remainingBytes == 0) {
// struct member.
Type* eltStTy =
getOrCreateUniqueIdentifiedStructType(subEltTys, false, true);
tys.push_back(eltStTy);
subEltTys.clear();
isStructTy = true;
remainingBytes = ValEltBytes;
}
}
else {
// Split Ty into smaller types if:
// 1. eBytes > ValEltBytes; or
// 2. eTy isn't aligned at this offset (cannot generate mov inst)
// Ty must be split into a list of smaller types that are aligned.
// Element size is assumed to be minimum alignment for a type.
uint32_t currAlign =
(uint32_t)MinAlign(ValEltBytes, ValEltBytes - remainingBytes);
if (currAlign < eBytes) {
IGC_ASSERT((eBytes % currAlign) == 0);
int n = (eBytes / currAlign) * nElts;
Type* newETy = IntegerType::get(m_F->getContext(), currAlign * 8);
worklist.insert(worklist.begin(), n, newETy);
}
else {
worklist.insert(worklist.begin(), nElts, eTy);
}
// For next iteration of while, it is for sub-part of V,
// so set V to nullptr.
V = nullptr;
}
}
}
IGC_ASSERT(remainingBytes == ValEltBytes);
Type* retTy;
if (isStructTy) {
retTy = getOrCreateUniqueIdentifiedStructType(tys, true, true);
} else {
Type* newEltTy = IntegerType::get(m_F->getContext(), ValEltBytes * 8);
retTy = VectorType::get(newEltTy, ValNElts, false);
}
return retTy;
}
// todo: re-do desc
// Given a list of values (arg: Vals), create a composite type (either
// struct type or vector type). A value of this composite type is loaded,
// and this value is futhter decomposed to the given list of values.
//
void LdStCombine::scatterCopy(
SmallVector<Value*, 16>& Vals,
int LoadedValEBytes,
int LoadedValNElts,
Value* LoadedVecVal,
Instruction* InsertBefore)
{
// To split loadedVal, figure out its type first.
// 1. Try to use a vector type, if not possible, use a struct type.
// 2. for each V in Vals, its replacement value is created by mapping
// corresponding components of LoadedVal to itself.
IRBuilder<> irBuilder(InsertBefore);
Type* LoadedValTy = generateLoadType(Vals, LoadedValEBytes, LoadedValNElts);
{
int newTyBytes = (int)m_DL->getTypeStoreSize(LoadedValTy);
IGC_ASSERT(newTyBytes == (LoadedValNElts * LoadedValEBytes));
}
Value* LoadedVal = LoadedVecVal;
if (LoadedValTy->isStructTy()) {
// Set loadedVal's name to "StructV" so that both load/store
// will have names start with "StructV" for layout struct.
LoadedVal->setName("StructV");
Type* ITys[2] = { LoadedValTy, LoadedVal->getType() };
Function* IntrDcl = GenISAIntrinsic::getDeclaration(
m_F->getParent(), GenISAIntrinsic::ID::GenISA_bitcasttostruct, ITys);
LoadedVal = irBuilder.CreateCall(IntrDcl, LoadedVal);
} else if (LoadedValTy != LoadedVal->getType()) {
LoadedVal = irBuilder.CreateBitCast(LoadedVal, LoadedValTy);
}
auto createValueFromElements = [this, &irBuilder] (
SmallVector<Value*, 8>& Elts, Type* ValueTy)
{
IGC_ASSERT(!Elts.empty());
Value* V0 = Elts[0];
Type* eTy = V0->getType();
uint32_t n = (uint32_t)Elts.size();
#if defined(_DEBUG)
{
IGC_ASSERT(!Elts.empty());
Value* V0 = Elts[0];
for (uint32_t i = 1; i < n; ++i) {
Value* V = Elts[i];
if (V0->getType() != V->getType()) {
IGC_ASSERT(false);
}
}
uint32_t EltsBytes = (uint32_t)m_DL->getTypeStoreSize(V0->getType());
EltsBytes *= n;
IGC_ASSERT(m_DL->getTypeStoreSize(ValueTy) == EltsBytes);
}
#endif
Value* retVal;
if (n == 1) {
retVal = Elts[0];
if (eTy != ValueTy) {
retVal = irBuilder.CreateBitCast(retVal, ValueTy);
}
}
else {
VectorType* nTy = VectorType::get(eTy, n, false);
Value* nV = UndefValue::get(nTy);
for (uint32_t i = 0; i < n; ++i) {
nV = irBuilder.CreateInsertElement(nV, Elts[i], i);
}
retVal = irBuilder.CreateBitCast(nV, ValueTy);
}
return retVal;
};
// Copy component values from LoadedVal to the original values.
