1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "VariableReuseAnalysis.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CodeGenPublic.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Support/Debug.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPop.hpp"
#include <algorithm>
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
namespace
{
// If V is scalar, return 1.
// if V is vector, return the number of elements.
inline int getNumElts(Value* V) {
IGCLLVM::FixedVectorType* VTy = dyn_cast<IGCLLVM::FixedVectorType>(V->getType());
return VTy ? (int)VTy->getNumElements() : 1;
}
inline int getTypeSizeInBits(Type* Ty) {
int scalarBits = Ty->getScalarSizeInBits();
IGCLLVM::FixedVectorType* VTy = dyn_cast<IGCLLVM::FixedVectorType>(Ty);
return scalarBits * (VTy ? (int)VTy->getNumElements() : 1);
}
e_alignment getMinAlignment(Value* V, WIAnalysis* WIA, CodeGenContext* pContext)
{
auto grfAlignment = [pContext]() {
return pContext->platform.getGRFSize() == 64
? EALIGN_32WORD : EALIGN_HWORD;
};
auto getSendPayloadAlignment = [pContext](const bool Is64BitTy) {
if (pContext->platform.getGRFSize() == 64 /*bytes*/)
return Is64BitTy ? EALIGN_64WORD : EALIGN_32WORD;
return Is64BitTy ? EALIGN_32WORD : EALIGN_HWORD;
};
//Type* eltTy = V->getType()->getScalarType();
bool is64BitTy = false; // (eltTy->getPrimitiveSizeInBits() > 32);
// GRF-aligned for send operands
// check if V is defined by send
if (GenIntrinsicInst* CI = dyn_cast<GenIntrinsicInst>(V))
{
switch (CI->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_sub_group_dpas:
return grfAlignment();
case GenISAIntrinsic::GenISA_simdBlockRead:
case GenISAIntrinsic::GenISA_LSC2DBlockRead:
return getSendPayloadAlignment(is64BitTy);
default:
break;
}
}
// Check if V is used in send
bool isSend = false;
for (auto UI = V->user_begin(), UE = V->user_end(); UI != UE; ++UI) {
User* U = *UI;
if (isa<LoadInst>(U) || isa<StoreInst>(U))
isSend = true;
if (GenIntrinsicInst* CI = dyn_cast<GenIntrinsicInst>(V))
{
switch (CI->getIntrinsicID()) {
// GetPreferredAlilgnment() will handle dpas
//case GenISAIntrinsic::GenISA_sub_group_dpas:
case GenISAIntrinsic::GenISA_simdBlockWrite:
case GenISAIntrinsic::GenISA_LSC2DBlockWrite:
isSend = true;
break;
default:
break;
}
}
}
if (isSend)
return getSendPayloadAlignment(is64BitTy);
return GetPreferredAlignment(V, WIA, pContext);
}
}
char VariableReuseAnalysis::ID = 0;
IGC_INITIALIZE_PASS_BEGIN(VariableReuseAnalysis, "VariableReuseAnalysis",
"VariableReuseAnalysis", false, true)
// IGC_INITIALIZE_PASS_DEPENDENCY(RegisterEstimator)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(WIAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(LiveVarsAnalysis)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenPatternMatch)
IGC_INITIALIZE_PASS_DEPENDENCY(DeSSA)
IGC_INITIALIZE_PASS_DEPENDENCY(CoalescingEngine)
IGC_INITIALIZE_PASS_DEPENDENCY(BlockCoalescing)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(VariableReuseAnalysis, "VariableReuseAnalysis",
"VariableReuseAnalysis", false, true)
llvm::FunctionPass* IGC::createVariableReuseAnalysisPass() {
return new VariableReuseAnalysis;
}
VariableReuseAnalysis::VariableReuseAnalysis()
: FunctionPass(ID),
m_pCtx(nullptr), m_WIA(nullptr), m_LV(nullptr), m_DeSSA(nullptr),
m_PatternMatch(nullptr), m_coalescingEngine(nullptr),
m_RPE(nullptr), m_SimdSize(0), m_IsFunctionPressureLow(Status::Undef),
m_IsBlockPressureLow(Status::Undef),
m_BBSizeThreshold(IGC_GET_FLAG_VALUE(ScalarAliasBBSizeThreshold)) {
initializeVariableReuseAnalysisPass(*PassRegistry::getPassRegistry());
}
bool VariableReuseAnalysis::runOnFunction(Function& F)
{
m_F = &F;
m_WIA = &(getAnalysis<WIAnalysis>());
if (IGC_IS_FLAG_ENABLED(EnableDeSSA))
{
m_DeSSA = &getAnalysis<DeSSA>();
}
m_LV = &(getAnalysis<LiveVarsAnalysis>().getLiveVars());
m_PatternMatch = &getAnalysis<CodeGenPatternMatch>();
m_pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
m_coalescingEngine = &getAnalysis<CoalescingEngine>();
m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
m_DL = &F.getParent()->getDataLayout();
// FIXME: enable RPE.
// m_RPE = &getAnalysis<RegisterEstimator>();
// Nothing but cleanup data from previous runs.
reset();
if (IGC_IS_FLAG_ENABLED(EnableVariableAlias) &&
m_DeSSA &&
!m_pCtx->getModuleMetaData()->compOpt.OptDisable &&
m_pCtx->platform.GetPlatformFamily() >= IGFX_GEN9_CORE)
{
// Setup ArgDeSSARoot (for subroutine, it might be conservative,
// but it should work.).
m_ArgDeSSARoot.clear();
for (auto II = F.arg_begin(), IE = F.arg_end(); II != IE; ++II)
{
Value* A = II;
if (Value * R = m_DeSSA->getRootValue(A)) {
m_ArgDeSSARoot.push_back(R);
}
}
// 0. Merge Variables
// Merge two different variables into a single one.
// The two vars that will be merged should have the same
// size/type and normally are defined with different values.
// Once merged, they are put in the same DeSSA congruent class
mergeVariables(&F);
// 1. SubVector aliasing
// Two variables alias each other if they have the same values.
// Although they have different names, the two variables share
// the same values over their live ranges. The cases such as
// extractElement/insertElement, etc. Once aliasing is identified,
// the liveness of the alias root is updated to be the sum of both.
// This is the same as DeSSA alias.
InsertElementAliasing(&F);
// 2. Handle extractElement, etc that handles a single instruction or
// a few instruction, not invovled in a complicated patterns like
// InsertElement.
visitLiveInstructions(&F);
postProcessing();
sortAliasResult();
if (IGC_IS_FLAG_ENABLED(DumpVariableAlias))
{
auto name =
Debug::DumpName(Debug::GetShaderOutputName())
.Hash(m_pCtx->hash)
.Type(m_pCtx->type)
.Pass("VariableAlias")
.PostFix(F.getName().str())
.Extension("txt");
printAlias(Debug::Dump(name, Debug::DumpType::DBG_MSG_TEXT).stream(), m_F);
}
}
m_F = nullptr;
return false;
}
static unsigned getMaxReuseDistance(uint16_t size) {
return (size == 8) ? 10 : 5;
}
bool VariableReuseAnalysis::checkUseInst(Instruction* UseInst, LiveVars* LV) {
BasicBlock* CurBB = UseInst->getParent();
// If dessa is disabled (LV = null), skip.
if (UseInst->isUsedOutsideOfBlock(CurBB) || LV == nullptr)
return false;
// This situation can occur:
//
// ,------.
// | |
// | v
// | t2 = phi ... t1 ...
