File: CustomLoopOpt.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (2235 lines) | stat: -rw-r--r-- 76,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "common/LLVMWarningsPush.hpp"
#include <llvmWrapper/IR/Constants.h>
#include <llvmWrapper/IR/DerivedTypes.h>
#include "llvmWrapper/IR/Function.h"
#include <llvm/Transforms/Utils/Cloning.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <llvm/Transforms/Utils/LoopUtils.h>
#include "common/LLVMWarningsPop.hpp"
#include "common/LLVMUtils.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/CustomLoopOpt.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;

#define PASS_FLAG     "igc-custom-loop-opt"
#define PASS_DESC     "IGC Custom Loop Opt"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(CustomLoopVersioning, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper);
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
IGC_INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
IGC_INITIALIZE_PASS_END(CustomLoopVersioning, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)

char CustomLoopVersioning::ID = 0;

CustomLoopVersioning::CustomLoopVersioning() : FunctionPass(ID)
{
    initializeCustomLoopVersioningPass(*PassRegistry::getPassRegistry());
}

bool CustomLoopVersioning::isCBLoad(Value* val, unsigned& bufId, unsigned& offset)
{
    LoadInst* ld = dyn_cast<LoadInst>(val);
    if (!ld)
        return false;

    unsigned as = ld->getPointerAddressSpace();
    bool directBuf = false;
    BufferType bufType = DecodeAS4GFXResource(as, directBuf, bufId);
    if (!(bufType == CONSTANT_BUFFER && directBuf))
        return false;

    Value* ptr = ld->getPointerOperand();
    if (IntToPtrInst * itop = dyn_cast<IntToPtrInst>(ptr))
    {
        ConstantInt* ci = dyn_cast<ConstantInt>(
            itop->getOperand(0));
        if (ci)
        {
            offset = int_cast<unsigned>(ci->getZExtValue());
            return true;
        }
    }
    if (ConstantExpr * itop = dyn_cast<ConstantExpr>(ptr))
    {
        if (itop->getOpcode() == Instruction::IntToPtr)
        {
            offset = int_cast<unsigned>(
                cast<ConstantInt>(itop->getOperand(0))->getZExtValue());
            return true;
        }
    }
    return false;
}

bool CustomLoopVersioning::runOnFunction(Function& F)
{
    // Skip non-kernel function.
    IGCMD::MetaDataUtils* mdu = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
    auto FII = mdu->findFunctionsInfoItem(&F);
    if (FII == mdu->end_FunctionsInfo())
        return false;

    m_cgCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    m_LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    m_function = &F;

    bool changed = false;
    for (auto& LI : *m_LI)
    {
        Loop* L = &(*LI);

        // only check while loop with single BB loop body
        if (L->isSafeToClone() && L->getLoopDepth() == 1 &&
            L->getNumBlocks() == 1 && L->getNumBackEdges() == 1 &&
            L->getHeader() == L->getExitingBlock() &&
            L->getLoopPreheader() && L->isLCSSAForm(*m_DT))
        {
            changed = processLoop(L);
            if (changed)
                break;
        }
    }

    if (changed)
    {
        m_cgCtx->getModuleMetaData()->psInfo.hasVersionedLoop = true;
        DumpLLVMIR(m_cgCtx, "customloop");
    }
    return changed;
}

//
// float t = ...;
// float nextT = t * CB_Load;
// [loop] while (t < loop_range_y)
// {
//     float val0 = max(t, loop_range_x);
//     float val1 = min(nextT, loop_range_y);
//     ...
//     t = nextT;
//     nextT *= CB_Load;
// }
//
// pre_header:
//   %cb = load float, float addrspace(65538)* ...
//   %nextT_start = fmul float %t_start, %cb
//
// loop_header:
//   %t = phi float [ %t_start, %then409 ], [ %nextT, %break_cont ]
//   %nextT = phi float [ %nextT_start, %then409 ], [ %res_s588, %break_cont ]
//   %cond = fcmp ult float %t, %loop_range_y
//   br i1 %cond, label %break_cont, label %after_loop
//
// loop_body:
//   %206 = call float @llvm.maxnum.f32(float %loop_range_x, float %t)
//   %207 = call float @llvm.minnum.f32(float %loop_range_y, float %nextT)
//   ...
//   %258 = load float, float addrspace(65538)* ...
//   %res_s588 = fmul float %nextT, %258
//   br label %loop_entry
//
//
bool CustomLoopVersioning::detectLoop(Loop* loop,
    Value*& var_range_x, Value*& var_range_y,
    LoadInst*& var_CBLoad_preHdr,
    Value*& var_t_preHdr,
    Value*& var_nextT_preHdr)
{
    BasicBlock* preHdr = loop->getLoopPreheader();
    BasicBlock* header = loop->getHeader();
    BasicBlock* body = loop->getLoopLatch();

    Instruction* i0 = body->getFirstNonPHIOrDbg();
    Instruction* i1 = i0->getNextNonDebugInstruction();

    CallInst* imax = dyn_cast<CallInst>(i0);
    CallInst* imin = i1 ? dyn_cast<CallInst>(i1) : nullptr;

    if (!(imax && GetOpCode(imax) == llvm_max &&
        imin && GetOpCode(imin) == llvm_min))
    {
        return false;
    }

    CallInst* interval_x = dyn_cast<CallInst>(imax->getArgOperand(0));
    CallInst* interval_y = dyn_cast<CallInst>(imin->getArgOperand(0));

    if (!(interval_x && GetOpCode(interval_x) == llvm_max) ||
        !(interval_y && GetOpCode(interval_y) == llvm_min))
    {
        return false;
    }
    var_range_x = interval_x;
    var_range_y = interval_y;

    PHINode* var_t;
    PHINode* var_nextT;

    var_t = dyn_cast<PHINode>(imax->getArgOperand(1));
    var_nextT = dyn_cast<PHINode>(imin->getArgOperand(1));
    if (var_t == nullptr || var_nextT == nullptr)
    {
        return false;
    }

    if (var_t->getParent() != header || var_nextT->getParent() != header)
    {
        return false;
    }

    // check for "nextT = t * CB_Load" before loop
    BinaryOperator* fmul = dyn_cast<BinaryOperator>(
        var_nextT->getIncomingValueForBlock(preHdr));
    if (!fmul)
    {
        return false;
    }
    if (fmul->getOperand(0) !=
        var_t->getIncomingValueForBlock(preHdr))
    {
        return false;
    }
    var_t_preHdr = var_t->getIncomingValueForBlock(preHdr);
    var_nextT_preHdr = var_nextT->getIncomingValueForBlock(preHdr);

    unsigned bufId, cbOffset;
    if (!isCBLoad(fmul->getOperand(1), bufId, cbOffset))
    {
        return false;
    }
    var_CBLoad_preHdr = cast<LoadInst>(fmul->getOperand(1));

    // check for "t = nextT" inside loop
    if (var_t->getIncomingValueForBlock(body) != var_nextT)
    {
        return false;
    }

    fmul = dyn_cast<BinaryOperator>(
        var_nextT->getIncomingValueForBlock(body));
    if (!fmul)
    {
        return false;
    }

    // check for "nextT *= CB_Load" inside loop
    Value* src0 = fmul->getOperand(0);
    if (src0 != var_nextT)
    {
        return false;
    }

    unsigned bufId2, cbOffset2;
    if (!isCBLoad(fmul->getOperand(1), bufId2, cbOffset2))
    {
        return false;
    }
    if (bufId != bufId2 || cbOffset != cbOffset2)
    {
        return false;
    }

    BranchInst* br = cast<BranchInst>(body->getTerminator());
    if (!br->isConditional())
    {
        return false;
    }

    // check for "while (t < loop_range_y)"
    FCmpInst* fcmp = dyn_cast<FCmpInst>(br->getCondition());
    if (!fcmp || fcmp->getOperand(0) != var_nextT)
    {
        return false;
    }

    if (fcmp->getOperand(1) != interval_y)
    {
        return false;
    }

    return true;
}

// while (t < loop_range_y)
//     float val0 = max(t, loop_range_x);
//     float val1 = min(nextT, loop_range_y);
// -->
// while (t < loop_range_x)
//     float val0 = loop_range_x;
//     float val1 = nextT;
void CustomLoopVersioning::rewriteLoopSeg1(Loop* loop,
    Value* interval_x, Value* interval_y)
{
    BasicBlock* header = loop->getHeader();
    IGC_ASSERT(nullptr != header);
    BasicBlock* body = loop->getLoopLatch();
    IGC_ASSERT(nullptr != body);

    BranchInst* br = cast<BranchInst>(header->getTerminator());
    IGC_ASSERT(nullptr != br);
    FCmpInst* fcmp = dyn_cast<FCmpInst>(br->getCondition());
    IGC_ASSERT(nullptr != fcmp);
    IGC_ASSERT(fcmp->getOperand(1) == interval_y);

    fcmp->setOperand(1, interval_x);

    Instruction* i0 = body->getFirstNonPHIOrDbg();
    Instruction* i1 = i0->getNextNonDebugInstruction();

    IntrinsicInst* imax = cast<IntrinsicInst>(i0);
    IntrinsicInst* imin = cast<IntrinsicInst>(i1);
    IGC_ASSERT(imax);
    IGC_ASSERT(imin);

    imax->replaceAllUsesWith(interval_x);
    imin->replaceAllUsesWith(imin->getArgOperand(1));
}

void CustomLoopVersioning::hoistSeg2Invariant(Loop* loop,
    Instruction* fmul, Value* cbLoad)
{
    BasicBlock* preHdr = loop->getLoopPreheader();
    BasicBlock* body = loop->getLoopLatch();

