File: BarrierControlFlowOptimization.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (605 lines) | stat: -rw-r--r-- 23,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*========================== begin_copyright_notice ============================

Copyright (C) 2021-2023 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "common/LLVMWarningsPush.hpp"
#include "llvm/PassInfo.h"
#include "llvm/PassRegistry.h"
#include "common/LLVMWarningsPop.hpp"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "IGC/Compiler/CodeGenPublic.h"
#include "common/IGCIRBuilder.h"
#include "Probe/Assertion.h"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/IGCPassSupport.h"
#include "BarrierControlFlowOptimization.hpp"
#include "visa_igc_common_header.h"
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <memory>
#include <utility>
#include <map>

using namespace llvm;
namespace IGC
{
/////////////////////////////////////////////////////////////////////////////////////////////
/// @brief Optimize LSC fence (UGM/SLM/TGM) and barrier sync control flow
/// proposed optimization:
/// sync()            - all threads in group - assure all prior reads\writes are retired
/// if (thread0)      - pick the owning thread
///    flush()        - simd1 (per-thread-group)
/// sync()            - all threads in group - assure flush op is completed before releasing.
class BarrierControlFlowOptimization : public llvm::FunctionPass
{
public:
    static char ID; ///< ID used by the llvm PassManager (the value is not important)

    BarrierControlFlowOptimization();

    ////////////////////////////////////////////////////////////////////////
    virtual bool runOnFunction(llvm::Function& F);

    ////////////////////////////////////////////////////////////////////////
    virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const;

    ////////////////////////////////////////////////////////////////////////

private:
    ////////////////////////////////////////////////////////////////////////
    bool ProcessFunction();

    ////////////////////////////////////////////////////////////////////////
    void InvalidateMembers();

    ////////////////////////////////////////////////////////////////////////
    void CollectFenceBarrierInstructions();

    ////////////////////////////////////////////////////////////////////////
    bool OptimizeBarrierControlFlow();

    ////////////////////////////////////////////////////////////////////////
    void EraseOldInstructions();

    ////////////////////////////////////////////////////////////////////////
    static bool IsThreadBarrierOperation(const llvm::Instruction* pInst);

    ////////////////////////////////////////////////////////////////////////
    //static bool IsFenceOperation(const llvm::Instruction* pInst);

    std::vector<llvm::Instruction*> m_LscMemoryFences;
    std::vector<llvm::Instruction*> m_ThreadGroupBarriers;
    std::vector<llvm::Instruction*> m_OrderedFenceBarrierInstructions;
    std::vector<std::vector<llvm::Instruction*>> m_OrderedFenceBarrierInstructionsBlock;

    llvm::Function* m_CurrentFunction = nullptr;
};

static inline bool IsLscFenceOperation(const Instruction* pInst);
static inline LSC_SFID GetLscMem(const Instruction* pInst);
static inline LSC_SCOPE GetLscScope(const Instruction* pInst);
static inline LSC_FENCE_OP GetLscFenceOp(const Instruction* pInst);

char BarrierControlFlowOptimization::ID = 0;

////////////////////////////////////////////////////////////////////////////
BarrierControlFlowOptimization::BarrierControlFlowOptimization() :
    llvm::FunctionPass(ID)
{
    initializeBarrierControlFlowOptimizationPass(*PassRegistry::getPassRegistry());
}

////////////////////////////////////////////////////////////////////////
bool BarrierControlFlowOptimization::runOnFunction(llvm::Function& F)
{
    m_CurrentFunction = &F;

