File: ResourceLoopAnalysis.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (258 lines) | stat: -rw-r--r-- 9,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*========================== begin_copyright_notice ============================

Copyright (C) 2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "Compiler/CISACodeGen/ResourceLoopAnalysis.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/CodeGenPublicEnums.h"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"

#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include <llvm/IR/InstIterator.h>
#include <llvm/Support/Debug.h>
#include "common/LLVMWarningsPop.hpp"

using namespace llvm;
using namespace IGC;

char ResourceLoopAnalysis::ID = 0;

#define PASS_FLAG "resource-loop-analysis"
#define PASS_DESCRIPTION "Analyze the begin and end of a resource loop"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(ResourceLoopAnalysis, PASS_FLAG, PASS_DESCRIPTION,
                          PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(ResourceLoopAnalysis, PASS_FLAG, PASS_DESCRIPTION,
                        PASS_CFG_ONLY, PASS_ANALYSIS)
#undef PASS_FLAG
#undef PASS_DESCRIPTION
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS

llvm::FunctionPass *IGC::createResourceLoopAnalysisPass() {
  return new ResourceLoopAnalysis;
}

ResourceLoopAnalysis::ResourceLoopAnalysis() : FunctionPass(ID) {
  initializeResourceLoopAnalysisPass(*PassRegistry::getPassRegistry());
}

static bool ValueOnlyUsedByEEI(Value *V) {
  for (Value::user_iterator UI = V->user_begin(), UE = V->user_end(); UI != UE;
       ++UI) {
    ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(*UI);
    if (!EEI || (EEI->getOperand(0) != V) ||
        !isa<ConstantInt>(EEI->getOperand(1))) {
      return false;
    }
  }
  return true;
}

bool ResourceLoopAnalysis::runOnFunction(Function &F) {
  auto WI = &(getAnalysis<WIAnalysis>());
  CTX = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

  if (!IGC_IS_FLAG_ENABLED(FuseResourceLoop) ||
      CTX->platform.GetPlatformFamily() < IGFX_XE_HPG_CORE) {
    return true;
  }
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
    BasicBlock *BB = &*BI;
    // give every instruction a seq-no in order to check the location of uses
    std::map<Instruction *, unsigned> InstOrder;
    unsigned SeqNo = 0;
    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI;
         ++II) {
      Instruction *I = &*II;
      InstOrder[I] = SeqNo++;
    }
    // find and mark resource-loops
    unsigned loopOpTy = 0;
    Value *loopRes = nullptr;
    Value *loopSamp = nullptr;
    auto prevMemIter = BB->end();   // last memory-inst in the loop
    SmallPtrSet<Value *, 8> DefSet; // all memory-inst in the loop
    SmallPtrSet<Value *, 8> DefOnly4EEI;
    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI;
         ++II) {
      Instruction *I = &*II;
      unsigned curOpTy = 0;
      Value *curRes = nullptr;
      Value *curSamp = nullptr;
      // There are more types of lane-varying resource access than what are
      // listed below. Limited the optimization to get most of performance and
      // to reduce debugging scope.
      if (auto *LI = dyn_cast<SamplerLoadIntrinsic>(I)) {
        if (!WI->isUniform(LI->getTextureValue())) {
          // need extra restrictions:
          // no half-type because it may need extra op for packing
          // no return of the number of elements >= 5, that is
          // sampler-feedback
          unsigned NumElt = 1;
          if (auto vecTy = dyn_cast<IGCLLVM::FixedVectorType>(LI->getType())) {
            NumElt = (unsigned)vecTy->getNumElements();
          }
          if (LI->getType()->getScalarSizeInBits() >= 32 && NumElt <= 4) {
            curRes = LI->getTextureValue();
            curOpTy = 3;
          }
        }
      } else if (auto *LI = dyn_cast<LdRawIntrinsic>(I)) {
        if (!WI->isUniform(LI->getResourceValue())) {
          // need extra restrictions:
          // no half-type because it may need extra op for packing
          if (LI->getType()->getScalarSizeInBits() >= 32) {
            curRes = LI->getResourceValue();
            curOpTy = 4;
          }
        }
      }
      // check data-dependence from mem-ops in the current set
      bool HasDeps = false;
      for (Value *opnd : I->operands()) {
        if (DefSet.count(opnd)) {
          // special handling on extract-element in the loop
          bool SkipEEI = false;
          if (auto EEI = dyn_cast<ExtractElementInst>(I)) {
            if (opnd == EEI->getVectorOperand()) {
              if (DefOnly4EEI.count(opnd))
                SkipEEI = true;
              else if (ValueOnlyUsedByEEI(opnd)) {
                DefOnly4EEI.insert(opnd);
                SkipEEI = true;
              }
            }
          }
          if (SkipEEI)
            DefSet.insert(I); // add EEI to the def-set
          else {
            HasDeps = true;
            break;
          }
        }
      }
      if ((curRes || curSamp) && curOpTy) {
        // this is a lane-varying-resource-access
        bool LoopEnd = HasDeps;
        if (!LoopEnd && curOpTy == loopOpTy && curRes == loopRes &&
            curSamp == loopSamp) {
          // need to check ALU instruction in between
          // all those instructions should only be used
          // inside the loop
          IGC_ASSERT(prevMemIter != BB->end());
          auto III = prevMemIter;
          ++III;
          while (!LoopEnd && III != II) {
            auto defInst = &*III;
            if (isa<ExtractElementInst>(defInst) && DefSet.count(defInst)) {
              ++III;
              continue;
            }
            for (auto UI = defInst->user_begin(), UE = defInst->user_end();
                 !LoopEnd && UI != UE; ++UI) {
              // Determine the block of the use.
              Instruction *useInst = cast<Instruction>(*UI);
              if (InstOrder.find(useInst) == InstOrder.end())
                LoopEnd = true;
              else if (InstOrder[useInst] > InstOrder[I] ||
                       InstOrder[useInst] <= InstOrder[defInst])
                LoopEnd = true;
            }
            ++III;
          }
        } else {
          LoopEnd = true; // mismatch resource/sampler/op-type
        }