    // detecting loop invariant and move it to header:
    //   %211 = call float @llvm.fabs.f32(float %210)
    //   %212 = call float @llvm.log2.f32(float %211)
    //   %res_s465 = fmul float %165, %212
    //   %213 = call float @llvm.exp2.f32(float %res_s465)
    IntrinsicInst* intrin_abs = nullptr;
    IntrinsicInst* intrin_log2 = nullptr;
    Instruction* fmul_log2 = nullptr;
    Value* fmul_log2_opnd = nullptr;

    for (auto* UI : fmul->users())
    {
        IntrinsicInst* intrin = cast<IntrinsicInst>(UI);
        if (intrin->getIntrinsicID() == Intrinsic::fabs &&
            intrin->hasOneUse())
        {
            intrin_abs = intrin;
            break;
        }
    }

    if (intrin_abs && intrin_abs->getParent() == body)
    {
        IntrinsicInst* intrin = dyn_cast<IntrinsicInst>(
            *intrin_abs->users().begin());
        if (intrin &&
            intrin->getIntrinsicID() == Intrinsic::log2 &&
            intrin->hasOneUse())
        {
            intrin_log2 = intrin;
        }
    }

    if (intrin_log2 && intrin_log2->getParent() == body)
    {
        Instruction* fmul = dyn_cast<Instruction>(
            *intrin_log2->users().begin());
        if (fmul &&
            fmul->getOpcode() == Instruction::FMul &&
            fmul->hasOneUse())
        {
            unsigned id = fmul->getOperand(0) == intrin_log2 ? 1 : 0;
            // make sure another operand is coming from out of loop
            Instruction* i = dyn_cast<Instruction>(fmul->getOperand(id));
            if (i && !loop->contains(i->getParent()))
            {
                fmul_log2 = fmul;
                fmul_log2_opnd = fmul->getOperand(id);
            }
        }
    }

    if (fmul_log2 && fmul_log2->getParent() == body)
    {
        IntrinsicInst* intrin = dyn_cast<IntrinsicInst>(
            *fmul_log2->users().begin());
        if (intrin &&
            intrin->getIntrinsicID() == Intrinsic::exp2)
        {
            IRBuilder<> irb(preHdr->getFirstNonPHIOrDbg());
            irb.setFastMathFlags(fmul_log2->getFastMathFlags());

            Function* flog =
                Intrinsic::getDeclaration(m_function->getParent(),
                    llvm::Intrinsic::log2, intrin_log2->getType());
            Function* fexp =
                Intrinsic::getDeclaration(m_function->getParent(),
                    llvm::Intrinsic::exp2, intrin_log2->getType());
            Value* v = irb.CreateCall(flog, cbLoad);
            v = irb.CreateFMul(fmul_log2_opnd, v);
            v = irb.CreateCall(fexp, v);
            intrin->replaceAllUsesWith(v);
        }
    }
    fmul->replaceAllUsesWith(cbLoad);
}

// while (t < loop_range_y)
//     float val0 = max(t, loop_range_x);
//     float val1 = min(nextT, loop_range_y);
// -->
// while (t < loop_range_y/CB_Load)
//     float val0 = t;
//     float val1 = next;
void CustomLoopVersioning::rewriteLoopSeg2(Loop* loop,
    Value* interval_y, Value* cbLoad)
{
    BasicBlock* header = loop->getHeader();
    IGC_ASSERT(nullptr != header);
    BasicBlock* body = loop->getLoopLatch();
    IGC_ASSERT(nullptr != body);

    BranchInst* br = cast<BranchInst>(header->getTerminator());
    IGC_ASSERT(nullptr != br);
    FCmpInst* fcmp = dyn_cast<FCmpInst>(br->getCondition());
    IGC_ASSERT(nullptr != fcmp);
    IGC_ASSERT(fcmp->getOperand(1) == interval_y);

    Instruction* v = BinaryOperator::Create(Instruction::FDiv,
        interval_y, cbLoad, "", fcmp);
    v->setFast(true);
    fcmp->setOperand(1, v);

    Instruction* i0 = body->getFirstNonPHIOrDbg();
    Instruction* i1 = i0->getNextNonDebugInstruction();

    IntrinsicInst* imax = cast<IntrinsicInst>(i0);
    IntrinsicInst* imin = cast<IntrinsicInst>(i1);
    IGC_ASSERT(imax && imin);

    // find
    //   %206 = call float @llvm.maxnum.f32()
    //   %207 = call float @llvm.minnum.f32()
    //   %209 = fdiv float 1.000000e+00, % 206
    //   %210 = fmul float %207, % 209
    Instruction* fmul = nullptr;
    for (auto* max_Users : imax->users())
    {
        if (Instruction * fdiv = dyn_cast<BinaryOperator>(max_Users))
        {
            if (ConstantFP * cf = dyn_cast<ConstantFP>(fdiv->getOperand(0)))
            {
                if (cf->isExactlyValue(1.0))
                {
                    for (auto* UI : fdiv->users())
                    {
                        if ((fmul = dyn_cast<BinaryOperator>(UI)))
                        {
                            if (fmul->getOperand(0) == imin ||
                                (fmul->getOperand(1) == imin &&
                                    fmul->getParent() == body))
                            {
                                // find val1/val0
                                hoistSeg2Invariant(loop, fmul, cbLoad);

                                break;
                            }
                        }
                    }
                }
            }
        }
    }

    imax->replaceAllUsesWith(imax->getArgOperand(1));
    imin->replaceAllUsesWith(imin->getArgOperand(1));
}

//     float val0 = max(t, loop_range_x);
//     float val1 = min(nextT, loop_range_y);
// -->
//     float val0 = t;
//     float val1 = loop_range_y;
void CustomLoopVersioning::rewriteLoopSeg3(BasicBlock* bb,
    Value* interval_y)
{
    Instruction* i0 = bb->getFirstNonPHIOrDbg();
    Instruction* i1 = i0->getNextNonDebugInstruction();

    IntrinsicInst* imax = cast<IntrinsicInst>(i0);
    IntrinsicInst* imin = cast<IntrinsicInst>(i1);
    IGC_ASSERT(imax && imin);

    imax->replaceAllUsesWith(imax->getArgOperand(1));
    imin->replaceAllUsesWith(interval_y);

    auto II = bb->begin();
    auto IE = BasicBlock::iterator(bb->getFirstNonPHI());

    while (II != IE)
    {
        PHINode* PN = cast<PHINode>(II);

        IGC_ASSERT(PN->getNumIncomingValues() == 2);
        for (unsigned i = 0; i < PN->getNumIncomingValues(); i++)
        {
            if (PN->getIncomingBlock(i) != bb)
            {
                PN->replaceAllUsesWith(PN->getIncomingValue(i));
            }
        }
        ++II;
        PN->eraseFromParent();
    }
}

void CustomLoopVersioning::linkLoops(
    Loop* loopSeg1, Loop* loopSeg2,
    BasicBlock* afterLoop)
{
    // we are handling do/while loop
    IGC_ASSERT(loopSeg1->getHeader() == loopSeg1->getLoopLatch());
    IGC_ASSERT(loopSeg2->getHeader() == loopSeg2->getLoopLatch());

    BasicBlock* seg1Body = loopSeg1->getLoopLatch();
    BasicBlock* seg2PreHdr = loopSeg2->getLoopPreheader();
    BasicBlock* seg2Body = loopSeg2->getLoopLatch();

    BranchInst* br = cast<BranchInst>(seg1Body->getTerminator());
    unsigned idx = br->getSuccessor(0) == afterLoop ? 0 : 1;
    br->setSuccessor(idx, loopSeg2->getLoopPreheader());

    auto II_1 = seg1Body->begin(), II_2 = seg2Body->begin();
    auto IE_2 = BasicBlock::iterator(seg2Body->getFirstNonPHI());

    for (; II_2 != IE_2; ++II_2, ++II_1)
    {
        PHINode* PN2 = cast<PHINode>(II_2);
        PHINode* PN1 = cast<PHINode>(II_1);
        Value* liveOut = nullptr;

        for (unsigned i = 0; i < PN1->getNumIncomingValues(); i++)
        {
            if (PN1->getIncomingBlock(i) == seg1Body)
            {
                liveOut = PN1->getIncomingValue(i);
                break;
            }
        }

        IGC_ASSERT(liveOut != nullptr);
        for (unsigned i = 0; i < PN2->getNumIncomingValues(); i++)
        {

            if (PN2->getIncomingBlock(i) != seg2Body)
            {
                PN2->setIncomingValue(i, liveOut);
                PN2->setIncomingBlock(i, seg2PreHdr);
            }
        }
    }

}

bool CustomLoopVersioning::processLoop(Loop* loop)
{
    Value* var_range_x;
    Value* var_range_y;
    LoadInst* var_CBLoad_preHdr;
    Value* var_t_preHdr;
    Value* var_nextT_preHdr;
    bool found = false;

    found = detectLoop(loop, var_range_x, var_range_y,
        var_CBLoad_preHdr, var_t_preHdr, var_nextT_preHdr);

    if (!found)
        return false;

    const SmallVectorImpl<Instruction*>& liveOut =
        llvm::findDefsUsedOutsideOfLoop(loop);

    BasicBlock* preHdr = loop->getLoopPreheader();

    // apply the transformation
    BasicBlock* PH = llvm::SplitBlock(preHdr, preHdr->getTerminator(), m_DT, m_LI);

    // create loop seg 1 and insert before orig loop
    SmallVector<BasicBlock*, 8> seg1Blocks;
    Loop* loopSeg1 = llvm::cloneLoopWithPreheader(
        PH, preHdr, loop, m_vmapToSeg1, ".seg1", m_LI, m_DT, seg1Blocks);
    llvm::remapInstructionsInBlocks(seg1Blocks, m_vmapToSeg1);

    // create the check for fast loop
    // if (CB_Load > 1.0 &&
    //     loop_range_x * CB_Load < loop_range_y)
    //     fast version;
    // else
    //     orig version;
    preHdr->getTerminator()->eraseFromParent();

    IRBuilder<> irb(preHdr);
    FastMathFlags FMF;
    FMF.setFast();
    irb.setFastMathFlags(FMF);
    Value* cond0 = irb.CreateFCmpOGT(
        var_CBLoad_preHdr, ConstantFP::get(irb.getFloatTy(), 1.0));

    Value* cond1 = irb.CreateFCmpOLT(
        irb.CreateFMul(var_range_x, var_CBLoad_preHdr),
        var_range_y);


    irb.CreateCondBr(irb.CreateAnd(cond0, cond1),
        loopSeg1->getLoopPreheader(),
        loop->getLoopPreheader());