// | |
// | v
// | t1 = ...
// | ... = ... t1 ...
// | |
// `------'
//
// Disallow reuse if t1 has a phi use.
// Disallow reuse if t1 has a far away use when the pressure is not low.
unsigned DefLoc = LV->getDistance(UseInst);
unsigned FarUseLoc = 0;
for (auto UI : UseInst->users()) {
if (isa<PHINode>(UI))
return false;
auto Inst = dyn_cast<Instruction>(UI);
if (!Inst)
return false;
unsigned UseLoc = LV->getDistance(Inst);
FarUseLoc = std::max(FarUseLoc, UseLoc);
}
// When the whole function or block pressure is low, skip the distance check.
if (isCurFunctionPressureLow() || isCurBlockPressureLow())
return true;
// Use distance to limit reuse.
const unsigned FarUseDistance = getMaxReuseDistance(m_SimdSize);
return FarUseLoc <= DefLoc + FarUseDistance;
}
bool VariableReuseAnalysis::checkDefInst(Instruction* DefInst,
Instruction* UseInst, LiveVars* LV) {
IGC_ASSERT(nullptr != DefInst);
IGC_ASSERT(nullptr != UseInst);
// If dessa is disabled (LV = null), skip
if (isa<PHINode>(DefInst) || LV == nullptr)
return false;
if (auto CI = dyn_cast<CallInst>(DefInst)) {
Function* F = CI->getCalledFunction();
// Do not reuse the return symbol of subroutine/stack calls.
if (!F || !F->isDeclaration())
return false;
if (isa<GenIntrinsicInst>(DefInst)) {
// Just skip all gen intrinsic calls. Some intrinsic calls may have
// special meaning.
return false;
}
}
// This is a block level reuse.
BasicBlock* CurBB = UseInst->getParent();
if (DefInst->getParent() != CurBB || DefInst->isUsedOutsideOfBlock(CurBB))
return false;
// Check whether UseInst is the last use of DefInst. If not, this source
// variable cannot be reused.
Instruction* LastUse = LV->getLVInfo(DefInst).findKill(CurBB);
if (LastUse != UseInst)
return false;
// When the whole function or block pressure is low, skip the distance check.
if (isCurFunctionPressureLow() || isCurBlockPressureLow())
return true;
// Use distance to limit far reuses.
unsigned DefLoc = LV->getDistance(DefInst);
unsigned UseLoc = LV->getDistance(UseInst);
const unsigned FarDefDistance = getMaxReuseDistance(m_SimdSize);
return UseLoc <= DefLoc + FarDefDistance;
}
void VariableReuseAnalysis::mergeVariables(Function* F)
{
for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II)
{
Instruction* I = &*II;
if (!m_PatternMatch->NeedInstruction(*I))
continue;
if (GenIntrinsicInst * CI = dyn_cast<GenIntrinsicInst>(I))
{
switch (CI->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_sub_group_dpas:
case GenISAIntrinsic::GenISA_dpas:
{
if (!m_DeSSA) {
// Skip if no DeSSA
break;
}
Value* out = CI;
Value* input = CI->getOperand(0);
if (!(isa<Instruction>(input) || isa<Argument>(input)))
{
// input may be a constant for example
break;
}
Type* OTy = out->getType();
Type* ITy = input->getType();
if (getTypeSizeInBits(OTy) != getTypeSizeInBits(ITy))
{
// If out and input are different size, skip
break;
}
// For now, coalescing out and input if at least one of them
// is local, and input is the last use.
if ((m_WIA && m_WIA->whichDepend(out) == m_WIA->whichDepend(input)) &&
!hasBeenPayloadCoalesced(input) &&
!hasBeenPayloadCoalesced(out) &&
!m_DeSSA->interfere(out, input))
{
// For dpas, alignment for out/input are the same
e_alignment align = EALIGN_AUTO;
if (m_WIA) {
align = GetPreferredAlignment(out, m_WIA, m_pCtx);
}
// Make sure that nodes have been created before doing union
m_DeSSA->addReg(out, align);
m_DeSSA->addReg(input, align);
m_DeSSA->unionRegs(out, input);
}
break;
}
default:
break;
} // End of switch
}
}
}
void VariableReuseAnalysis::visitLiveInstructions(Function* F)
{
const auto control = ((m_pCtx->getVectorCoalescingControl() >> 2) & 0x3);
if (control == 0) {
return;
}
for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI)
{
BasicBlock* BB = &*BI;
for (auto II = BB->begin(), IE = BB->end(); II != IE; ++II)
{
Instruction& I = *II;
if (!m_PatternMatch->NeedInstruction(I))
continue;
visit(I);
}
}
}
// Given a root Value RootVal, all its values that are coalesced
// with it are in AllVals. This function finds the place to insert
// the lifeTimeStart for RootVal, which is either at the end of a
// BB or right before the first definition. If any value is argument,
// no lifeTimeStart is needed.
// (For assisting visa for liveness analysis.)
void VariableReuseAnalysis::setLifeTimeStartPos(
Value* RootVal,
ValueVectorTy& AllVals,
BlockCoalescing* theBC)
{
SmallSet<BasicBlock*, 8> defBBSet;
SmallSet<BasicBlock*, 8> phiSrcMovBBSet;
for (int i = 0, sz = (int)AllVals.size(); i < sz; ++i)
{
Value* V = AllVals[i];
Instruction* I = dyn_cast<Instruction>(V);
if (!I) {
// For arg, global etc., its start is on entry.
// Thus, no need to insert lifetime start.
defBBSet.clear();
phiSrcMovBBSet.clear();
break;
}
if (PHINode * PHI = dyn_cast<PHINode>(I)) {
Value* PHI_root = m_DeSSA->getRootValue(PHI);
int sz1 = (int)PHI->getNumIncomingValues();
for (int i1 = 0; i1 < sz1; ++i1)
{
Value* Src = PHI->getIncomingValue(i1);
Value* Src_root = m_DeSSA->getRootValue(Src);
if (!Src_root || PHI_root != Src_root) {
// Need Src-side phi mov
BasicBlock* BB = PHI->getIncomingBlock(i1);
phiSrcMovBBSet.insert(BB);
}
}
}
else {
BasicBlock* BB = I->getParent();
defBBSet.insert(BB);
}
}
if (defBBSet.size() == 0 && phiSrcMovBBSet.size() == 0) {
return;
}
auto BSI = defBBSet.begin();
auto BSE = defBBSet.end();
BasicBlock* NearestDomBB = *BSI;
for (++BSI; BSI != BSE; ++BSI)
{
BasicBlock* aB = *BSI;
NearestDomBB = m_DT->findNearestCommonDominator(NearestDomBB, aB);
}
// phiSrcMovBBSet
for (auto II = phiSrcMovBBSet.begin(), IE = phiSrcMovBBSet.end();
II != IE; ++II)
{
BasicBlock* aB = *II;
NearestDomBB = m_DT->findNearestCommonDominator(NearestDomBB, aB);
}
// Skip emptry BBs that are going to be skipped in codegen emit.
while (theBC->IsEmptyBlock(NearestDomBB))
{
auto Node = m_DT->getNode(NearestDomBB);
NearestDomBB = Node->getIDom()->getBlock();
}
if (defBBSet.count(NearestDomBB))
{
// lifeTimeStart insert pos is in a BB where a def exists
m_LifetimeAt1stDefOfBB[RootVal] = NearestDomBB;
}
else
{
// No def in the bb, it must be at the end of BB
// (must be before phiSrcMov too).
m_LifetimeAtEndOfBB[NearestDomBB].push_back(RootVal);
}
}
void VariableReuseAnalysis::postProcessing()
{
// BlockCoalescing : check if a BB is a to-be-skipped empty BB.