if (LoadedValTy->isStructTy()) {
StructType* StTy = cast<StructType>(LoadedValTy);
SmallVector<uint32_t, 2> Idx = { 0, 0 };
auto getCurrMemberTy = [StTy, &Idx]() {
Type* Ty0 = StTy->getElementType(Idx[0]);
if (StructType* stTy0 = dyn_cast<StructType>(Ty0))
return stTy0->getElementType(Idx[1]);
return Ty0;
};
auto getValueFromStruct = [&] (Type* Ty)
{
uint32_t TyBytes = (uint32_t)m_DL->getTypeStoreSize(Ty);
Type* Ty0 = StTy->getElementType(Idx[0]);
StructType* stTy0 = dyn_cast<StructType>(Ty0);
Type* Ty1 = stTy0 ? stTy0->getElementType(Idx[1]) : nullptr;
if (!stTy0 && (Ty0 == Ty || m_DL->getTypeStoreSize(Ty0) == TyBytes))
{
IGC_ASSERT(Idx[1] == 0);
Value* V = irBuilder.CreateExtractValue(LoadedVal, Idx[0]);
if (Ty0 != Ty) {
V = irBuilder.CreateBitCast(V, Ty);
}
(void)advanceStructIndices(Idx, StTy);
return V;
}
if (stTy0 && (Ty1 == Ty || m_DL->getTypeStoreSize(Ty1) == TyBytes))
{
Value* V = irBuilder.CreateExtractValue(LoadedVal, Idx);
if (Ty1 != Ty) {
V = irBuilder.CreateBitCast(V, Ty);
}
(void)advanceStructIndices(Idx, StTy);
return V;
}
// Original scalar type (if the original is a vector, it's its
// element type) could be split into smaller same-typed scalars.
Type* eTy = Ty->getScalarType();
uint32_t nelts = getNumElements(Ty);
uint32_t ebytes = (uint32_t)m_DL->getTypeStoreSize(eTy);
SmallVector<Value*, 8> vecElts;
for (uint32_t i = 0; i < nelts; ++i) {
int eltRemainingBytes = (int)ebytes;
SmallVector<Value*, 8> subElts;
do {
// Ty0 is type at Idx[0]
// stTy0 is dyn_cast<StructType>(Ty0).
Value* V;
uint32_t currBytes;
// type of matching struct member
Type* mTy;
if (stTy0) {
V = irBuilder.CreateExtractValue(LoadedVal, Idx);
mTy = stTy0->getElementType(Idx[1]);
}
else {
V = irBuilder.CreateExtractValue(LoadedVal, Idx[0]);
mTy = Ty0;
}
currBytes = (uint32_t)m_DL->getTypeStoreSize(mTy);
IGC_ASSERT_MESSAGE(currBytes <= ebytes,
"member should't be larger than the element size of load!");
eltRemainingBytes -= (int)currBytes;
subElts.push_back(V);
if (eltRemainingBytes < 0) {
IGC_ASSERT_UNREACHABLE();
break;
}
if (!advanceStructIndices(Idx, StTy)) {
// already last element
break;
}
// update Ty0/stTy0
Ty0 = StTy->getElementType(Idx[0]);
stTy0 = dyn_cast<StructType>(Ty0);
} while (eltRemainingBytes > 0);
IGC_ASSERT(eltRemainingBytes == 0);
Value* V = createValueFromElements(subElts, eTy);
vecElts.push_back(V);
}
Value* retVal = createValueFromElements(vecElts, Ty);
return retVal;
};
// Given mTy = type of the next member in the layout struct, and Ty is
// the type of one of all merged loads that are combined as this layout
// struct, the algorithm gurantees:
// 1. if mTy is a vector, Ty must be the same vector,
// 2. if mTy is a scalar, Ty can be either a vector or scalar, and
// size(mTy) <= size(Ty's element type)
for (auto& V : Vals) {
Type* memTy = getCurrMemberTy();
SmallVector<Value*, 8> allUses;
if (memTy->isVectorTy()) {
IGC_ASSERT(memTy == V->getType());
allUses.push_back(V);
}
else {
// Optimization: If V's elements are available, use them.