    BasicBlock* const afterLoop = loop->getExitBlock();
    IGC_ASSERT_MESSAGE(nullptr != afterLoop, "No single successor to loop exit block");

    // create loop seg 2 and insert before orig loop (after loop seg 1)
    SmallVector<BasicBlock*, 8> seg2Blocks;
    Loop* loopSeg2 = llvm::cloneLoopWithPreheader(
        PH, loopSeg1->getHeader(), loop, m_vmapToSeg2, ".seg2", m_LI, m_DT, seg2Blocks);
    llvm::remapInstructionsInBlocks(seg2Blocks, m_vmapToSeg2);

    // rewrite loop seg 1
    rewriteLoopSeg1(loopSeg1, var_range_x, var_range_y);

    // link loop seg1 to loop seg2
    linkLoops(loopSeg1, loopSeg2, afterLoop);

    // create seg3 after seg2 before changing loop2 body
    SmallVector<BasicBlock*, 8> seg3Blocks;
    Loop* loopSeg3 = llvm::cloneLoopWithPreheader(
        PH, loopSeg2->getHeader(), loop, m_vmapToSeg3, ".seg3", m_LI, m_DT, seg3Blocks);
    llvm::remapInstructionsInBlocks(seg3Blocks, m_vmapToSeg3);
    BasicBlock* bbSeg3 = loopSeg3->getLoopLatch();

    // rewrite loop seg2
    rewriteLoopSeg2(loopSeg2, var_range_y, var_CBLoad_preHdr);

    // link seg2 -> seg3 -> after_loop
    linkLoops(loopSeg2, loopSeg3, afterLoop);

    bbSeg3->getTerminator()->eraseFromParent();
    BranchInst::Create(afterLoop, bbSeg3);

    rewriteLoopSeg3(bbSeg3, var_range_y);

    addPhiNodes(liveOut, loopSeg1, loopSeg2, bbSeg3, loop);

    return true;
}

void CustomLoopVersioning::addPhiNodes(
    const SmallVectorImpl<Instruction*>& liveOuts,
    Loop* loopSeg1, Loop* loopSeg2, BasicBlock* bbSeg3, Loop* origLoop)
{
    BasicBlock* const phiBB = origLoop->getExitBlock();
    IGC_ASSERT_MESSAGE(nullptr != phiBB, "No single successor to loop exit block");

    for (auto* Inst : liveOuts)
    {
        Value* seg3Val = m_vmapToSeg3[Inst];
        PHINode* phi;

        phi = PHINode::Create(Inst->getType(), 2, "", &phiBB->front());
        SmallVector<Instruction*, 8> instToDel;
        for (auto* User : Inst->users())
        {
            PHINode* pu = dyn_cast<PHINode>(User);
            if (pu && pu->getParent() == phiBB)
            {
                // replace LCSSA phi with newly created phi node
                pu->replaceAllUsesWith(phi);
                instToDel.push_back(pu);
            }
        }
        for (auto* I : instToDel)
        {
            I->eraseFromParent();
        }
        phi->addIncoming(seg3Val, bbSeg3);
        phi->addIncoming(Inst, origLoop->getExitingBlock());
    }
}

// This pass is mostly forked from LoopSimplification pass
class LoopCanonicalization : public llvm::FunctionPass
{
public:
    static char ID;

    LoopCanonicalization();

    void getAnalysisUsage(llvm::AnalysisUsage& AU) const
    {
        AU.addRequired<llvm::LoopInfoWrapperPass>();
        AU.addRequired<llvm::DominatorTreeWrapperPass>();
        AU.addRequiredID(llvm::LCSSAID);
        AU.addPreservedID(LCSSAID);
    }

    bool runOnFunction(Function& F);
    bool processLoop(Loop* loop, DominatorTree* DT, LoopInfo* LI, bool PreserveLCSSA);
    bool processOneLoop(Loop* loop, DominatorTree* DT, LoopInfo* LI, bool PreserveLCSSA);


    llvm::StringRef getPassName() const
    {
        return "IGC loop canonicalization";
    }

private:
    CodeGenContext* m_cgCtx = nullptr;
    llvm::LoopInfo* m_LI = nullptr;
    llvm::DominatorTree* m_DT = nullptr;
    llvm::Function* m_function = nullptr;
};
#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG     "igc-loop-canonicalization"
#define PASS_DESC     "IGC Loop canonicalization"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LoopCanonicalization, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
IGC_INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
IGC_INITIALIZE_PASS_END(LoopCanonicalization, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)


char LoopCanonicalization::ID = 0;

LoopCanonicalization::LoopCanonicalization() : FunctionPass(ID)
{
    initializeLoopCanonicalizationPass(*PassRegistry::getPassRegistry());
}
/// \brief This method is called when the specified loop has more than one
/// backedge in it.
///
/// If this occurs, revector all of these backedges to target a new basic block
/// and have that block branch to the loop header.  This ensures that loops
/// have exactly one backedge.
static BasicBlock* insertUniqueBackedgeBlock(Loop* L, BasicBlock* Preheader,
    DominatorTree* DT, LoopInfo* LI) {
    IGC_ASSERT(nullptr != L);
    IGC_ASSERT_MESSAGE(L->getNumBackEdges() > 1, "Must have > 1 backedge!");

    // Get information about the loop
    BasicBlock* Header = L->getHeader();
    Function* F = Header->getParent();

    // Unique backedge insertion currently depends on having a preheader.
    if (!Preheader)
        return nullptr;

    // The header is not an EH pad; preheader insertion should ensure this.
    IGC_ASSERT_MESSAGE(!Header->isEHPad(), "Can't insert backedge to EH pad");

    // Figure out which basic blocks contain back-edges to the loop header.
    std::vector<BasicBlock*> BackedgeBlocks;
    for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I) {
        BasicBlock* P = *I;

        // Indirectbr edges cannot be split, so we must fail if we find one.
        if (isa<IndirectBrInst>(P->getTerminator()))
            return nullptr;

        if (P != Preheader) BackedgeBlocks.push_back(P);
    }

    // Create and insert the new backedge block...
    BasicBlock* BEBlock = BasicBlock::Create(Header->getContext(),
        Header->getName() + ".backedge", F);
    BranchInst* BETerminator = BranchInst::Create(Header, BEBlock);
    BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());

    // Move the new backedge block to right after the last backedge block.
    Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
    IGCLLVM::splice(F, InsertPos, F, BEBlock);

    // Now that the block has been inserted into the function, create PHI nodes in
    // the backedge block which correspond to any PHI nodes in the header block.
    for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
        PHINode* PN = cast<PHINode>(I);
        PHINode* NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
            PN->getName() + ".be", BETerminator);

        // Loop over the PHI node, moving all entries except the one for the
        // preheader over to the new PHI node.
        unsigned PreheaderIdx = ~0U;
        bool HasUniqueIncomingValue = true;
        Value* UniqueValue = nullptr;
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
            BasicBlock* IBB = PN->getIncomingBlock(i);
            Value* IV = PN->getIncomingValue(i);
            if (IBB == Preheader) {
                PreheaderIdx = i;
            }
            else {
                NewPN->addIncoming(IV, IBB);
                if (HasUniqueIncomingValue) {
                    if (!UniqueValue)
                        UniqueValue = IV;
                    else if (UniqueValue != IV)
                        HasUniqueIncomingValue = false;
                }
            }
        }

        // Delete all of the incoming values from the old PN except the preheader's
        IGC_ASSERT_MESSAGE(PreheaderIdx != ~0U, "PHI has no preheader entry??");
        if (PreheaderIdx != 0) {
            PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
            PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
        }
        // Nuke all entries except the zero'th.
        for (unsigned i = 0, e = PN->getNumIncomingValues() - 1; i != e; ++i)
            PN->removeIncomingValue(e - i, false);

        // Finally, add the newly constructed PHI node as the entry for the BEBlock.
        PN->addIncoming(NewPN, BEBlock);

        // As an optimization, if all incoming values in the new PhiNode (which is a
        // subset of the incoming values of the old PHI node) have the same value,
        // eliminate the PHI Node.
        if (HasUniqueIncomingValue) {
            NewPN->replaceAllUsesWith(UniqueValue);
            BEBlock->getInstList().erase(NewPN);
        }
    }

    // Now that all of the PHI nodes have been inserted and adjusted, modify the
    // backedge blocks to jump to the BEBlock instead of the header.
    // If one of the backedges has llvm.loop metadata attached, we remove
    // it from the backedge and add it to BEBlock.
    unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
    MDNode* LoopMD = nullptr;
    for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
        IGCLLVM::TerminatorInst* TI = BackedgeBlocks[i]->getTerminator();
        if (!LoopMD)
            LoopMD = TI->getMetadata(LoopMDKind);
        TI->setMetadata(LoopMDKind, nullptr);
        for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
            if (TI->getSuccessor(Op) == Header)
                TI->setSuccessor(Op, BEBlock);
    }
    BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);

    //===--- Update all analyses which we must preserve now -----------------===//

    // Update Loop Information - we know that this block is now in the current
    // loop and all parent loops.
    L->addBasicBlockToLoop(BEBlock, *LI);

    // Update dominator information
    DT->splitBlock(BEBlock);

    return BEBlock;
}

bool LoopCanonicalization::runOnFunction(llvm::Function& F)
{
    bool Changed = false;
    LoopInfo* LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    DominatorTree* DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);

    // Simplify each loop nest in the function.
    for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
        Changed |= processLoop(*I, DT, LI, PreserveLCSSA);
    return Changed;
}

bool LoopCanonicalization::processLoop(llvm::Loop* L, DominatorTree* DT, LoopInfo* LI, bool PreserveLCSSA)
{
    bool changed = false;
    // Worklist maintains our depth-first queue of loops in this nest to process.
    SmallVector<Loop*, 4> Worklist;
    Worklist.push_back(L);