// It is used for selecting BB to add lifetime start
BlockCoalescing* theBC = &getAnalysis<BlockCoalescing>();
const auto control = ((m_pCtx->getVectorCoalescingControl() >> 4) & 0x3);
if (!m_DeSSA || control == 0)
return;
// VectorAlias = 0x10
DenseMap<Value*, int> dessaRootVisited;
auto IS = m_baseVecMap.begin();
auto IE = m_baseVecMap.end();
for (auto II = IS; II != IE; ++II)
{
SBaseVecDesc* BV = II->second;
Value* aliasee = BV->BaseVector;
// An alias set of an aliasee:
// The aliasee and all its aliasers; and for each of them, all values
// in their dessa CC.
//
// For each Aliasee, record its lifetime start, which is the
// nearest dominator that dominates all value defs in an alias set.
// This BB is either one that has no defintion of values in the set;
// or one that has a defintion to a value in the set. For the former,
// m_LifetimeAtEndOfBB is used to keep track of it; for the latter,
// m_LifetimeAt1stDefOfBB is used.
ValueVectorTy AllVals;
SmallVector<Value*, 16> valInCC;
m_DeSSA->getAllValuesInCongruentClass(aliasee, valInCC);
AllVals.insert(AllVals.end(), valInCC.begin(), valInCC.end());
// update visited for aliasee
Value* aliaseeRoot = getRootValue(aliasee);
dessaRootVisited[aliaseeRoot] = 1;
for (int i = 0, sz = (int)BV->Aliasers.size(); i < sz; ++i)
{
SSubVecDesc* aSV = BV->Aliasers[i];
Value* aliaser = aSV->Aliaser;
valInCC.clear();
m_DeSSA->getAllValuesInCongruentClass(aliaser, valInCC);
AllVals.insert(AllVals.end(), valInCC.begin(), valInCC.end());
// update visited for aliaser
Value* aRoot = getRootValue(aliaser);
dessaRootVisited[aRoot] = 1;
}
setLifeTimeStartPos(aliaseeRoot, AllVals, theBC);
}
// VectorAlias = 0x20, for other vector values.
if (control < 2)
return;
for (auto II = inst_begin(*m_F), IE = inst_end(*m_F); II != IE; ++II)
{
Instruction* I = &*II;
if (!m_PatternMatch->NeedInstruction(*I))
continue;
if (!I->getType()->isVectorTy())
continue;
Value* I_nd = m_DeSSA->getNodeValue(I);
Value* rootV = getRootValue(I_nd);
if (dessaRootVisited.find(rootV) != dessaRootVisited.end()) {
// Already handled by sub-vector aliasing, skip
continue;
}
dessaRootVisited[rootV] = 1;
ValueVectorTy AllVals;
SmallVector<Value*, 16> valInCC;
m_DeSSA->getAllValuesInCongruentClass(rootV, valInCC);
AllVals.insert(AllVals.end(), valInCC.begin(), valInCC.end());
setLifeTimeStartPos(rootV, AllVals, theBC);
}
}
Value* VariableReuseAnalysis::getRootValue(Value* V)
{
Value* dessaRV = nullptr;
if (m_DeSSA) {
dessaRV = m_DeSSA->getRootValue(V);
}
return dessaRV ? dessaRV : V;
}
Value* VariableReuseAnalysis::getAliasRootValue(Value* V)
{
Value* V_nv = m_DeSSA ? m_DeSSA->getNodeValue(V) : V;
auto II0 = m_baseVecMap.find(V_nv);
if (II0 != m_baseVecMap.end())
return II0->second->BaseVector;
auto II1 = m_aliasMap.find(V_nv);
if (II1 == m_aliasMap.end()) {
return V_nv;
}
return II1->second->Aliasee->BaseVector;
}
// Returns true for the following pattern:
// a = extractElement <vectorType> EEI_Vec, <constant EEI_ix>
// b = insertElement <vectorType> V1, a, <constant IEI_ix>
// where EEI_ix and IEI_ix are constants; Return false otherwise.
bool VariableReuseAnalysis::getVectorIndicesIfConstant(
InsertElementInst* IEI, int& IEI_ix, Value*& EEI_Vec, int& EEI_ix)
{
// Check if I has constant index, skip if not.
ConstantInt* CI = dyn_cast<ConstantInt>(IEI->getOperand(2));
if (!CI) {
return false;
}
IEI_ix = (int)CI->getZExtValue();
// Check that the elements inserted are from extractElement
// Also, special-handling of insertelement itself.
Value* elem = IEI->getOperand(1);
ExtractElementInst* EEI = dyn_cast<ExtractElementInst>(elem);
if (!EEI) {
// Just insertelement itself
EEI_ix = 0;
EEI_Vec = elem;
return true;
}
ConstantInt* CI1 = dyn_cast<ConstantInt>(EEI->getIndexOperand());
if (!CI1) {
return false;
}
EEI_ix = (int)CI1->getZExtValue();
EEI_Vec = EEI->getVectorOperand();
return true;
}
void VariableReuseAnalysis::visitExtractElementInst(ExtractElementInst& I)
{
const auto control = ((m_pCtx->getVectorCoalescingControl() >> 2) & 0x3);
// VectorAlias=0x4 : for isolated values
// =0x8 : for both isolated and non-isolated values
if (control == 0) {
return;
}
ExtractElementInst* EEI = &I;
Value* vecVal = EEI->getVectorOperand();
// Before doing extractMask explicitly, don't do aliasing
// for extractElement whose vector operand are the candidate
// of the existing extractMask optimization, as doing so will
// disable the existing extractMask optimization, which will
// cause perf regression.
if (Instruction * Inst = dyn_cast<Instruction>(vecVal))
{
if (IGC_IS_FLAG_DISABLED(EnableExtractMask) &&
(isSampleInstruction(Inst) || isLdInstruction(Inst)))
{
// OCL can have sample (image read), not ld. For 3d/mac,
// need to check more
return;
}
}
// If inst is dead, EEI is an argument, or EEI & vecVal have
// different uniformness, skip it. (Current igc & visa interface
// requires any argument value to be a root value, not alias.)
if (m_HasBecomeNoopInsts.count(EEI) ||
m_DeSSA->isNoopAliaser(EEI) ||
isOrCoalescedWithArg(EEI) ||
(m_WIA && m_WIA->whichDepend(EEI) != m_WIA->whichDepend(vecVal))) {
return;
}
Value* EEI_nv = m_DeSSA->getNodeValue(EEI);
Value* vec_nv = m_DeSSA->getNodeValue(vecVal);
// If EEI has been payload-coalesced or has been an aliaser, skip
if (hasBeenPayloadCoalesced(EEI) || isAliaser(EEI_nv)) {
return;
}
if (!m_DeSSA->isSingleValued(EEI_nv) || !m_DeSSA->isSingleValued(vec_nv)) {
if (control < 2) {
return;
}
if (hasAnyDCCAsAliaser(EEI_nv) || hasAnotherDCCAsAliasee(vec_nv)) {
return;
}
}
// Can only do alias if idx is a known constant.