        if (!LoopEnd) {
          if (prevMemIter != BB->end()) {
            // mark instructions in between two mem-op as inside
            auto III = prevMemIter;
            ++III;
            while (III != II) {
              auto InBetween = &*III;
              LoopMap[InBetween] = MarkResourceLoopInside;
              ++III;
            }
          }
          LoopMap[I] = MarkResourceLoopInside;
          prevMemIter = II;
          DefSet.insert(I);
        } else {
          // mark the end of the previous loop
          if (prevMemIter != BB->end()) {
            auto PI = &*prevMemIter;
            IGC_ASSERT(LoopMap.find(PI) != LoopMap.end());
            LoopMap[PI] |= MarkResourceLoopEnd;
          }
          LoopMap[I] = MarkResourceLoopStart;
          loopRes = curRes;
          loopSamp = curSamp;
          loopOpTy = curOpTy;
          prevMemIter = II;
          DefSet.clear();
          DefSet.insert(I);
        }
      } else {
        // the other instructions
        bool LoopEnds = HasDeps;
        if (isa<CallInst>(I) || I->isTerminator())
          LoopEnds = true;
        else if (I->mayReadOrWriteMemory())
          LoopEnds = true;
        else if (WI->isUniform(I))
          LoopEnds = true; // avoid uniform in ballot loop
        else if (I->getType()->getScalarType()->isIntegerTy(1))
          LoopEnds = true; // avoid flag modification

        if (LoopEnds && prevMemIter != BB->end()) {
          auto PI = &*prevMemIter;
          IGC_ASSERT(LoopMap.find(PI) != LoopMap.end());
          LoopMap[PI] |= MarkResourceLoopEnd;
          prevMemIter = BB->end();
          loopRes = nullptr;
          loopSamp = nullptr;
          loopOpTy = 0;
          DefSet.clear();
        }
      }
    }
  }

  if (IGC_IS_FLAG_ENABLED(DumpResourceLoop)) {
    auto name = Debug::DumpName(Debug::GetShaderOutputName())
                    .Hash(CTX->hash)
                    .Type(CTX->type)
                    .Pass("ResourceLoop")
                    .PostFix(F.getName().str())
                    .Extension("txt");
    printResourceLoops(
        Debug::Dump(name, Debug::DumpType::DBG_MSG_TEXT).stream(), &F);
  }
  return false;
}

void ResourceLoopAnalysis::printResourceLoops(raw_ostream &OS,
                                              Function *F) const {
  if (F) {
    // All instructions
    for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
      Instruction *I = &*II;
      if (LoopMap.find(I) != LoopMap.end()) {
        unsigned marker = LoopMap.find(I)->second;
        OS << "  [" << marker << "]  " << *I << "\n";
      }
    }
  }
  OS << "\n";
}