    // Walk the worklist from front to back, pushing newly found sub loops onto
    // the back. This will let us process loops from back to front in depth-first
    // order. We can use this simple process because loops form a tree.
    for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
        Loop* L2 = Worklist[Idx];
        Worklist.append(L2->begin(), L2->end());
    }

    while (!Worklist.empty())
        changed |= processOneLoop(Worklist.pop_back_val(), DT, LI, PreserveLCSSA);
    return changed;
}

// Do basic loop canonicalization to ensure correctness. We need a single header and single latch
bool LoopCanonicalization::processOneLoop(Loop* L, DominatorTree* DT, LoopInfo* LI, bool PreserveLCSSA)
{
    bool changed = false;
    // Does the loop already have a preheader?  If so, don't insert one.
    BasicBlock* Preheader = L->getLoopPreheader();
    if (!Preheader) {
        Preheader = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA);
        if (Preheader) {
            changed = true;
        }
    }

    // If the header has more than two predecessors at this point (from the
    // preheader and from multiple backedges), we must adjust the loop.
    BasicBlock* LoopLatch = L->getLoopLatch();
    if (!LoopLatch) {
        // If we either couldn't, or didn't want to, identify nesting of the loops,
        // insert a new block that all backedges target, then make it jump to the
        // loop header.
        LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
        if (LoopLatch) {
            changed = true;
        }
    }

    return changed;
}

namespace IGC
{
    FunctionPass* createLoopCanonicalization()
    {
        return new LoopCanonicalization();
    }
}


// This pass pattern match loops where the loop body contains variables
// that are constant for all except the last iteration of the loop, in
// which case we can hoist these values out of the loop.
//
// Input Loop:
//  Input loop compares the loop induction variable to the loop size using a min
//  instruction. The ALU instructions dependent on the result of the 'min' can
//  be done at compile time for most iterations of the loop.
//
// loop.header:
// %preInc = phi float[%132, %preheader], [%Inc, %loop.end]
// %postInc = fmul fast float %preInc, %x
// %178 = call fast float @llvm.minnum.f32(float %postInc, float %LoopSize)
// %179 = fsub fast float %178, %preInc
// %180 = fdiv fast float %178, %preInc
// ...
// %cmp = fcmp fast ult float %postInc, %LoopSize
// br i1 %cmp, label %loop.header, label %loop.end
//
//
// Transformed Loop:
//  Loop is split into if/then/else branch, where the if block is only entered
//  if (%preInc < %LoopSize). This allows later passes to simpifly instructions
//  in the if BB by doing the computation at compile time.
//
// loop.header:
// %preInc = phi float[%132, %preheader], [%Inc, %loop.end]
// %postInc = fmul fast float %preInc, %x
// %cmpHoist = fcmp ult float %preInc, %LoopSize
// br i1 %cmpHoist, label %loop.if.hoist, label %loop.else.hoist
//
// loop.if.hoist:
// %180 = fsub fast float %preInc, %preInc
// %181 = fdiv fast float %preInc, %preInc
// br label %loop.end.hoist
//
// loop.else.hoist:
// %190 = call fast float @llvm.minnum.f32(float %postInc, float %LoopSize)
// %191 = fsub fast float %190, %preInc
// %192 = fdiv fast float %190, %preInc
// br label %loop.end.hoist
//
// loop.end.hoist:
// %200 = phi float [ %180, %loop.if.hoist ], [ %191, %loop.else.hoist ]
// %201 = phi float [ %181, %loop.if.hoist ], [ %192, %loop.else.hoist ]
// ...
// %cmp = fcmp fast ult float %postInc, %LoopSize
// br i1 %cmp, label %loop.header, label %loop.end
//
class LoopHoistConstant : public llvm::LoopPass
{
public:
    static char ID;

    LoopHoistConstant();

    void getAnalysisUsage(llvm::AnalysisUsage& AU) const
    {
        AU.addRequired<llvm::LoopInfoWrapperPass>();
        AU.addPreservedID(LCSSAID);
    }

    bool runOnLoop(Loop* L, LPPassManager& LPM);

    llvm::StringRef getPassName() const
    {
        return "IGC loop hoist constant";
    }

private:
};
#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG     "igc-loop-hoist-constant"
#define PASS_DESC     "IGC loop hoist constant"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LoopHoistConstant, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(LoopHoistConstant, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)


char LoopHoistConstant::ID = 0;

LoopHoistConstant::LoopHoistConstant() : LoopPass(ID)
{
    initializeLoopHoistConstantPass(*PassRegistry::getPassRegistry());
}

bool LoopHoistConstant::runOnLoop(Loop* L, LPPassManager& LPM)
{
    LoopInfo* LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

    if (!L->getLoopPreheader() || !L->getLoopLatch() || !L->isSafeToClone() || L->getNumBackEdges() != 1)
        return false;

    BasicBlock* Header = L->getHeader();
    BasicBlock* LoopLatch = L->getLoopLatch();

    PHINode* InductionPreInc = nullptr; // Induction variable pre-increment
    BinaryOperator* InductionPostInc = nullptr; // // Induction variable post-increment
    FCmpInst* LoopCond = nullptr; // The loop exit condition
    BranchInst* LoopBranch = nullptr; // The pre-hoisted loop branching instruction
    Value* LoopSize = nullptr;
    IntrinsicInst* MinInst = nullptr;

    // Match the loop induction variable
    InductionPostInc = dyn_cast<BinaryOperator>(Header->getFirstNonPHIOrDbg());
    if (InductionPostInc && InductionPostInc->getOpcode() == BinaryOperator::FMul)
    {
        InductionPreInc = dyn_cast<PHINode>(InductionPostInc->getOperand(0));
        if (!InductionPreInc)
            InductionPreInc = dyn_cast<PHINode>(InductionPostInc->getOperand(1));
    }
    if (!InductionPreInc || !InductionPostInc)
        return false;
    if (InductionPreInc->getBasicBlockIndex(LoopLatch) < 0 ||
        InductionPreInc->getIncomingValueForBlock(LoopLatch) != InductionPostInc)
        return false;

    // Match the loop exit condition and branch
    LoopBranch = dyn_cast<BranchInst>(LoopLatch->getTerminator());
    if (LoopBranch && LoopBranch->isConditional())
    {
        LoopCond = dyn_cast<FCmpInst>(LoopBranch->getCondition());
        if (LoopCond && (LoopCond->getPredicate() == CmpInst::FCMP_ULT || LoopCond->getPredicate() == CmpInst::FCMP_OLT))
        {
            if (LoopCond->getOperand(0) == InductionPostInc)
            {
                LoopSize = LoopCond->getOperand(1);
            }
        }
    }
    if (!LoopBranch || !LoopCond || !LoopSize)
        return false;

    // Match the minnum comparison between the induction var and the loop size
    // Should appear right after the post-incremented induction variable
    MinInst = dyn_cast<IntrinsicInst>(InductionPostInc->getNextNonDebugInstruction());
    if (MinInst && MinInst->getIntrinsicID() == llvm::Intrinsic::minnum)
    {
        Value* min1 = MinInst->getOperand(0);
        Value* min2 = MinInst->getOperand(1);
        if ((min1 == InductionPostInc && min2 == LoopSize) ||
            (min2 == InductionPostInc && min1 == LoopSize)) {
        }
        else {
            return false;
        }
        // All uses of the minnum should be within the loop body BB
        if (MinInst->isUsedOutsideOfBlock(Header))
            return false;
    }
    else {
        return false;
    }

    // We now have all the info to hoist out the constant variables.
    // First split the HeaderBB into if/then/else blocks.
    Instruction* ifTerm;
    Instruction* elseTerm;
    auto cmpIfHoist = FCmpInst::Create(LoopCond->getOpcode(), LoopCond->getPredicate(), InductionPostInc, LoopSize, "", MinInst);
    llvm::SplitBlockAndInsertIfThenElse(cmpIfHoist, MinInst, &ifTerm, &elseTerm);

    BasicBlock* ifHoistBB = ifTerm->getParent();
    BasicBlock* elseHoistBB = elseTerm->getParent();
    BasicBlock* endHoistBB = elseHoistBB->getNextNode();

    // Set the new block names
    ifHoistBB->setName(Header->getName() + ".if.hoist");
    elseHoistBB->setName(Header->getName() + ".else.hoist");
    endHoistBB->setName(Header->getName() + ".end.hoist");

    // Add new blocks to the current loop
    L->addBasicBlockToLoop(ifHoistBB, *LI);
    L->addBasicBlockToLoop(elseHoistBB, *LI);
    L->addBasicBlockToLoop(endHoistBB, *LI);

    // Clone the instructions starting from the minnum up to the terminator.
    // The cloned instructions go into the if block, and the original instructions
    // are moved into the else block.
    ValueToValueMapTy VMap;
    Instruction* II = cast<Instruction>(endHoistBB->begin());
    while(II != endHoistBB->getTerminator())
    {
        Instruction* currI = II;
        II = II->getNextNode();

        Instruction* clonedI = currI->clone();
        clonedI->insertBefore(ifTerm);
        currI->moveBefore(elseTerm);
        VMap[currI] = clonedI;
    }
    // Update the operands for the cloned instructions
    for (auto II = ifHoistBB->begin(), IE = ifHoistBB->end(); II != IE; ++II)
    {
        for (unsigned op = 0, E = II->getNumOperands(); op != E; ++op)
        {
            Value* Op = II->getOperand(op);
            ValueToValueMapTy::iterator It = VMap.find(Op);
            if (It != VMap.end())
                II->setOperand(op, It->second);
        }
    }

    // Replace the minnum instruction with the known value in the if block
    Instruction* newMinInst = dyn_cast<Instruction>(VMap[MinInst]);
    IGC_ASSERT(newMinInst && newMinInst->getParent() == ifHoistBB);
    newMinInst->replaceAllUsesWith(InductionPostInc);

    // Replace the minnum instruction with the known value in the else block
    MinInst->replaceAllUsesWith(LoopSize);