Value* IdxVal = EEI->getIndexOperand();
ConstantInt* Idx = dyn_cast<ConstantInt>(IdxVal);
if (!Idx) {
return;
}
int iIdx = (int)Idx->getZExtValue();
if (!m_DeSSA->isSingleValued(EEI_nv) || !m_DeSSA->isSingleValued(vec_nv)) {
if (control < 2)
return;
// case 3: DeSSA CC not empty
if (aliasInterfere(EEI_nv, vec_nv, iIdx))
return;
}
// Valid vec alias and add it into alias map
addVecAlias(EEI_nv, vec_nv, vecVal, iIdx);
// Mark this inst as noop inst
m_HasBecomeNoopInsts[EEI] = 1;
}
void VariableReuseAnalysis::printAlias(raw_ostream& OS, const Function* F) const
{
auto toString = [](e_alignment A) -> const char* {
switch (A) {
case EALIGN_BYTE: return "Byte";
case EALIGN_WORD: return "word";
case EALIGN_DWORD: return "dword";
case EALIGN_QWORD: return "qword";
case EALIGN_OWORD: return "oword";
case EALIGN_HWORD: return "hword";
case EALIGN_32WORD: return "32word";
case EALIGN_64WORD: return "64word";
default: break;
}
return "auto";
};
// Assign each inst/arg a unique integer so that the output
// would be in order. It is useful when doing comparison.
DenseMap<const Value*, int> Val2IntMap;
int id = 0;
if (F) {
// All arguments
for (auto AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) {
const Value* aVal = AI;
Val2IntMap[aVal] = (++id);
}
// All instructions
for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
const Instruction* Inst = &*II;
Val2IntMap[(Value*)Inst] = (++id);
}
}
auto SubVecCmp = [&](const SSubVecDesc* SV0, const SSubVecDesc* SV1) {
int n0 = Val2IntMap[SV0->Aliaser];
int n1 = Val2IntMap[SV1->Aliaser];
return n0 < n1;
};
auto BaseVecCmp = [&](const SBaseVecDesc* BV0, const SBaseVecDesc* BV1) {
int n0 = Val2IntMap[BV0->BaseVector];
int n1 = Val2IntMap[BV1->BaseVector];
return n0 < n1;
};
OS << "\nSummary of Variable Alias Info: "
<< (F ? F->getName().str() : "Function")
<< "\n";
SmallVector<SBaseVecDesc*, 64> sortedAlias;
for (auto& MI : m_baseVecMap) {
SBaseVecDesc* BV = MI.second;
sortedAlias.push_back(BV);
}
std::sort(sortedAlias.begin(), sortedAlias.end(), BaseVecCmp);
for (int i = 0, sz = (int)sortedAlias.size(); i < sz; ++i)
{
SBaseVecDesc* BV = sortedAlias[i];
Value* aliasee = BV->BaseVector;
OS << "Aliasee : " << *aliasee << " align: "
<< toString(BV->Align) << "\n";
std::sort(BV->Aliasers.begin(), BV->Aliasers.end(), SubVecCmp);
for (auto VI : BV->Aliasers)
{
SSubVecDesc* aSV = VI;
Value* aliaser = aSV->Aliaser;
bool isSinglVal = m_DeSSA ? m_DeSSA->isSingleValued(aliaser) : true;
const char* inCC = !isSinglVal ? ".inDessaCC" : "";
OS << " " << *aliaser
<< " [" << aSV->StartElementOffset << "]"
<< inCC << "\n";
}
OS << "\n";
}
OS << "\n";
}
// Sort the final aliase info (baseVecmap) so that its order is deterministic.
// CreateAliasVars() relies on this to generate cvariables in order.
// (todo: use vector instead of map in the algorithm to avoid sorting.)
void VariableReuseAnalysis::sortAliasResult()
{
if (m_baseVecMap.empty()) {
return;
}
Function* F = m_F;
// Assign each inst/arg a unique integer so that the output
// would be in order. It is useful when doing comparison.
DenseMap<const Value*, int> Val2IntMap;
int id = 0;
if (F) {
// All arguments
for (auto AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI) {
const Value* aVal = AI;
Val2IntMap[aVal] = (++id);
}
// All instructions
for (auto II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
const Instruction* Inst = &*II;
Val2IntMap[(Value*)Inst] = (++id);
}
}
auto SubVecCmp = [&](const SSubVecDesc* SV0, const SSubVecDesc* SV1) {
int n0 = Val2IntMap[SV0->Aliaser];
int n1 = Val2IntMap[SV1->Aliaser];
return n0 < n1;
};
auto BaseVecCmp = [&](const SBaseVecDesc* BV0, const SBaseVecDesc* BV1) {
int n0 = Val2IntMap[BV0->BaseVector];
int n1 = Val2IntMap[BV1->BaseVector];
return n0 < n1;
};
m_sortedBaseVec.clear();
for (auto& MI : m_baseVecMap) {
SBaseVecDesc* BV = MI.second;
std::sort(BV->Aliasers.begin(), BV->Aliasers.end(), SubVecCmp);
m_sortedBaseVec.push_back(BV);
}
std::sort(m_sortedBaseVec.begin(), m_sortedBaseVec.end(), BaseVecCmp);
}
void VariableReuseAnalysis::dumpAlias() const
{
printAlias(dbgs(), m_F);
}
// Add alias Aliaser -> Aliasee[Idx]
void VariableReuseAnalysis::addVecAlias(
Value* Aliaser, Value* Aliasee, Value* OrigBaseVec,
int Idx, e_alignment AliaseeAlign)
{
auto getLargerAlign = [](e_alignment A0, e_alignment A1) -> e_alignment {
if (A0 == EALIGN_AUTO)
return A1;
if (A1 == EALIGN_AUTO)
return A0;
return A0 > A1 ? A0 : A1;
};
int StartIx = Idx;
// if Aliasee is an aliaser now, get its aliasee and it will be the new aliasee
SBaseVecDesc* aliaseeBV;
auto SMI = m_aliasMap.find(Aliasee);
if (SMI != m_aliasMap.end()) {
SSubVecDesc* SV = SMI->second;
aliaseeBV = SV->Aliasee;
StartIx += SV->StartElementOffset;
}
else {
aliaseeBV = getOrCreateBaseVecDesc(Aliasee, OrigBaseVec, AliaseeAlign);
}
// update align
aliaseeBV->Align = getLargerAlign(aliaseeBV->Align, AliaseeAlign);
SSubVecDesc* aliaserSV = getOrCreateSubVecDesc(Aliaser);
aliaserSV->Aliasee = aliaseeBV;
aliaserSV->StartElementOffset = StartIx;
// If Aliaser exists as aliasee, must re-alias its aliasers.
auto BMI = m_baseVecMap.find(Aliaser);
if (BMI != m_baseVecMap.end()) {
SBaseVecDesc* BVD = BMI->second;
for (int i = 0, sz = (int)BVD->Aliasers.size(); i < sz; ++i)
{
SSubVecDesc* SV = BVD->Aliasers[i];
SV->Aliasee = aliaseeBV;
SV->StartElementOffset += StartIx;
aliaseeBV->Aliasers.push_back(SV);
}
aliaseeBV->Align = getLargerAlign(aliaseeBV->Align, BVD->Align);
// Delete BMI as it is no longer a base vector.
m_baseVecMap.erase(BMI);
}
// Finally, add aliaserSV into Aliasee's Aliaser vector
aliaseeBV->Aliasers.push_back(aliaserSV);
const auto control1 = (m_pCtx->getVectorCoalescingControl() & 0x3);
const auto control2 = ((m_pCtx->getVectorCoalescingControl() >> 2) & 0x3);
if (control1 > 1 || control2 > 1)
{
// If aliaser isn't single-valued, add it to its root map.