getVecEltIfConstExtract(V, allUses);
}
for (auto& nV : allUses) {
Type* aTy = nV->getType();
Value* newV = getValueFromStruct(aTy);
if (isa<UndefValue>(nV)) {
appendToBeDeleted(dyn_cast<Instruction>(newV));
}
else {
nV->replaceAllUsesWith(newV);
appendToBeDeleted(dyn_cast<Instruction>(nV));
}
}
}
} else {
// vector type or scalar type
uint32_t Idx = 0;
Type* LoadedEltTy = LoadedValTy->getScalarType();
uint32_t LoadedEltBytes = (uint32_t)m_DL->getTypeStoreSize(LoadedEltTy);
// Return a value of type Ty at the given Idx and advance Idx.
// If Ty is larger than the element type of LoadedVal, it means to
// form a value of Ty by merging several values of LoadedVal
// starting at Idx, and those merged values are guaranteed to be
// same-typed values.
auto collectValueFromVector = [&](Type* Ty)
{
uint32_t TyBytes = (uint32_t)m_DL->getTypeStoreSize(Ty);
IGC_ASSERT(TyBytes >= LoadedEltBytes);
int n = TyBytes / LoadedEltBytes;
IGC_ASSERT((TyBytes % LoadedEltBytes) == 0);
Value* retVal;
if (n == 1) {
retVal = irBuilder.CreateExtractElement(LoadedVal, Idx);
if (LoadedEltTy != Ty) {
retVal = irBuilder.CreateBitCast(retVal, Ty);
}
++Idx;
} else {
VectorType* vTy = VectorType::get(LoadedEltTy, n, false);
Value* nV = UndefValue::get(vTy);
for (int i = 0; i < n; ++i) {
Value* V = irBuilder.CreateExtractElement(LoadedVal, Idx);
nV = irBuilder.CreateInsertElement(nV, V, i);
++Idx;
}
retVal = irBuilder.CreateBitCast(nV, Ty);
}
return retVal;
};
// Given ty = V's type, the algorithm gurantees that size of ty's
// element is no smaller than LoadedValEBytes
for (auto& V : Vals) {
SmallVector<Value*, 8> allUses;
getVecEltIfConstExtract(V, allUses);
for (auto& nV : allUses) {
Type* aTy = nV->getType();
Type* eTy = aTy->getScalarType();
uint32_t nelts = getNumElements(aTy);
IGC_ASSERT(m_DL->getTypeStoreSize(eTy) >= LoadedEltBytes);
SmallVector<Value*, 8> vecElts;
for (uint32_t i = 0; i < nelts; ++i) {
Value* V = collectValueFromVector(eTy);
vecElts.push_back(V);
}
Value* newV = createValueFromElements(vecElts, aTy);
if (isa<UndefValue>(nV)) {
appendToBeDeleted(dyn_cast<Instruction>(newV));
}
else {
nV->replaceAllUsesWith(newV);
appendToBeDeleted(dyn_cast<Instruction>(nV));
}
}
}
}
}
void LdStCombine::createCombinedStores(BasicBlock* BB)
{
for (auto& bundle : m_bundles)
{
InstAndOffsetPairs& Stores = bundle.LoadStores;
IGC_ASSERT(bundle.LoadStores.size() >= 2);
// The new store will be inserted at the place of the last store,
// called anchor store, in the bundle. The lead store is the first
// store in the bundle.