    // Update successors and users of the original BB
    Header->replaceSuccessorsPhiUsesWith(endHoistBB);
    for (auto &II : *elseHoistBB)
    {
        // For users of the original instruction outside of the HeaderBB, we need a new PHINode
        // to pick between the if.hoist and else.hoist blocks
        if (II.isUsedOutsideOfBlock(elseHoistBB) &&
            VMap.find(&II) != VMap.end())
        {
            PHINode* PN = PHINode::Create(II.getType(), 2, "", endHoistBB->getTerminator());
            if (PN)
            {
                II.replaceUsesOutsideBlock(PN, elseHoistBB);
                PN->addIncoming(VMap[&II], ifHoistBB);
                PN->addIncoming(&II, elseHoistBB);
            }
        }
    }

    return true;
}

namespace IGC
{
    LoopPass* createLoopHoistConstant()
    {
        return new LoopHoistConstant();
    }
}

// This pass disables LICM optimization by adding llvm.licm.disable
// - when Loop depends on SIMD Lane Id and operates on local memory or
// - when the loops are part of a large function and the number of loops
//   is sizable where a potential stack overflow from memory SSA updater
//   could occur.

class SpecialCasesDisableLICM : public llvm::FunctionPass
{
public:
    static char ID;

    SpecialCasesDisableLICM();

    void getAnalysisUsage(llvm::AnalysisUsage& AU) const
    {
        AU.addPreservedID(LCSSAID);
        AU.addRequired<llvm::LoopInfoWrapperPass>();
    }

    bool runOnFunction(Function& F);
    bool LoopHasLoadFromLocalAddressSpace(const Loop& L);
    bool LoopDependsOnSIMDLaneId(const Loop& L);
    bool AddLICMDisableMedatadaToSpecificLoop(Loop& L);

    llvm::StringRef getPassName() const
    {
        return "IGC special cases disable LICM";
    }
};

#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG     "igc-special-cases-disable-licm"
#define PASS_DESC     "IGC special cases disable LICM"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(SpecialCasesDisableLICM, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(SpecialCasesDisableLICM, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)

char SpecialCasesDisableLICM::ID = 0;

SpecialCasesDisableLICM::SpecialCasesDisableLICM() : FunctionPass(ID)
{
    initializeSpecialCasesDisableLICMPass(*PassRegistry::getPassRegistry());
}

bool SpecialCasesDisableLICM::runOnFunction(llvm::Function& F)
{
    constexpr size_t HIGH_BB_THRESHOLD_FOR_LICM = 2500;
    constexpr size_t HIGH_LOOP_THRESHOLD_FOR_LICM = 450;

    bool Changed = false;
    LoopInfo* LI = nullptr;

    auto getLoopInfo = [&]() -> LoopInfo* {
        if (nullptr == LI)
            return &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
        return LI;
    };

    if (F.size() > HIGH_BB_THRESHOLD_FOR_LICM)
    {
        LI = getLoopInfo();

        if (llvm::size(*LI) > HIGH_LOOP_THRESHOLD_FOR_LICM
            )
        {
            for (auto* L : *LI)
                AddLICMDisableMedatadaToSpecificLoop(*L);

            Changed = true;
        }
    }

    if (!Changed)
    {
        LI = getLoopInfo();

        for (auto* L : *LI)
        {
            if (LoopHasLoadFromLocalAddressSpace(*L) && LoopDependsOnSIMDLaneId(*L))
                Changed |= AddLICMDisableMedatadaToSpecificLoop(*L);
        }
    }

    return Changed;
}

bool SpecialCasesDisableLICM::LoopHasLoadFromLocalAddressSpace(const Loop& L)
{
    for (BasicBlock* BB : L.blocks())
    {
        for (Instruction& I : *BB)
        {
            if (LoadInst* LI = dyn_cast<LoadInst>(&I))
                if (LI->getPointerAddressSpace() == ADDRESS_SPACE_LOCAL) return true;
        }
    }
    return false;
}

bool SpecialCasesDisableLICM::LoopDependsOnSIMDLaneId(const Loop& L)
{
    auto ComeFromSIMDLaneID = [](Value* I)
    {
        Value* stripZExt = I;
        if (auto* zext = dyn_cast<ZExtInst>(I))
            stripZExt = zext->getOperand(0);
        if (auto* intrinsic = llvm::dyn_cast<llvm::GenIntrinsicInst>(stripZExt))
            return intrinsic->getIntrinsicID() == GenISAIntrinsic::GenISA_simdLaneId;

        return false;
    };

    if (BasicBlock* LoopHeader = L.getHeader())
    {
        for (Instruction& I : *LoopHeader)
        {
            if (CmpInst* cmp = dyn_cast<CmpInst>(&I))
            {
                if (ComeFromSIMDLaneID(cmp->getOperand(0)) || ComeFromSIMDLaneID(cmp->getOperand(1)))
                    return true;
            }
        }
    }

    return false;
}

bool SpecialCasesDisableLICM::AddLICMDisableMedatadaToSpecificLoop(Loop& L)
{
    LLVMContext& context = L.getHeader()->getContext();

    MDNode* selfRef{};
    MDNode* licm_disable = MDNode::get(context, MDString::get(context, "llvm.licm.disable"));
    selfRef = MDNode::get(context, ArrayRef<Metadata*>({ selfRef, licm_disable }));
    selfRef->replaceOperandWith(0, selfRef);

    if (BasicBlock* LoopLatch = L.getLoopLatch())
    {
        LoopLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, selfRef);
        return true;
    }
    return false;
}

namespace IGC
{
    FunctionPass* createSpecialCasesDisableLICM()
    {
        return new SpecialCasesDisableLICM();
    }
}

// The LoopSplitWidePHIs pass finds opportunities to eliminate shuffles which
// split and re-join wide vectors. The motivating case are loops with
// accumulators of width k*N where the accumulator operations are of width N.
// In such a case we replace the accumulator PHI with k individual PHIs for
// each part, e.g.:
//
// loop.header:
// %accum = phi <float x 16> [%zeroinitializer, %preheader], [%accum.join, %loop.end]
// %accum.lo = shuffle %accum, %accum, <0..7>
// %accum.hi = shuffle %accum, %accum, <8..15>
// %accum.lo1 = dpas %accum.lo, ...
// %accum.hi1 = dpas %accum.hi ...
// ..
// loop.end:
// %accum.join = shuffle %accum.loN, %accum.hiN, <0..7, 0..7>
// ..
// loop.exit:
// store <float x 16> %accum.join, ...
//
// If there are no other uses of %accum and %accum.join in the loop, this can
// be transformed to:
//
// loop.header:
// %accum.lo = phi <float x 8> [%zeroinitializer, %preheader], [%accum.loN, %loop.end]
// %accum.hi = phi <float x 8> [%zeroinitializer, %preheader], [%accum.hiN, %loop.end]
// %accum.lo1 = dpas %accum.lo, ...
// %accum.hi1 = dpas %accum.hi ...
// ..
// loop.end:
// ..
// loop.exit:
// %accum.join = shuffle %accum.loN, %accum.hiN, <0..7, 0..7>
// store <float x 16> %accum.join, ...
//
// The major benefit of this transformation is to allow the finalizer
// to easily identify opportunities to use indexed operands to access individual
// parts of a wider accumulator register. Otherwise, the legalized shuffles
// cannot be simplified without loop analysis and may lead to unneccesary mov
// operations and more edges in the interference graph.
//
class LoopSplitWidePHIs : public llvm::FunctionPass
{
public:
    static char ID;

    LoopSplitWidePHIs();

    void getAnalysisUsage(llvm::AnalysisUsage &AU) const
    {
        AU.addRequired<llvm::LoopInfoWrapperPass>();
    }

    bool runOnFunction(Function &F);
    bool processLoop(Loop* L, LoopInfo *LI);
    bool processOneLoop(Loop* L, LoopInfo *LI);
    bool processPHI(SmallVectorImpl<PHINode*> &WL, Loop *L);

    llvm::StringRef getPassName() const
    {
        return "IGC split wide loop PHIs";
    }

private:
    // Structure used to describe a concatenation Result = [Head, Tail],
    // where all values are fixed vector types of the same element size.
    struct CatenatedValue {
        ShuffleVectorInst *Result = nullptr;
        BitCastInst *Bitcast = nullptr;
        // a.k.a. { Head, Tail }
        Value *Parts[2] = { nullptr, nullptr };
        // Types of each part.
        IGCLLVM::FixedVectorType *Types[2] = { nullptr, nullptr };
        // Element count of Parts[1]
        unsigned TailSize = 0;
        // Offset of Parts[1].
        unsigned Offset = 0;
    };

    bool getCatenatedValue(Instruction *I, CatenatedValue &CV);
    Instruction *createCatenatedValue(const CatenatedValue &CV, Value *Head, Value *Tail,
                                      Instruction *InsertBeforeI);

    PHINode *foldBitcasts(PHINode *PHI, CatenatedValue &CV, Loop *L);
};

#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG     "igc-loop-split-wide-phis"
#define PASS_DESC     "IGC split wide loop PHIs"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LoopSplitWidePHIs, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(LoopSplitWidePHIs, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)

char LoopSplitWidePHIs::ID = 0;

LoopSplitWidePHIs::LoopSplitWidePHIs() : FunctionPass(ID)
{
    initializeLoopSplitWidePHIsPass(*PassRegistry::getPassRegistry());
}

bool LoopSplitWidePHIs::runOnFunction(llvm::Function &F)
{
    bool Changed = false;
    LoopInfo* LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
        Changed |= processLoop(*I, LI);
    return Changed;
}

bool LoopSplitWidePHIs::processLoop(Loop* L, LoopInfo* LI)
{
    bool Changed = false;
    // Worklist maintains our depth-first queue of loops in this nest to process.
    SmallVector<Loop*, 4> Worklist;
    Worklist.push_back(L);

    // Walk the worklist from front to back, pushing newly found sub loops onto
    // the back. This will let us process loops from back to front in depth-first
    // order. We can use this simple process because loops form a tree.
    for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx)
    {
        Loop* L2 = Worklist[Idx];
        Worklist.append(L2->begin(), L2->end());
    }

    while (!Worklist.empty())
        Changed |= processOneLoop(Worklist.pop_back_val(), LI);
    return Changed;
}

bool LoopSplitWidePHIs::processOneLoop(Loop* L, LoopInfo* LI)
{
    bool Changed = false;
    BasicBlock* Preheader = L->getLoopPreheader();
    BasicBlock* Latch = L->getLoopLatch();
    // Skip if the loop is not canonical.
    if (!Preheader || !Latch)
        return false;
    IGC_ASSERT(Preheader->getTerminator());