if (!m_DeSSA->isSingleValued(Aliaser)) {
Value* rv0 = m_DeSSA->getRootValue(Aliaser);
m_root2AliasMap[rv0] = Aliaser;
}
if (!m_DeSSA->isSingleValued(Aliasee)) {
// If it isn't isolated, add it to its root map
Value* rv1 = m_DeSSA->getRootValue(Aliasee);
m_root2AliasMap[rv1] = Aliasee;
}
}
}
SSubVecDesc* VariableReuseAnalysis::getOrCreateSubVecDesc(Value* V)
{
if (m_aliasMap.count(V) == 0) {
SSubVecDesc* SV = new(Allocator) SSubVecDesc(V);
m_aliasMap.insert(std::make_pair(V, SV));
}
return m_aliasMap[V];
}
SBaseVecDesc* VariableReuseAnalysis::getOrCreateBaseVecDesc(Value* V,
Value* OV, e_alignment A)
{
if (m_baseVecMap.count(V) == 0) {
SBaseVecDesc* BV = new(Allocator) SBaseVecDesc(V, OV, A);
m_baseVecMap.insert(std::make_pair(V, BV));
}
return m_baseVecMap[V];
}
// Return true if V itself is sub-vector aliased.
// Note that other values in V's DeSSA CC are not checked.
bool VariableReuseAnalysis::isAliased(Value* V) const
{
Value* V_nv = m_DeSSA ? m_DeSSA->getNodeValue(V) : V;
return (m_aliasMap.count(V_nv) > 0 || m_baseVecMap.count(V_nv) > 0);
}
// Return true if V is aliased to a vector as an aliaser
bool VariableReuseAnalysis::isAliaser(Value* V) const
{
Value* V_nv = m_DeSSA ? m_DeSSA->getNodeValue(V) : V;
return m_aliasMap.count(V_nv) > 0;
}
// DCC: DeSSA Congruent Class
// If V has been coalesced by DeSSA and any value in V's DCC has been aliased
// as an aliaser, return true.
bool VariableReuseAnalysis::hasAnyDCCAsAliaser(Value* V) const
{
// If V is not in the map, check others in its DCC
Value* rv = m_DeSSA ? m_DeSSA->getRootValue(V) : nullptr;
if (rv) {
auto II = m_root2AliasMap.find(rv);
if (II != m_root2AliasMap.end()) {
Value* aV = II->second;
auto MI = m_aliasMap.find(aV);
if (MI != m_aliasMap.end())
return true;
}
}
return false;
}
// DCC: DeSSA Congruent Class
// If there is another value (different from V) in V's DCC that is aliasee,
// return true.
bool VariableReuseAnalysis::hasAnotherDCCAsAliasee(Value* V) const
{
// Check if any value of its dessa CC has been an aliasee.
Value* rv = m_DeSSA ? m_DeSSA->getRootValue(V) : nullptr;
if (rv) {
auto II = m_root2AliasMap.find(rv);
if (II != m_root2AliasMap.end()) {
Value* aV = II->second;
auto MI = m_baseVecMap.find(aV);
if (MI != m_baseVecMap.end() && aV != V)
return true;
}
}
return false;
}
// A chain of IEIs is used to define a vector. If all elements of this vector
// are inserted via this chain IEIs with constant indices, populate AllIEIs.
// input: FirstIEI (first IEI, usually with index = 0)
// output: AllIEIs (collect all values used to initialize the vector)
// Return value:
// true : if all elements are inserted with IEI of constant index
// false: otherwise.
bool VariableReuseAnalysis::getAllInsEltsIfAvailable(
InsertElementInst* FirstIEI, VecInsEltInfoTy& AllIEIs)
{
int nelts = getNumElts(FirstIEI);
// Sanity
if (nelts < 2)
return false;
AllIEIs.resize(nelts);
InsertElementInst* LastIEI = FirstIEI;
InsertElementInst* I = FirstIEI;
Value* dessaRoot = m_DeSSA->getRootValue(FirstIEI);
while (I)
{
LastIEI = I;
// For insertElement, it should be in the same dessa CC
// already, as dessa special-handles it. Make sure they
// are indeed in the same CC, otherwise, skip.
if (hasBeenPayloadCoalesced(I) ||
m_DeSSA->getRootValue(I) != dessaRoot)
return false;
Value* V = nullptr;
Value* E = nullptr;
int IEI_ix = 0, V_ix = 0;
if (!getElementValue(I, IEI_ix, E, V, V_ix)) {
return false;
}
IGC_ASSERT_MESSAGE(IEI_ix < nelts, "ICE: IEI's index out of bound!");
SVecInsEltInfo& InsEltInfo = AllIEIs[IEI_ix];
if (InsEltInfo.IEI) {
// One element is inserted more than once, skip.
return false;
}
InsEltInfo.IEI = I;
InsEltInfo.Elt = E;
InsEltInfo.FromVec = V;
InsEltInfo.FromVec_eltIx = V_ix;
if (E) {
InsEltInfo.EEI = dyn_cast<ExtractElementInst>(E);
}
if (!I->hasOneUse()) {
break;
}
I = dyn_cast<InsertElementInst>(I->user_back());
}
// Special cases.
if (AllIEIs.empty() || LastIEI->use_empty()) {
return false;
}
// Make sure all elements are present, and they should have same uniform.
Value* V = AllIEIs[0].IEI;
if (V == nullptr) {
return false;
}
Value* V_nv = m_DeSSA->getNodeValue(V);
Value* V_root = getRootValue(V_nv);
auto V_dep = m_WIA->whichDepend(V);
for (int i = 0; i < nelts; ++i) {
Value* tV = AllIEIs[i].IEI;
if (tV == nullptr)
return false;
// Expect node values for all IEIs are identical. In general, if they
// are in the same DeSSA CC, that would be fine.
Value* tV_nv = m_DeSSA->getNodeValue(tV);
if (V_root != getRootValue(tV_nv))
return false;
Value* E = AllIEIs[i].Elt;
Value* FromVec = AllIEIs[i].FromVec;
Value* FromVec_nv = m_DeSSA->getNodeValue(FromVec);
// check if FromVec has been coalesced with IEI already by DeSSA.
// (Wouldn't happen under current DeSSA, but might happen in future)
if (V_root == getRootValue(FromVec_nv))
return false;
// Make sure FromVec or E have the same uniformness as V.
if ((E && V_dep != m_WIA->whichDepend(E)) ||
(FromVec && V_dep != m_WIA->whichDepend(FromVec)))
return false;
}
return true;
}
Value* VariableReuseAnalysis::traceAliasValue(Value* V)
{
if (CastInst * CastI = dyn_cast_or_null<CastInst>(V))
{
// Only handle Noop cast inst. For example,
// dst = bitcast <3 x i32> src to <3 x float>,
// it is okay, but the following isn't.
// dst = bitcast <3 x i64> src to <6 x i32>
if (!isNoOpInst(CastI, m_pCtx)) {
return V;
}
Value* Src = CastI->getOperand(0);
if (isa<Constant>(Src))
return CastI;
Value* NV0 = m_DeSSA->getNodeValue(CastI);
Value* NV1 = m_DeSSA->getNodeValue(Src);
if (NV0 == NV1)
{
// Meaning they are aliased already by dessa
return traceAliasValue(Src);
}
}
return V;
}
//
// Returns true if the following is true
// IEI = insertElement <vectorType> Vec, S, <constant IEI_ix>
// Return false, otherwise.