// (Lead store, amaong all stores in the bundle, does not necessarily
// appear first in the BB; and the last store does not necessarily
// have the largest offset in the bundle.)
StoreInst* leadStore = static_cast<StoreInst*>(Stores[0].Inst);
SmallVector<Value*, 16> storedValues;
storedValues.push_back(leadStore->getValueOperand());
StoreInst* anchorStore = leadStore;
int n = m_instOrder[anchorStore];
// insts are assigned order number starting from 0. Anchor store is
// one with the largest inst order number.
for (int i = 1, sz = (int)bundle.LoadStores.size(); i < sz; ++i)
{
StoreInst* SI = static_cast<StoreInst*>(Stores[i].Inst);
int SI_no = m_instOrder[SI];
if (SI_no > n)
{
n = SI_no;
anchorStore = SI;
}
storedValues.push_back(SI->getValueOperand());
}
int eltBytes = bundle.bundle_eltBytes;
int nelts = bundle.bundle_numElts;
if (eltBytes == 1) { // byte-aligned
// D64, D32, D16U32
if ((nelts % 4) == 0) {
if (bundle.useD64) {
// D64
IGC_ASSERT((nelts % 8) == 0);
eltBytes = 8;
nelts = nelts / 8;
}
else {
// D32
eltBytes = 4;
nelts = nelts / 4;
}
}
else if (nelts == 2) {
// <2xi8>, D16U32
eltBytes = 2;
nelts = 1;
}
else {
IGC_ASSERT(false);
}
}
// Generate the coalesced value.
Value* nV = gatherCopy(eltBytes, nelts, storedValues, anchorStore);
Type* VTy = nV->getType();
IRBuilder<> irBuilder(anchorStore);
Value* storedVal = nV;
if (VTy->isStructTy()) {
uint32_t totalBytes = eltBytes * nelts;
Type* eltTy;
// Use special bitcast from struct to int vec to use vector emit.
if (totalBytes < 4) {
// <{i8, i8}>, use i16, not 2xi8
eltTy = Type::getIntNTy(BB->getContext(), totalBytes * 8);
}
else {
eltTy = Type::getIntNTy(BB->getContext(), eltBytes * 8);
}
// Use an int vector type as VTy
VTy = (nelts == 1 || totalBytes < 4)
? eltTy : VectorType::get(eltTy, nelts, false);
Type* ITys[2] = { VTy, nV->getType() };
Function* IntrDcl = GenISAIntrinsic::getDeclaration(
BB->getParent()->getParent(),
GenISAIntrinsic::ID::GenISA_bitcastfromstruct, ITys);
storedVal = irBuilder.CreateCall(IntrDcl, nV);
}
Value* Addr = leadStore->getPointerOperand();
PointerType* PTy = cast<PointerType>(Addr->getType());
PointerType* nPTy = PointerType::get(VTy, PTy->getAddressSpace());
Value* nAddr = irBuilder.CreateBitCast(Addr, nPTy);
StoreInst* finalStore = irBuilder.CreateAlignedStore(storedVal,
nAddr, IGCLLVM::getAlign(*leadStore), leadStore->isVolatile());
finalStore->setDebugLoc(anchorStore->getDebugLoc());
// Only keep metadata from leadStore.
// (If each store has a different metadata, should they be merged
// in the first place?)
//
// Special case:
// 1. set nontemporal if any merged store has it (make sense?)
SmallVector<std::pair<unsigned, llvm::MDNode*>, 4> MDs;
leadStore->getAllMetadata(MDs);
for (const auto& MII : MDs) {
finalStore->setMetadata(MII.first, MII.second);
}
if (finalStore->getMetadata("nontemporal") == nullptr) {
for (int i = 1, sz = (int)bundle.LoadStores.size(); i < sz; ++i) {
StoreInst* SI = static_cast<StoreInst*>(Stores[i].Inst);
if (MDNode* N = SI->getMetadata("nontemporal")) {
finalStore->setMetadata("nontemporal", N);
break;
}
}
}
}
// Delete stores that have been combined.