    // Initialize a worklist of all 2-source PHI nodes.
    // We will repeatedly call processPHI to maybe transform
    // the top PHI; this pushes any newly-created PHIs onto the
    // worklist.
    SmallVector<PHINode *, 8> Worklist;
    for (auto &PHI : L->getHeader()->phis())
    {
        if (PHI.getNumIncomingValues() == 2 &&
            PHI.getBasicBlockIndex(Preheader) >= 0 &&
            PHI.getBasicBlockIndex(Latch) >= 0 &&
            dyn_cast<IGCLLVM::FixedVectorType>(PHI.getType()))
        {
            Worklist.push_back(&PHI);
        }
    }

    // Process the worklist. This may add two new items which
    // are half the element count of the original PHI.
    while (!Worklist.empty())
        Changed |= processPHI(Worklist, L);
    return Changed;
}

// Helper for getCatenatedValue. If I effectively catenates two vectors
// [Head, Tail], where the element count of Tail is at most that of Head,
// return true and set Head, Tail to the source values of each part, and set
// Offset and Width to the element counts of Head, Tail respectively.
// We assume that I is of fixed vector type.
static bool findCatenateSources(ShuffleVectorInst *I, Value *&Head, Value *&Tail,
                                unsigned &Offset, unsigned &Width)
{
    // First handle the simple case of a concat shuffle, where
    // the head and tail are of equal size.
    if (I->isConcat())
    {
        Head = I->getOperand(0);
        Tail = I->getOperand(1);
        Offset = (unsigned) cast<IGCLLVM::FixedVectorType>(Head->getType())->getNumElements();
        Width = Offset;
        return true;
    }

    // Otherwise, we may have an insert subvector shuffle
    // appending a shorter tail to a longer head.
    int NumSubElts = 0, Index = 0;
    if (IGCLLVM::isInsertSubvectorMask(I, NumSubElts, Index))
    {
        Head = I->getOperand(0);
        Tail = I->getOperand(1);
        // We expect the tail value to be padded to the same element count
        // as the head, and require the padded value to only be used
        // in the catenating shuffle.
        if ((int)cast<IGCLLVM::FixedVectorType>(Tail->getType())->getNumElements() > NumSubElts)
        {
            auto SVI = dyn_cast<ShuffleVectorInst>(Tail);
            if (SVI && SVI->isIdentityWithPadding() && SVI->hasOneUse())
                Tail = SVI->getOperand(0);
            else
                return false;
        }
        Offset = Index;
        Width = NumSubElts;
        return true;
    }
    return false;
}

// Helper to identify shuffles which defined a catenated value that
// is a candidate for splitting. Returns true and populates CV
// with the description if successful.
bool LoopSplitWidePHIs::getCatenatedValue(Instruction *I, CatenatedValue &CV)
{
    BitCastInst *BitcastI = nullptr;

    // Look through at most one bitcast for a candidate
    // shuffle. If the bitcast defines the latch value of a PHI
    // and all PHI uses have an inverse bitcast, these
    // can be folded away (see foldBitcasts()).
    if (auto BCI = dyn_cast<BitCastInst>(I))
    {
        BitcastI = BCI;
        I = dyn_cast<Instruction>(BCI->getOperand(0));
        if (!I)
            return false;
    }
    if (auto SVI = dyn_cast<ShuffleVectorInst>(I))
    {
        if (!isa<IGCLLVM::FixedVectorType>(SVI->getType()))
            return false;
        Value *Head, *Tail;
        unsigned Offset, Width;
        if (findCatenateSources(SVI, Head, Tail, Offset, Width))
        {
            IGC_ASSERT(Head && Tail);
            CV.Result = SVI;
            CV.Bitcast = BitcastI;
            CV.Parts[0] = Head;
            CV.Parts[1] = Tail;
            CV.Types[0] = cast<IGCLLVM::FixedVectorType>(Head->getType());
            CV.Types[1] = cast<IGCLLVM::FixedVectorType>(Tail->getType());
            CV.TailSize = Width;
            CV.Offset = Offset;
            return true;
        }
    }
    return false;
}

// Helpers to generate shuffle masks.
// Generates a mask which is the catenation of one or two contiguously
// increasing sequences and padded with undef elements up to the total.
// padded with UndefMaskElem up to Total.
static Value *getShuffleMask(LLVMContext &Ctx, uint64_t Total, uint64_t FromA, uint64_t ToA,
                             uint64_t FromB = 0, uint64_t ToB = 0)
{
    IGC_ASSERT(FromA <= ToA && FromB <= ToB);
    std::vector<Constant *> Components;
    IntegerType *MaskElemTy = IntegerType::get(Ctx, 32);
    for (uint64_t i = FromA; i < ToA; ++i)
        Components.push_back(ConstantInt::get(MaskElemTy, i));
    for (uint64_t i = FromB; i < ToB; ++i)
        Components.push_back(ConstantInt::get(MaskElemTy, i));
    for (uint64_t i = Components.size(); i < Total; ++i)
        Components.push_back(UndefValue::get(MaskElemTy));
    return ConstantVector::get(Components);
}

// Check that the given value has no users in the loop, except
// the given instruction (if non-null), and that any external PHI
// uses are single-source.
static bool hasOnlySimpleExternalUses(Value *Val, Loop *L, Value *IgnoreUse = nullptr)
{
    for (auto *U : Val->users())
    {
        if (IgnoreUse && IgnoreUse == U)
            continue;
        auto *UseI = dyn_cast<Instruction>(U);
        if (!UseI || L->contains(UseI->getParent()))
            return false;
        else if (auto PHI = dyn_cast<PHINode>(UseI))
        {
            if (PHI->getNumIncomingValues() > 1)
                return false;
        }
    }
    return true;
}

// If I is an extract-like shuffle of ElemWidth values from a wider
// source, return the offset of the extracted portion.
// Returns -1 otherwise.
static int getExtractIndex(Instruction *I, unsigned ElemWidth)
{
    if (auto* UseShufI = dyn_cast<ShuffleVectorInst>(I))
    {
        auto ShufTy = dyn_cast<IGCLLVM::FixedVectorType>(UseShufI->getType());
        int Index;
        if (UseShufI->isExtractSubvectorMask(Index) &&
            ShufTy->getNumElements() == ElemWidth)
            return Index;
    }
    return -1;
}

// Maybe split the PHI at the back of the worklist. Returns true
// if the PHI was split, and appends newly created candidate PHIs
// to the list.
bool LoopSplitWidePHIs::processPHI(SmallVectorImpl<PHINode*> &WL, Loop *L)
{
    // Caller ensures that loop is canonical and has a well-formed
    // preheader.
    BasicBlock* Latch = L->getLoopLatch();
    BasicBlock* Preheader = L->getLoopPreheader();
    IGC_ASSERT(!WL.empty());

    // Assume worklist elements are 2-source PHIs of fixed vector type
    // fed by the preheader and latch, which exist.
    // We check the required conditions, populating lists of uses
    // to be replaced with the split components or their joined result.
    PHINode *PHI = WL.pop_back_val();
    auto DefI = cast<Instruction>(PHI->getIncomingValueForBlock(Latch));

    // Identify whether the latch value's definition is a candidate
    // for splitting.
    CatenatedValue CV;
    if (!getCatenatedValue(DefI, CV))
        return false;

    // If there is a bitcast of CV.Result, attempt to fold it away.
    // This will replace PHI with a new PHI with the same type as
    // CV.Result if successful, in which case we can proceed as usual.
    if (CV.Bitcast)
    {
        PHI = foldBitcasts(PHI, CV, L);
        if (!PHI)
            return false;
    }

    // Check the uses of the PHI value to ensure that
    // all uses in the loop are extract-vector-like shuffles.
    //
    // We don't permit uses of the full value in L
    // as this could result in a net increase in
    // shuffles. It is possible to handle these cases
    // if we do the accounting for added/removed
    // shuffles.
    using SplitUse = std::pair<Instruction *, int>;
    SmallVector<SplitUse, 8> PHIUses;
    for (auto U : PHI->users())
    {
        if (auto* UseI = dyn_cast<Instruction>(U))
        {
            int Idx = getExtractIndex(UseI, CV.TailSize);
            if (Idx >= 0)
            {
                PHIUses.emplace_back(UseI, Idx);
                continue;
            }
        }
        return false;
    }

    // Check all uses of the latch value.
    // * Any other uses in the loop (excluding the PHI) disqualify the candidate.
    // * Uses out of the loop can be replaced with a concat
    //   of ShufI's sources. This means a use in an external PHI
    //   must be a single-source PHI which we can replace with
    //   PHIs for each part, with uses of the original PHI replaced
    //   by the catenation of the new PHIs.
    if (!hasOnlySimpleExternalUses(CV.Result, L, PHI))
        return false;

    // Bail early if there is nothing to be done.
    if (PHIUses.empty())
        return false;

    // Shuffle masks for extracting the catenated parts.
    Value* MaskParts[2] = {
        getShuffleMask(PHI->getContext(), CV.Types[0]->getNumElements(),
                       0, CV.Offset),
        getShuffleMask(PHI->getContext(), CV.Types[1]->getNumElements(),
                       CV.Offset, CV.Offset + CV.TailSize)
    };

    // Create the new PHIs for each part. Here we also need to split
    // the incoming preheader value.
    PHINode *NewPHI[2];
    for (unsigned i = 0; i < 2; ++i)
        NewPHI[i] = PHINode::Create(CV.Types[i], 2, "split", PHI);
    int PreIdx = PHI->getBasicBlockIndex(Preheader);
    auto PreValue = PHI->getIncomingValue(PreIdx);
    for (unsigned i = 0; i < 2; ++i)
    {
        auto *PreShufI =
            new ShuffleVectorInst(PreValue, PreValue, MaskParts[i]);
        PreShufI->insertBefore(Preheader->getTerminator());
        NewPHI[i]->addIncoming(PreShufI, Preheader);
        NewPHI[i]->addIncoming(CV.Parts[i], Latch);
    }