//
// When the above condition is true, V and V_ix are used for the
// following cases:
// 1. S is from another vector V.
// S = extractElement <vectorType> V, <constant V_ix>
// S is the element denoted by (V, V_ix)
// 2. otherwise, V=nullptr, V_ix=0.
// S is a candidate inserted and could be alias to the vector.
//
// Input: IEI
// Output: IEI_ix, S, V, V_ix
bool VariableReuseAnalysis::getElementValue(
InsertElementInst* IEI, int& IEI_ix, Value*& S, Value*& V, int& V_ix)
{
// Return value: S or (V, V_ix)
S = nullptr;
V = nullptr;
V_ix = 0;
IEI_ix = 0;
// Check if I has constant index, skip if not.
ConstantInt* CI = dyn_cast<ConstantInt>(IEI->getOperand(2));
if (!CI) {
return false;
}
IEI_ix = (int)CI->getZExtValue();
Value* elem0 = IEI->getOperand(1);
if (hasBeenPayloadCoalesced(elem0) ||
isa<Constant>(elem0) ||
isOrCoalescedWithArg(elem0))
{
// If elem0 has been payload-coalesced, is constant,
// or it has been aliased to an argument, skip it.
return false;
}
Value* elem = traceAliasValue(elem0);
ExtractElementInst* EEI = dyn_cast<ExtractElementInst>(elem);
S = elem;
if (!EEI) {
// case 2.
return true;
}
ConstantInt* CI1 = dyn_cast<ConstantInt>(EEI->getIndexOperand());
if (!CI1 ||
!m_DeSSA->isSingleValued(elem))
{
// case 2
return true;
}
V = EEI->getVectorOperand();
if (isa<Constant>(V) ||
hasBeenPayloadCoalesced(V))
{
// case 2 again
V = nullptr;
return true;
}
// case 1.
V_ix = (int)CI1->getZExtValue();
return true;
}
void VariableReuseAnalysis::InsertElementAliasing(Function* F)
{
// There are dead blocks that are still not removed, don't count them
// Should use F->size() once dead BBs are removed
auto getNumBBs = [](Function* aF) {
int32_t i = 1; // count entry
for (BasicBlock &aBB : aF->getBasicBlockList()) {
if (aBB.hasNPredecessors(0)) {
continue;
}
++i;
}
return i;
};
// Do it if VectorAlias != 0.
// VectorAlias=0x1: subvec aliasing for isolated values (getRootValue()=null)
// =0x2: subvec aliasing for both isolated and non-isolated value)
const auto control = (m_pCtx->getVectorCoalescingControl() & 0x3);
// To avoid increasing GRF pressure, skip if F is too large or not an entry
const int32_t NumBBThreshold = (int)IGC_GET_FLAG_VALUE(VectorAliasBBThreshold);
MetaDataUtils* pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
if (control == 0 || !isEntryFunc(pMdUtils, F) || getNumBBs(F) > NumBBThreshold) {
return;
}
for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI)
{
BasicBlock* BB = &*BI;
for (auto II = BB->begin(), IE = BB->end(); II != IE; ++II)
{
Instruction* I = &*II;
if (!m_PatternMatch->NeedInstruction(*I))
continue;
InsertElementInst* IEI = dyn_cast<InsertElementInst>(I);
if (!IEI)
continue;
// Two cases for sub-vector aliasing:
// 1. extractFrom: sub-vector is created from a base vector.
// For example:
// given base: int8 b; a sub-vector s (int4) can be:
// s = (int4)(b.s4, b.s5, b.s6, b.s7)
// In this case, 's' becomes a part of 'b'. In LLVM IR,
// there are a chain of extElt and insElt instructions for
// doing so.
// 2. insertTo: sub-vector is used to create a base vector.
// For example:
// given sub-vector int4 s0, s1; int8 vector b is created like:
// b = (int8) (s0, s1)
// In this case, both s0 and s1 become part of b.
// Start insertElement pattern from the first InsertElement (one
// with UndefValue. Note that this's also the dessa insElt root.
if (!isa<UndefValue>(IEI->getOperand(0)))
continue;
// First, collect all insertElementInst and extractElementInst.
VecInsEltInfoTy AllIEIs;
if (!getAllInsEltsIfAvailable(IEI, AllIEIs)) {
continue;
}
// Check if this is an extractFrom pattern, if so, add alias.
if (processExtractFrom(AllIEIs)) {
continue;
}
// Check if this is an insertTo pattern, if so add alias.
if (processInsertTo(BB, AllIEIs)) {
continue;
}
}
}
}
// Return true if vector formed by IEI chain is a sub-vector of another one.
bool VariableReuseAnalysis::processExtractFrom(VecInsEltInfoTy& AllIEIs)
{
const int nelts = (int)AllIEIs.size();
Value* BaseVec = AllIEIs[0].FromVec;
int BaseStartIx = AllIEIs[0].FromVec_eltIx;
if (!BaseVec) {
return false;
}
int base_nelts = getNumElts(BaseVec);
if (base_nelts < nelts) {
return false;
}
for (int i = 1; i < nelts; ++i)
{
if (AllIEIs[i].FromVec != BaseVec ||
AllIEIs[i].FromVec_eltIx != (BaseStartIx + i))
return false;
}
// DPAS unlikely uses smaller vector, favor extractMask
if (base_nelts <= 4 && isExtractMaskCandidate(BaseVec)) {
return false;
}
Value* lastIEI = AllIEIs[nelts - 1].IEI;
auto S_use = getCandidateStateUse(lastIEI);
auto B_def = getCandidateStateDef(BaseVec);
auto B_use = getCandidateStateUse(BaseVec);
if (!aliasOkay(S_use, B_def, B_use))
return false;
Value* Sub = AllIEIs[0].IEI;
// If Sub is coalesced with an arg of function, skip.
if (isOrCoalescedWithArg(Sub)) {
return false;
}
Value* Sub_nv = m_DeSSA->getNodeValue(Sub);
Value* Base_nv = m_DeSSA->getNodeValue(BaseVec);
// If Sub_nv has been aliased to another vector already, skip
if (isAliaser(Sub_nv)) {
return false;
}
e_alignment BaseAlign;
if (!checkSubAlign(BaseAlign, Sub, BaseVec, BaseStartIx)) {
return false;
}
// Skip if they are not singled valued
bool isSub_singleVal = m_DeSSA->isSingleValued(Sub_nv);
bool isBase_singleVal = m_DeSSA->isSingleValued(Base_nv);
if (!isSub_singleVal || !isBase_singleVal) {
if ((m_pCtx->getVectorCoalescingControl() & 0x3) < 2)
return false;
// Skip if they are already coalesced by DeSSA
Value* rootBase_nv = m_DeSSA->getRootValue(Base_nv);
if (rootBase_nv && rootBase_nv == m_DeSSA->getRootValue(Sub_nv))
return false;
// Skip
// 1) if Sub_nv has been vector-aliased to another one already; or
// 2) if a different one from Base_nv's CC (not Base_nv) has been
// aliased by anotehr one already
// Both cases need a complicated interference checking.
if (hasAnyDCCAsAliaser(Sub_nv) ||
hasAnotherDCCAsAliasee(Base_nv)) {
return false;
}
if (aliasInterfere(Sub_nv, Base_nv, BaseStartIx)) {
return false;
}
}
// add alias
addVecAlias(Sub_nv, Base_nv, BaseVec, BaseStartIx, BaseAlign);
// Make sure noop insts are in the map.
for (int i = 0, sz = nelts; i < sz; ++i)
{
// IEI chain is coalesced by DeSSA, so it's safe to mark it as noop
InsertElementInst* IEI = AllIEIs[i].IEI;
if (!m_DeSSA->isNoopAliaser(IEI)) {
m_HasBecomeNoopInsts[IEI] = 1;
}
ExtractElementInst* EEI = AllIEIs[i].EEI;
IGC_ASSERT(EEI);
if (!m_DeSSA->isNoopAliaser(EEI)) {
// Set EEI as an aliser, thus it become noop.