eraseDeadInsts();
m_hasStoreCombined = (!m_bundles.empty());
m_bundles.clear();
}
void LdStCombine::createCombinedLoads(BasicBlock* BB)
{
for (auto& bundle : m_bundles)
{
InstAndOffsetPairs& Loads = bundle.LoadStores;
IGC_ASSERT(bundle.LoadStores.size() >= 2);
#if defined(_LDST_DEBUG)
{
BundleInfo* pBundle = &bundle;
pBundle->print(dbgs(), _bundleid);
++_bundleid;
}
#endif
// The new load will be inserted at the place of the first load in the
// program order in this bundle, called the anchor load. The lead load
// is the load with the smallest offset in the bundle.
LoadInst* leadLoad = static_cast<LoadInst*>(Loads[0].Inst);
SmallVector<Value*, 16> loadedValues;
loadedValues.push_back(leadLoad);
// find anchor load.
LoadInst* anchorLoad = leadLoad;
const int leadLoadNum = m_instOrder[leadLoad];
const int leadOffset = (int)Loads[0].ByteOffset;
int anchorOffset = leadOffset;
int n = leadLoadNum;
// insts are assigned order number starting from 0. Anchor load is
// one with the smallest inst order number.
for (int i = 1, sz = (int)bundle.LoadStores.size(); i < sz; ++i) {
LoadInst* LI = static_cast<LoadInst*>(Loads[i].Inst);
int LI_no = m_instOrder[LI];
if (LI_no < n)
{
n = LI_no;
anchorLoad = LI;
anchorOffset = (int)Loads[i].ByteOffset;
}
loadedValues.push_back(LI);
}
const int anchorLoadNum = n;
int eltBytes = bundle.bundle_eltBytes;
int nelts = bundle.bundle_numElts;
if (eltBytes == 1) { // byte-aligned
// D64, D32, D16U32
if ((nelts % 4) == 0) {
if (bundle.useD64) {
// D64
IGC_ASSERT((nelts % 8) == 0);
eltBytes = 8;
nelts = nelts / 8;
}
else {
// D32
eltBytes = 4;
nelts = nelts / 4;
}
}
else {
// <2xi8>, D16U32
IGC_ASSERT(nelts == 2);
}
}
// Create the new vector type for these combined loads.
Type* eltTy = Type::getIntNTy(BB->getContext(), eltBytes * 8);
Type* VTy = (nelts == 1 ? eltTy : VectorType::get(eltTy, nelts, false));
IRBuilder<> irBuilder(anchorLoad);
Value* Addr = leadLoad->getPointerOperand();
// If leadLoad is different from anchorLoad and leadLoad's addr is
// an instruction after anchorLoad, need to re-generate the address
// of LeadLoad at anchorLoad place.
if (anchorLoad != leadLoad && isa<Instruction>(Addr)) {
Instruction* aI = cast<Instruction>(Addr);
auto MI = m_instOrder.find(aI);
if (MI != m_instOrder.end() && MI->second > anchorLoadNum)
{
Value* anchorAddr = anchorLoad->getPointerOperand();
Type* bTy = Type::getInt8Ty(leadLoad->getContext());
Type* nTy = PointerType::get(bTy, leadLoad->getPointerAddressSpace());
Value* nAddr = irBuilder.CreateBitCast(anchorAddr, nTy);
Value* aIdx = irBuilder.getInt64(leadOffset - anchorOffset);
GEPOperator* aGEP = dyn_cast<GEPOperator>(anchorAddr);
if (aGEP && aGEP->isInBounds()) {
Addr = irBuilder.CreateInBoundsGEP(bTy, nAddr, aIdx, "anchorLoad");
}
else {
Addr = irBuilder.CreateGEP(bTy, nAddr, aIdx, "anchorLoad");
}
};
}
PointerType* PTy = cast<PointerType>(Addr->getType());
PointerType* nPTy = PointerType::get(VTy, PTy->getAddressSpace());
Value* nAddr = irBuilder.CreateBitCast(Addr, nPTy);
LoadInst* finalLoad = irBuilder.CreateAlignedLoad(VTy, nAddr,
IGCLLVM::getAlign(*leadLoad), leadLoad->isVolatile());
finalLoad->setDebugLoc(anchorLoad->getDebugLoc());
// Split loaded value and replace original loads with them.