    // Rewrite the PHI uses to use the new split PHI results.
    // A use that extracts the tail part has it's uses replaced
    // with NewPHI[1].
    // A use that extracts any other part is rewritten to
    // extract from NewPHI[0], or folded away if it becomes
    // an identity shuffle.
    for (SplitUse &SU : PHIUses)
    {
        // Set ReplaceWith with the appropriate source based on the
        // extract index.
        Value *ReplaceWith;
        if (SU.second == CV.Offset)
            ReplaceWith = NewPHI[1];
        else
        {
            auto SVI = cast<ShuffleVectorInst>(SU.first);
            auto NewSVI =
              new ShuffleVectorInst(NewPHI[0], IGCLLVM::PoisonValue::get(NewPHI[0]->getType()),
                                    IGCLLVM::getShuffleMaskForBitcode(SVI));
            NewSVI->insertBefore(SU.first);
            ReplaceWith = NewSVI;

            if (NewSVI->isIdentity())
            {
                ReplaceWith = NewPHI[0];
                NewSVI->eraseFromParent();
            }
        }

        SmallVector<User*, 8u> Users(SU.first->users());
        for (auto U : Users)
            U->replaceUsesOfWith(SU.first, ReplaceWith);
        IGC_ASSERT(!SU.first->hasNUsesOrMore(1));
        SU.first->eraseFromParent();
    }

    // Shuffle mask which catenates the parts back together.
    auto FullOffset = CV.Types[0]->getNumElements();
    auto FullWidth = cast<IGCLLVM::FixedVectorType>(PHI->getType())->getNumElements();
    Value* MaskJoin = getShuffleMask(PHI->getContext(), FullWidth, 0, CV.Offset,
                                     FullOffset, FullOffset + CV.TailSize);

    // Shuffle mask to extend tail to the same element count as the head.
    // This is left null if an extend is not needed.
    Value *MaskPad = nullptr;
    if (CV.Types[1]->getNumElements() < CV.Types[0]->getNumElements())
        MaskPad = getShuffleMask(PHI->getContext(), CV.Types[0]->getNumElements(),
                                 0, CV.Types[1]->getNumElements());

    // Delete the PHI now so it will not appear as a use of the latch value.
    IGC_ASSERT(!PHI->hasNUsesOrMore(1));
    PHI->eraseFromParent();

    // Latch value uses require a concat of ShufI's sources. Where this is
    // inserted depends on whether the use is in a PHI or not.
    SmallVector<User*, 8u> LatchUsers(CV.Result->users());
    for (auto *LatchUse : LatchUsers)
    {
        if (auto PN = dyn_cast<PHINode>(LatchUse))
        {
            IGC_ASSERT(PN->getNumIncomingValues() == 1);

            // Replace PN with PHIs for each of ShufI's sources, and replace
            // all uses with a concat of the new PHI's results.
            auto InsBeforeI = PN->getParent()->getFirstNonPHI();
            Instruction *ToConcat[2];
            for (unsigned i = 0; i < 2; ++i)
            {
                auto PHIPart = PHINode::Create(CV.Types[i], 1, "join", PN);
                PHIPart->addIncoming(CV.Parts[i], Latch);
                ToConcat[i] = PHIPart;
            }

            if (MaskPad)
            {
                ToConcat[1] =
                    new ShuffleVectorInst(ToConcat[1],
                                          IGCLLVM::PoisonValue::get(ToConcat[1]->getType()),
                                          MaskPad);
                ToConcat[1]->insertBefore(InsBeforeI);
            }
            auto ConcatI = new ShuffleVectorInst(ToConcat[0], ToConcat[1], MaskJoin);
            ConcatI->insertBefore(InsBeforeI);

            SmallVector<User*, 8u> Users(PN->users());
            for (auto *U : Users)
                U->replaceUsesOfWith(PN, ConcatI);
            IGC_ASSERT(!PN->hasNUsesOrMore(1));
            PN->eraseFromParent();
        }
        else
        {
            // Insert a concat of ShufI's sources before the use
            // instruction.
            auto *I = cast<Instruction>(LatchUse);
            auto ConcatI = new ShuffleVectorInst(CV.Parts[0], CV.Parts[1], MaskJoin);
            ConcatI->insertBefore(I);
            I->replaceUsesOfWith(CV.Result, ConcatI);
        }

    }

    // Finally, we can delete CV.Result and any padding shuffles
    // we looked through to find the tail value.
    auto Tail = CV.Result->getOperand(1);
    IGC_ASSERT(!CV.Result->hasNUsesOrMore(1));
    CV.Result->eraseFromParent();

    if (Tail != CV.Parts[1])
    {
        auto SVI = dyn_cast<ShuffleVectorInst>(Tail);
        IGC_ASSERT(SVI && SVI->isIdentityWithPadding());
        Tail = SVI->getOperand(0);
        IGC_ASSERT(!SVI->hasNUsesOrMore(1));
        SVI->eraseFromParent();
    }

    // Finally, add our new PHIs to the worklist, which we know
    // to satisfy the assumptions of worklist items.
    for (unsigned i = 0; i < 2; ++i)
        WL.push_back(NewPHI[i]);
    return true;
}

// The IR for catenating or extracting the parts of a CV
// may involve bitcasts to/from other vector types.
// In particular, we may have CVs where the shuffle instructions
// to join/extract the parts are on a different type than
// the PHI node type.
// This method takes a PHI, and a CV with a bitcast V -> V',
// where V is the type of the shuffle operations and V' is the type
// of the PHI.
// If every use of the PHI is as a bitcast V -> V', then
// we can eliminate the bitcasts and rewrite PHI to use V,
// and proceed to split further if possible.
//
// In principle we could eliminate any sequences of bitcasts
// with the same start and end types, or insert bitcasts
// to fix up uses of the PHI value as type V.
//
PHINode *LoopSplitWidePHIs::foldBitcasts(PHINode *PHI, CatenatedValue &CV, Loop *L)
{
    // Check that any uses of the PHI are as a bitcast to the shuffle type.
    if (llvm::any_of(PHI->users(), [&CV](const User *U) {
            return !isa<BitCastInst>(U) || U->getType() != CV.Result->getType();
        }))
        return nullptr;

    // Ensure all uses of CV.Result can be rewritten to use the shuffle type.
    if (!hasOnlySimpleExternalUses(CV.Bitcast, L, PHI))
        return nullptr;

    BasicBlock* Latch = L->getLoopLatch();
    BasicBlock* Preheader = L->getLoopPreheader();

    // Create the new PHI of the shuffle type, and insert a bitcast
    // to the shuffle type for the preheader value.
    auto NewPHI = PHINode::Create(CV.Result->getType(), 2, "", PHI);
    auto PreValue = PHI->getIncomingValueForBlock(Preheader);
    auto PreValueBCI = new BitCastInst(PreValue, CV.Result->getType(), "",
                                       Preheader->getTerminator());
    NewPHI->addIncoming(PreValueBCI, Preheader);
    NewPHI->addIncoming(CV.Result, Latch);

    SmallVector<User*, 8u> PHIUsers(PHI->users());
    for (auto *PU : PHIUsers)
    {
        auto BCI = cast<BitCastInst>(PU);
        SmallVector<User*, 8u> Users(BCI->users());
        for (auto *U : Users)
            U->replaceUsesOfWith(BCI, NewPHI);
        IGC_ASSERT(!BCI->hasNUsesOrMore(1));
        BCI->eraseFromParent();
    }

    // The PHI value is now dead. We still need to eliminate the bitcast
    // defining the latch value, which may have other uses.
    IGC_ASSERT(!PHI->hasNUsesOrMore(1));
    PHI->eraseFromParent();

    SmallVector<User*, 8u> BCIUsers(CV.Bitcast->users());
    for (auto *U : BCIUsers)
    {
        // For a PHI use, we need to generate a new PHI of the shuffle type
        // and a bitcast back to the type of the use.
        // Otherwise, we just generate a bitcast to the use type in place.
        if (auto *PN = dyn_cast<PHINode>(U))
        {
            auto InsBeforeI = PN->getParent()->getFirstNonPHI();
            auto NewPN = PHINode::Create(CV.Result->getType(), 1, "", PN);
            NewPN->addIncoming(CV.Result, Latch);
            auto BCI = new BitCastInst(NewPN, PN->getType(), "", InsBeforeI);

            SmallVector<User*, 8u> Users(PN->users());
            for (auto *U : Users)
                U->replaceUsesOfWith(PN, BCI);
            PN->eraseFromParent();
        }
        else
        {
            auto *I = cast<Instruction>(U);
            auto BCI = new BitCastInst(CV.Result, U->getType(), "", I);
            I->replaceUsesOfWith(CV.Bitcast, BCI);
        }
    }
    IGC_ASSERT(!CV.Bitcast->hasNUsesOrMore(1));
    CV.Bitcast->eraseFromParent();
    CV.Bitcast = nullptr;
    return NewPHI;
}

namespace IGC
{
    FunctionPass* createLoopSplitWidePHIs()
    {
        return new LoopSplitWidePHIs();
    }
}