Value *EEI_nv = m_DeSSA->getNodeValue(EEI);
addVecAlias(EEI_nv, Base_nv, BaseVec, AllIEIs[i].FromVec_eltIx, EALIGN_AUTO);
m_HasBecomeNoopInsts[EEI] = 1;
}
}
return true;
}
// Check if IEI is a base vector created by other sub-vectors
// or scalars. If it is, create alias and return true.
bool VariableReuseAnalysis::processInsertTo(BasicBlock* BB, VecInsEltInfoTy& AllIEIs)
{
const auto control = (m_pCtx->getVectorCoalescingControl() & 0x3);
SmallVector<std::pair<Value*, int>, 8> SubVecs;
auto IsInSubVecs = [&SubVecs](Value* Val) {
for (int j = 0, sz = (int)SubVecs.size(); j < sz; ++j) {
if (SubVecs[j].first == Val)
return true;
}
return false;
};
InsertElementInst* FirstIEI = AllIEIs[0].IEI;
Value* Base_nv = m_DeSSA->getNodeValue(FirstIEI);
if (!m_DeSSA->isSingleValued(Base_nv)) {
if (control < 2)
return false;
if (hasAnotherDCCAsAliasee(Base_nv)) {
return false;
}
}
// Find all subvec that are part of BaseVec. AllIEIs may be formed from
// multiple subvec and scalar.
bool isSubCandidate = true;
int nelts = (int)AllIEIs.size();
Value* Sub = AllIEIs[0].FromVec;
int SubStartIx = 0;
for (int i = 0; i < nelts; ++i)
{
// On entry to the iteration, AllIEIs[i].FromVec must be the same as
// Sub. If the next Sub is different from the current one, the current
// element (AllIEIs[i]) is the last one element for the Sub.
//
// Note
// case 1: if Elt == nullptr, no aliasing
// case 2: if Elt != nullptr && Fromvec == nullptr, scalar aliasing
// case 3: if Elt != nullptr && FromVec != nullptr,
// (FromVec, FromVec_eltIx) sub-vector aliasing
//
Value* Elt = AllIEIs[i].Elt;
if (!Elt ||
(Sub && (i - SubStartIx) != AllIEIs[i].FromVec_eltIx)) {
isSubCandidate = false;
}
if (Elt && Sub == nullptr && skipScalarAliaser(BB, Elt)) {
// Skip scalar coalescing
isSubCandidate = false;
}
// If Sub == nullptr or NextSub != Sub, this is the last element
// of the current Sub (it is a scalar in case of sub == nullpr).
Value* NextSub = (i < (nelts - 1)) ? AllIEIs[i + 1].FromVec : nullptr;
if (!Sub || Sub != NextSub)
{
// End of the current Sub
if (isSubCandidate)
{
Value* aliaser = Sub ? Sub : Elt;
int sub_nelts = getNumElts(aliaser);
// If Sub's size is not smaller than IEI's, or not all sub's
// elements are used, skip.
if (sub_nelts < nelts && (i - SubStartIx) == (sub_nelts - 1))
{
SubVecs.push_back(std::make_pair(aliaser, SubStartIx));
}
}
// NextSub should be the new sub-vector.
// Make sure it is not used yet.
// Note this works for special case in which NextSub = nullptr.
isSubCandidate = true;
Value* NextElt = (i < (nelts - 1)) ? AllIEIs[i + 1].Elt : nullptr;
if (!NextElt ||
(NextSub && IsInSubVecs(NextSub)) ||
(!NextSub && IsInSubVecs(NextElt))) {
isSubCandidate = false;
}
Sub = NextSub;
SubStartIx = i + 1;
}
}
InsertElementInst* LastIEI = AllIEIs.back().IEI;
auto B_use = getCandidateStateUse(LastIEI);
bool hasAlias = false;
for (int i = 0, sz = (int)SubVecs.size(); i < sz; ++i)
{
std::pair<Value*, int>& aPair = SubVecs[i];
Value* V = aPair.first;
int V_ix = aPair.second;
// If V is an arg, skip it
if (isOrCoalescedWithArg(V)) {
continue;
}
// If V has been an aliaser, skip.
if (isAliaser(V)) {
continue;
}
auto S_use = getCandidateStateUse(V);
auto S_def = getCandidateStateDef(V);
if (!aliasOkay(S_use, S_def, B_use))
continue;
e_alignment BaseAlign;
if (!checkSubAlign(BaseAlign, V, LastIEI, V_ix))
continue;
Value* V_nv = m_DeSSA->getNodeValue(V);
if (!m_DeSSA->isSingleValued(V_nv)) {
if (control < 2)
continue;
if (hasAnyDCCAsAliaser(V_nv))
continue;
if (aliasInterfere(V_nv, Base_nv, V_ix)) {
continue;
}
}
addVecAlias(V_nv, Base_nv, FirstIEI, V_ix, BaseAlign);
int V_sz = getNumElts(V);
if (V_sz > 1)
{
// set up Noop inst
// Make sure noop insts are in the map.
for (int j = V_ix, sz = V_ix + V_sz; j < sz; ++j)
{
// Safe to mark IEI as noop as IEI chain's coalesced by DeSSA
InsertElementInst* IEI = AllIEIs[j].IEI;
if (!m_DeSSA->isNoopAliaser(IEI)) {
m_HasBecomeNoopInsts[IEI] = 1;
}
ExtractElementInst* EEI = AllIEIs[j].EEI;
IGC_ASSERT(EEI);
// Sub-vector
if (!m_DeSSA->isNoopAliaser(EEI)) {
// EEI should be in alias map so it can be marked as noop
Value *EEI_nv = m_DeSSA->getNodeValue(EEI);
addVecAlias(EEI_nv, Base_nv, FirstIEI, j);
m_HasBecomeNoopInsts[EEI] = 1;
}
}
}
else {
// scalar
// Safe to mark IEI as noop as IEI chain's coalesced by DeSSA
InsertElementInst* IEI = AllIEIs[V_ix].IEI;
if (m_DeSSA->isNoopAliaser(IEI))
continue;
m_HasBecomeNoopInsts[IEI] = 1;
}
hasAlias = true;
}
return hasAlias;
}
// Return all aliased values of VecAliasee, given the alias:
// Aliaser->(VecAliasee, Idx)
void VariableReuseAnalysis::getAllAliasVals(
ValueVectorTy& AliasVals,
Value* Aliaser,
Value* VecAliasee,
int Idx)
{
AliasVals.clear();
auto II = m_aliasMap.find(VecAliasee);
AliasVals.push_back(VecAliasee);
if (II != m_aliasMap.end())
{
SSubVecDesc* aliaseeSV = II->second;
SBaseVecDesc* baseV = aliaseeSV->Aliasee;
int nelts = getNumElts(Aliaser);
int Idx_end = Idx + nelts - 1;
for (int i = 0, sz = (int)(baseV->Aliasers.size()); i < sz; ++i)
{
SSubVecDesc* SV = baseV->Aliasers[i];
int start = SV->StartElementOffset;
int end = start + SV->NumElts - 1;
if ((start > Idx_end) || (end < Idx))
continue;
AliasVals.push_back(SV->Aliaser);
}
}
}
// Given two values : Sub and (Base, BaseIdx), check if theses two value
// interfere each other. Assume these two values are dessa node values.
bool VariableReuseAnalysis::aliasInterfere(Value* Sub, Value* Base, int BaseIdx)
{
// Vec0 : set of values aliased to Sub (as aliasee). Sub cannot be aliaser
// as algo does not make an aliaser twice.