scatterCopy(loadedValues, eltBytes, nelts, finalLoad, anchorLoad);
// Keep metadata
auto STII = std::find_if_not(
bundle.LoadStores.begin(), bundle.LoadStores.end(),
[](LdStInfo& LSI) {
auto md = LSI.Inst->getMetadata(LLVMContext::MD_invariant_load);
return md != nullptr;
});
if (STII == bundle.LoadStores.end()) {
MDNode* md = anchorLoad->getMetadata(LLVMContext::MD_invariant_load);
IGC_ASSERT(md != nullptr);
finalLoad->setMetadata(LLVMContext::MD_invariant_load, md);
}
MDNode* nonTempMD = nullptr;
std::for_each(bundle.LoadStores.begin(), bundle.LoadStores.end(),
[&nonTempMD](LdStInfo& LSI) {
if (auto md = LSI.Inst->getMetadata("nontemporal"))
nonTempMD = MDNode::concatenate(md, nonTempMD);
});
if (nonTempMD) {
finalLoad->setMetadata("nontemporal", nonTempMD);
}
}
// Delete stores that have been combined.
eraseDeadInsts();
m_hasLoadCombined = (!m_bundles.empty());
m_bundles.clear();
}
void LdStCombine::eraseDeadInsts()
{
RecursivelyDeleteDeadInstructions(m_toBeDeleted);
m_toBeDeleted.clear();
}
void BundleInfo::print(raw_ostream& O, int BundleID) const
{
O << "\nBundle Info " << BundleID << "\n"
<< " Element bytes = " << bundle_eltBytes << " "
<< "num of elements = " << bundle_numElts << " "
<< "useD64 = " << (useD64 ? "true" : "false") << "\n\n";
for (const auto& II : LoadStores) {
const LdStInfo& LSI = II;
O << " (" << format_decimal(LSI.ByteOffset, 3) << ") ";
O << *LSI.Inst << "\n";
}
O << "\n";
}
void BundleInfo::dump() const
{
print(dbgs());
}
namespace IGC
{
bool isLayoutStructType(const StructType* StTy)
{
if (!StTy || StTy->isLiteral() || !StTy->hasName() || !StTy->isPacked())
return false;
StringRef stId = StTy->getName();
return (stId.startswith(getStructNameForSOALayout()) ||
stId.startswith(getStructNameForAOSLayout()));
}
bool isLayoutStructTypeAOS(const StructType* StTy)
{
if (!StTy || StTy->isLiteral() || !StTy->hasName() || !StTy->isPacked())
return false;
StringRef stId = StTy->getName();
return stId.startswith(getStructNameForAOSLayout());
}
bool isLayoutStructTypeSOA(const StructType* StTy)
{
return isLayoutStructType(StTy) && !isLayoutStructTypeAOS(StTy);
}
uint64_t bitcastToUI64(Constant* C, const DataLayout* DL)
{
Type* ty = C->getType();
IGC_ASSERT(DL->getTypeStoreSizeInBits(ty) <= 64);
IGC_ASSERT(ty->isStructTy() ||
(ty->isSingleValueType() && !ty->isVectorTy()));
uint64_t imm = 0;
if (StructType* sTy = dyn_cast<StructType>(C->getType())) {
IGC_ASSERT(DL->getTypeStoreSizeInBits(sTy) <= 64);
IGC_ASSERT(isLayoutStructTypeAOS(sTy));
const StructLayout* SL = DL->getStructLayout(sTy);
int N = (int)sTy->getNumElements();
for (int i = 0; i < N; ++i)
{
Constant* C_i = C->getAggregateElement(i);
if (isa<UndefValue>(C_i)) {
continue;
}
Type* ty_i = sTy->getElementType(i);
uint32_t offbits = (uint32_t)SL->getElementOffsetInBits(i);