// This pass pattern matches 1-BB loops with non-constant loop upper bound
// and memory accesses to alloca that is constant size array.
//
// Then if all alloca accesses are in bound we could create a new
// loop count with constant upper bound of alloca array size.
//
// Input Loop:
//
// loop.header:                                         ; preds = %preheader, %loop.header
//   %24 = phi i32 [ %29, %loop.header ], [ 0, %preheader ]
//   %25 = zext i32 %24 to i64
//   %26 = getelementptr inbounds [8 x %struct.Color], [8 x %struct.Color]* %10, i64 0, i64 %25, i32 0
//   store float 0.000000e+00, float* %26, align 4
//   ...
//   %29 = add nuw nsw i32 %24, 1
//   %30 = icmp slt i32 %29, %20
//   br i1 %30, label %loop.header, label %exit
//
// Transformed Loop:
//  Loop is split into head/ifcond/continue blocks, where the ifcond block is entered
//  by initial loop condition.
//
// loop.header:                                         ; preds = %preheader, %loop.continue
//   %newind = phi i32 [ %newind.next, %loop.continue ], [ 0, %preheader ]
//   %cond.phi = phi i1 [ %30, %loop.continue ], [ true, %preheader ]
//   %24 = phi i32 [ %29, %loop.continue ], [ 0, %preheader ]
//   br i1 %cond.phi, label %loop.cond, label %loop.continue
//
// loop.ifcond:
//   %26 = getelementptr inbounds [8 x %struct.Color], [8 x %struct.Color]* %10, i64 0, i64 %25, i32 0
//   store float 0.000000e+00, float* %26, align 4
//   ...
//   br label %loop.continue
//
// loop.continue:
//   %29 = add nuw nsw i32 %24, 1
//   %30 = icmp slt i32 %29, %20
//   %newind.next = add nuw nsw i32 %newind, 1
//   %newcmp = icmp slt i32 %newind.next, %allocasize
//   br i1 %newcmp, label %loop.header, label %exit
//
class LoopAllocaUpperbound : public llvm::LoopPass
{
public:
    static char ID;

    LoopAllocaUpperbound();

    void getAnalysisUsage(llvm::AnalysisUsage& AU) const
    {
        AU.addRequired<llvm::LoopInfoWrapperPass>();
        AU.addPreservedID(LCSSAID);
    }

    bool runOnLoop(Loop* L, LPPassManager& LPM);

    llvm::StringRef getPassName() const
    {
        return "IGC Loop Alloca Upperbound";
    }

private:
};

#undef PASS_FLAG
#undef PASS_DESC
#undef PASS_CFG_ONLY
#undef PASS_ANALYSIS
#define PASS_FLAG     "igc-loop-alloca-upperbound"
#define PASS_DESC     "IGC Loop Alloca Upperbound"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LoopAllocaUpperbound, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(LoopAllocaUpperbound, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)


char LoopAllocaUpperbound::ID = 0;

LoopAllocaUpperbound::LoopAllocaUpperbound() : LoopPass(ID)
{
    initializeLoopAllocaUpperboundPass(*PassRegistry::getPassRegistry());
}

static const unsigned MaxAllocaSize = 32;

// Return the index variable for alloca LD/ST and its range
// null if LD/ST is not alloca address
static Value* getArrayIndex(const Instruction* I, unsigned& ArraySize)
{
    const Value* Ptr = nullptr;
    if (auto LD = dyn_cast<LoadInst>(I))
        Ptr = LD->getPointerOperand();
    else if (auto ST = dyn_cast<StoreInst>(I))
        Ptr = ST->getPointerOperand();
    else
        return nullptr;

    // Processing GEPs sequence while not find alloca
    const GEPOperator* GEPOp = dyn_cast_or_null<GEPOperator>(Ptr);
    const AllocaInst* Alloca = nullptr;
    while (GEPOp && GEPOp->isInBounds())
    {
        Ptr = GEPOp->getPointerOperand();
        Alloca = dyn_cast_or_null<AllocaInst>(Ptr);
        if (Alloca)
            break;
        GEPOp = dyn_cast_or_null<GEPOperator>(Ptr);
    }

    if (!Alloca)
        return nullptr;

    // Consider only simple case with one non-constant index
    if (GEPOp->countNonConstantIndices() != 1)
        return nullptr;

    // If alloca type is array then GEP operand corresponding to
    // array element is number 2
    Type* AllocaTy = GEPOp->getSourceElementType();
    if (AllocaTy->isArrayTy() && !isa<ConstantInt>(GEPOp->getOperand(2)))
    {
        ArraySize = int_cast<unsigned>(AllocaTy->getArrayNumElements());
        return GEPOp->getOperand(2);
    }
    return nullptr;
}

bool LoopAllocaUpperbound::runOnLoop(Loop* L, LPPassManager& LPM)
{
    LoopInfo* LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

    // Check that loop with single BB loop body
    if (!(L->isSafeToClone() && L->getNumBlocks() == 1 &&
          L->getNumBackEdges() == 1 && L->getLoopPreheader()))
    {
        return false;
    }

    BasicBlock* Header = L->getHeader();
    BasicBlock* Incoming = nullptr, * Backedge = nullptr;
    if (!L->getIncomingAndBackEdge(Incoming, Backedge))
        return false;

    PHINode* InductionPhi = L->getCanonicalInductionVariable(); // Induction variable pre-increment
    if (!InductionPhi)
        return false;
    Instruction* InductionInc =
        dyn_cast<Instruction>(InductionPhi->getIncomingValueForBlock(Backedge)); // Induction increment
    // Check that induction increment has no other uses except induction phi and loop condition
    if (InductionInc->getNumUses() != 2)
        return false;
    ICmpInst* LoopCond = nullptr; // The loop exit condition
    BranchInst* LoopBranch = nullptr; // The loop branching instruction
    Value* LoopSize = nullptr; // Loop count

    // Match the loop exit condition and branch
    LoopBranch = dyn_cast<BranchInst>(Header->getTerminator());
    if (LoopBranch && LoopBranch->isConditional())
    {
        LoopCond = dyn_cast<ICmpInst>(LoopBranch->getCondition());
        if (LoopCond && (LoopCond->getPredicate() == CmpInst::ICMP_SLT))
        {
            if (LoopCond->getOperand(0) == InductionInc)
            {
                LoopSize = LoopCond->getOperand(1);
            }
        }
    }
    if (!LoopBranch || !LoopCond || !LoopSize)
        return false;

    // Do not apply to the Loops with constant loop count
    if (isa<ConstantInt>(LoopSize))
        return false;

    // Form ST/LD list
    std::vector<const Instruction*> MemRefList;
    for (const Instruction& I : *Header)
    {
        if (I.mayReadOrWriteMemory())
            MemRefList.push_back(&I);
    }

    // Find alloca array size
    unsigned ArraySize = std::numeric_limits<unsigned>::max();
    for (auto I : MemRefList)
    {
        unsigned CurrSize = 0;
        Instruction* IndexInst = dyn_cast_or_null<Instruction>(getArrayIndex(I, CurrSize));
        if (!IndexInst)
            continue;

        // Check that array index derives from inductive variable
        if (IndexInst != InductionPhi)
        {
            auto CInst = dyn_cast<CastInst>(IndexInst);
            if (!CInst || CInst->getOperand(0) != InductionPhi)
                continue;
        }
        ArraySize = std::min(ArraySize, CurrSize);
    }

    // Since loop transformation makes sense only in case when loop unroll could be applied
    // to transformed loop, we need to bound alloca array size we process
    if (ArraySize > MaxAllocaSize)
        return false;

    // We now have all the info to apply transformation
    Instruction* IfTerm;
    IRBuilder<> IRB(InductionPhi);
    PHINode* CondPHI = IRB.CreatePHI(LoopCond->getType(), 2, LoopCond->getName() + ".cond.phi");
    if (CondPHI)
    {
        CondPHI->addIncoming(ConstantInt::getTrue(LoopCond->getType()), Incoming);
        CondPHI->addIncoming(LoopCond, Backedge);
    }
    PHINode* NewInductionPHI = IRB.CreatePHI(InductionPhi->getType(), 2, LoopCond->getName() + ".newind.phi");
    IRB.SetInsertPoint(Header->getTerminator());
    Value* NewAdd = IRB.CreateAdd(NewInductionPHI, ConstantInt::get(InductionPhi->getType(), 1), ".newind.next");
    Value* NewCMP = IRB.CreateICmpSLT(NewAdd, ConstantInt::get(InductionPhi->getType(), ArraySize), ".newcmp");
    if (NewInductionPHI)
    {
        NewInductionPHI->addIncoming(ConstantInt::get(NewAdd->getType(), 0), Incoming);
        NewInductionPHI->addIncoming(NewAdd, Backedge);
    }

    // Split the Header into:
    //    Header
    //    |     \
    //    |    IfCondBB
    //    |      /
    //    |     /
    //    ContinueBB
    IfTerm = SplitBlockAndInsertIfThen(CondPHI, Header->getFirstNonPHIOrDbg(), false);
    BasicBlock* IfCondBB = IfTerm->getParent();
    BasicBlock* ContinueBB = IfCondBB->getNextNode();

    // Set the new block names
    IfCondBB->setName(Header->getName() + ".if.cond");
    ContinueBB->setName(Header->getName() + ".cont");

    // Add new blocks to the current loop
    L->addBasicBlockToLoop(IfCondBB, *LI);
    L->addBasicBlockToLoop(ContinueBB, *LI);

    // Move the instructions to IfCondBB block.
    Instruction* II = cast<Instruction>(ContinueBB->begin());
    while (II != NewAdd)
    {
        Instruction* CurrI = II;
        II = II->getNextNode();

        CurrI->moveBefore(IfTerm);
    }

    // Move old loop condition and induction increment to ContinueBB
    LoopCond->moveBefore(cast<Instruction>(NewAdd));
    InductionInc->moveBefore(cast<Instruction>(LoopCond));
    LoopBranch->replaceUsesOfWith(LoopCond, NewCMP);

    // Update Phi to preserve LCSSA form
    IRB.SetInsertPoint(InductionInc);
    for (Instruction& I : *Header)
    {
        auto* PI = dyn_cast<PHINode>(&I);
        if (PI)
        {
            if (PI == InductionPhi || PI == NewInductionPHI || PI == CondPHI)
                continue;
            PHINode* PN = IRB.CreatePHI(I.getType(), 2, PI->getName() + ".cont.phi");
            if (PN)
            {
                PI->replaceUsesOutsideBlock(PN, IfCondBB);
                PN->addIncoming(PI, Header);
                auto* U = PI->getIncomingValueForBlock(ContinueBB);
                U->replaceUsesOutsideBlock(PN, IfCondBB);
                PN->addIncoming(U, IfCondBB);
            }
        }
    }
    return true;
}

namespace IGC
{
    LoopPass* createLoopAllocaUpperbound()
    {
        return new LoopAllocaUpperbound();
    }
}