// Vec1 : set of values aliased to Sub if Sub aliases to (Base, BaseIdx).
ValueVectorTy Vec0, Vec1;
Vec0.push_back(Sub);
getAllAliasVals(Vec1, Sub, Base, BaseIdx);
auto II0 = m_baseVecMap.find(Sub);
if (II0 != m_baseVecMap.end()) {
SBaseVecDesc* BV0 = II0->second;
for (int i = 0, sz = (int)BV0->Aliasers.size(); i < sz; ++i) {
SSubVecDesc* tSV = BV0->Aliasers[i];
Vec0.push_back(tSV->Aliaser);
}
}
for (int i0 = 0, sz0 = (int)Vec0.size(); i0 < sz0; ++i0)
{
Value* V0 = Vec0[i0];
for (int i1 = 0, sz1 = (int)Vec1.size(); i1 < sz1; ++i1) {
Value* V1 = Vec1[i1];
if (m_DeSSA->aliasInterfere(V0, V1))
return true;
}
}
return false;
}
// Check if a value is used in instructions that we handle.
VariableReuseAnalysis::AState VariableReuseAnalysis::getCandidateStateUse(
Value* V) const
{
// If any of its use is used as func arg, skip
AState retSt = AState::OK;
for (User* U : V->users()) {
Value* Val = U;
CastInst* CI = dyn_cast<CastInst>(Val);
if (CI && isNoOpInst(CI, m_pCtx)) {
Val = CI->getOperand(0);
}
if (GenIntrinsicInst* GII = dyn_cast<GenIntrinsicInst>(Val)) {
switch (GII->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_sub_group_dpas:
case GenISAIntrinsic::GenISA_LSC2DBlockWrite:
case GenISAIntrinsic::GenISA_simdBlockWrite:
retSt = AState::TARGET;
break;
default:
break;
}
}
else if (StoreInst* SI = dyn_cast<StoreInst>(Val)) {
retSt = AState::TARGET;
}
else if (isa<CallInst>(Val)) {
return AState::SKIP;
}
}
return retSt;
}
// Check if a value is defined by instructions that we handle.
VariableReuseAnalysis::AState VariableReuseAnalysis::getCandidateStateDef(
Value* V) const
{
Value* Val = V;
CastInst* CI = dyn_cast<CastInst>(Val);
if (CI && isNoOpInst(CI, m_pCtx)) {
Val = CI->getOperand(0);
}
// skip if V is defined by a function.
if (GenIntrinsicInst* GII = dyn_cast<GenIntrinsicInst>(Val)) {
switch (GII->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_sub_group_dpas:
case GenISAIntrinsic::GenISA_LSC2DBlockRead:
case GenISAIntrinsic::GenISA_simdBlockRead:
return AState::TARGET;
default:
break;
}
}
else if (LoadInst* SI = dyn_cast<LoadInst>(Val)) {
return AState::TARGET;
}
else if (isa<CallInst>(Val)) {
return AState::SKIP;
}
return AState::OK;
}
// Vector alias disables extractMask optimization. This function
// checks if extractMask optim can be applied. And the caller
// will decide whether to favor extractMask optimization.
bool VariableReuseAnalysis::isExtractMaskCandidate(Value* V) const
{
auto BIT = [](int n) { return (uint32_t)(1 << n); };
if (!isa<VectorType>(V->getType()))
return false;
uint32_t nelts = getNumElts(V);
// Using 31 to be consistent with extractMash.
if (nelts > 31) {
return false;
}
uint32_t mask = 0;
for (auto II = V->user_begin(), IE = V->user_end(); II != IE; ++II)
{
Value* V = *II;
if (ExtractElementInst* EEI = dyn_cast<llvm::ExtractElementInst>(V))
{
if (ConstantInt* CI = dyn_cast<ConstantInt>(EEI->getIndexOperand()))
{
uint32_t indexBit = BIT(static_cast<uint>(CI->getZExtValue()));
mask |= indexBit;
continue;
}
}
return false;
}
uint32_t fullMask = maskTrailingOnes<uint32_t>(nelts);
return fullMask > mask;
}
// Check if SubVec is aligned if it becomes a sub-vector at Base_ix of
// BaseVec. If so, return true with SubVec alignment in BaseAlign.
bool VariableReuseAnalysis::checkSubAlign(e_alignment& BaseAlign,
Value* SubVec, Value* BaseVec, int Base_ix)
{
auto maxAlign = [](e_alignment A, e_alignment B) {
if (A == EALIGN_AUTO)
return B;
if (B == EALIGN_AUTO)
return A;
return A > B ? A : B;
};
auto toBytes = [](e_alignment A) {
switch (A) {
case EALIGN_BYTE: return 1;
case EALIGN_WORD: return 2;
case EALIGN_DWORD: return 4;
case EALIGN_QWORD: return 8;
case EALIGN_OWORD: return 16;
case EALIGN_HWORD: return 32;
case EALIGN_32WORD: return 64;
case EALIGN_64WORD: return 128;
default: break;
}
return 0;
};
BaseAlign = EALIGN_AUTO;
// Get element bytes from original base vector
Type* eltTy = BaseVec->getType()->getScalarType();
uint32_t eltBytes = (uint32_t)m_DL->getTypeStoreSize(eltTy);
// get all coalesced values for subvec and find the max alignment
SmallVector<Value*, 16> allVals;
m_DeSSA->getAllCoalescedValues(SubVec, allVals);
e_alignment sub_align = EALIGN_AUTO;
for (auto II : allVals) {
Value* V = II;
e_alignment thisAlign = getMinAlignment(V, m_WIA, m_pCtx);
sub_align = maxAlign(sub_align, thisAlign);
}
int sub_alignBytes = toBytes(sub_align);
if (sub_alignBytes == 0) {
// AUTO align is fine.
return true;
}
// m_SimdSize is unavailable, using smallest simdsize for now.
int simdsize = numLanes(m_pCtx->platform.getMinDispatchMode());
int uLanes = (m_WIA->isUniform(BaseVec) ? 1 : simdsize);
// If base is an aliaser at this time, must check its aliasee
Value* BaseVec_nd = m_DeSSA->getNodeValue(BaseVec);
int ix1 = 0;
auto MII = m_aliasMap.find(BaseVec_nd);
if (MII != m_aliasMap.end()) {
SSubVecDesc* SV = MII->second;
ix1 = SV->StartElementOffset;
}
int ix = Base_ix + ix1;
int startOffset = eltBytes * uLanes * ix;
if ((startOffset % sub_alignBytes) != 0) {
// cannot be correctly aligned, skip
return false;
}
BaseAlign = sub_align;
return true;
}
bool VariableReuseAnalysis::skipScalarAliaser(BasicBlock* BB, Value* ScalarVal) const
{
Instruction* I = dyn_cast<Instruction>(ScalarVal);
return ((BB->size() > m_BBSizeThreshold) || !I || I->getParent() != BB);
}
|