if (auto iVTy = dyn_cast<IGCLLVM::FixedVectorType>(ty_i)) {
// C_I is vector
int32_t nelts = (int32_t)iVTy->getNumElements();
Type* eTy_i = ty_i->getScalarType();
IGC_ASSERT(eTy_i->isFloatingPointTy() || eTy_i->isIntegerTy());
uint32_t nbits = (uint32_t)DL->getTypeStoreSizeInBits(eTy_i);
for (int j = 0; j < nelts; ++j) {
Constant* c_ij = C_i->getAggregateElement(j);
uint64_t tImm = GetImmediateVal(c_ij);
tImm &= maxUIntN(nbits);
imm = imm | (tImm << (offbits + j * nbits));
}
}
else {
// C_i is scalar of int, fp or null pointer
IGC_ASSERT(isa<ConstantInt>(C_i) || isa<ConstantFP>(C_i) ||
isa<ConstantPointerNull>(C_i));
uint32_t nbits = (uint32_t)DL->getTypeStoreSizeInBits(ty_i);
uint64_t tImm = GetImmediateVal(C_i);
tImm &= maxUIntN(nbits);
imm = imm | (tImm << offbits);
}
}
return imm;
}
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
return GetImmediateVal(C);
}
if (isa<UndefValue>(C) || isa<ConstantPointerNull>(C)) {
return 0;
}
IGC_ASSERT_MESSAGE(0, "unsupported Constant!");
return 0;
}
void getStructMemberByteOffsetAndType_1(const DataLayout* DL,
StructType* StTy, const ArrayRef<unsigned>& Indices,
Type*& Ty, uint32_t& ByteOffset)
{
IGC_ASSERT_MESSAGE(Indices.size() == 1,
"ICE: nested struct not supported!");
const StructLayout* aSL = DL->getStructLayout(StTy);
uint32_t ix = Indices.front();
ByteOffset = (uint32_t)aSL->getElementOffset(ix);
Ty = StTy->getElementType(ix);
return;
};
void getStructMemberOffsetAndType_2(const DataLayout* DL,
StructType* StTy, const ArrayRef<unsigned>& Indices,
Type*& Ty0, uint32_t& ByteOffset0,
Type*& Ty1, uint32_t& ByteOffset1)
{
uint32_t ix = Indices[0];
const StructLayout* SL0 = DL->getStructLayout(StTy);
ByteOffset0 = (uint32_t)SL0->getElementOffset(ix);
Ty0 = StTy->getElementType(ix);
ByteOffset1 = 0;
Ty1 = nullptr;
if (Indices.size() == 1)
{
return;
}
IGC_ASSERT(isLayoutStructType(StTy));
IGC_ASSERT_MESSAGE(Indices.size() <= 2,
"struct with nesting level > 2 not supported!");
IGC_ASSERT_MESSAGE((Ty0->isStructTy() &&
isLayoutStructTypeAOS(cast<StructType>(Ty0))),
"Only a special AOS layout struct is supported as a member");
uint32_t ix1 = Indices[1];
StructType* stTy0 = cast<StructType>(Ty0);
const StructLayout* SL1 = DL->getStructLayout(stTy0);
ByteOffset1 = (uint32_t)SL1->getElementOffset(ix1);
Ty1 = stTy0->getElementType(ix1);
return;
}
void getAllDefinedMembers (const Value* IVI,
std::list<ArrayRef<unsigned>>& fieldsTBC)
{
IGC_ASSERT(IVI != nullptr);
const Value* V = IVI;
while (isa<InsertValueInst>(V))
{
const InsertValueInst* I = cast<const InsertValueInst>(V);
fieldsTBC.push_front(I->getIndices());
V = I->getOperand(0);
}
if (!isa<UndefValue>(V))
{
// Don't know for sure, assume all have been defined.
fieldsTBC.clear();
StructType* stTy = cast<StructType>(IVI->getType());
fieldsTBC.insert(fieldsTBC.end(), 0, stTy->getNumElements() - 1);
}
}
}
|