    InvalidateMembers();

    return ProcessFunction();
}

////////////////////////////////////////////////////////////////////////
bool BarrierControlFlowOptimization::IsThreadBarrierOperation(const llvm::Instruction* pInst)
{
    if (llvm::isa<llvm::GenIntrinsicInst>(pInst))
    {
        const llvm::GenIntrinsicInst* pGenIntrinsicInst = llvm::cast<llvm::GenIntrinsicInst>(pInst);

        switch (pGenIntrinsicInst->getIntrinsicID())
        {
        case llvm::GenISAIntrinsic::GenISA_threadgroupbarrier:
            return true;
        default:
            break;
        }
    }

    return false;
}

void BarrierControlFlowOptimization::CollectFenceBarrierInstructions()
{
    for (llvm::BasicBlock& basicBlock : *m_CurrentFunction)
    {
        m_OrderedFenceBarrierInstructions.clear();

        for (llvm::Instruction& inst : basicBlock)
        {
            if (IsLscFenceOperation(&inst) || IsThreadBarrierOperation(&inst))
            {
                m_OrderedFenceBarrierInstructions.push_back(&inst);
            }
            else if (m_OrderedFenceBarrierInstructions.size() > 0)
            {
                // if not lsc fence and threadbarrier, ends a set barrier instructions
                m_OrderedFenceBarrierInstructionsBlock.push_back(m_OrderedFenceBarrierInstructions);
                m_OrderedFenceBarrierInstructions.clear();
            }
        }
    }
}

bool BarrierControlFlowOptimization::OptimizeBarrierControlFlow()
{
    const CodeGenContext* const pContext = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

    bool bModified = false;
    Value* onThread = nullptr;

    // Optimize barrier control flow
    for (auto& B : m_OrderedFenceBarrierInstructionsBlock)
    {
        llvm::Instruction* inst = B[0];

        m_ThreadGroupBarriers.clear();
        m_LscMemoryFences.clear();

        if (IsLscFenceOperation(inst))
        {
            LSC_SFID lscMem = GetLscMem(inst);

            // is there an order of fence or no matter? (ugm/slm followed by tgm)
            IGC_ASSERT(lscMem == LSC_UGM || lscMem == LSC_SLM || lscMem == LSC_TGM);

            // inst is pointing to a fence
            m_LscMemoryFences.push_back(inst);

            // move to next inst
            Instruction* nextInst = dyn_cast<Instruction>(inst)->getNextNode();

            // if next is null, means it's the end of this block
            if (nextInst == nullptr)
            {
                continue;
            }

            // is the second lsc fence followed? if not, could be threadbarrier.
            if (IsLscFenceOperation(nextInst))
            {
                LSC_SFID lscMem = GetLscMem(nextInst);

                IGC_ASSERT(lscMem == LSC_UGM || lscMem == LSC_SLM || lscMem == LSC_TGM);

                // nextInst is pointing to another fence
                m_LscMemoryFences.push_back(nextInst);

                // nextInst could be the thread barrier
                nextInst = dyn_cast<Instruction>(nextInst)->getNextNode();

                // if next is null, means it's the end of this block
                if (nextInst == nullptr)
                {
                    continue;
                }
            }

            if (IsThreadBarrierOperation(nextInst))
            {
                // nextInst is the thread barrier
                m_ThreadGroupBarriers.push_back(nextInst);
            }

            // thread barrier could be not used, but lsc fence must exist
            // if so, found the pattern and stop the loop and return
            if (m_LscMemoryFences.size() >= 1)
            {
                IGCIRBuilder<> IRB(nextInst);

                llvm::Module* module = nextInst->getParent()->getParent()->getParent();

                // if getNextNode is null, means it's the end of this block
                if (nextInst->getNextNode() == nullptr)
                {
                    continue;
                }

                // all barrier instructions from the blocks are exected on the same thread
                // get the owning thread ID once
                if (!onThread)
                {
                    Function* systemValueIntrinsic = GenISAIntrinsic::getDeclaration(
                        module,
                        GenISAIntrinsic::GenISA_DCL_SystemValue,
                        IRB.getInt32Ty());

                    Value* threadIDX = nullptr;

                    if (pContext->type == ShaderType::TASK_SHADER ||
                        pContext->type == ShaderType::MESH_SHADER)
                    {
                        threadIDX = IRB.CreateCall(systemValueIntrinsic,
                            IRB.getInt32(IGC::THREAD_ID_IN_GROUP_X),
                            VALUE_NAME("TID"));
                    }
                    else
                    {
                        Value* subgroupId = IRB.CreateCall(
                            systemValueIntrinsic,
                            IRB.getInt32(THREAD_ID_WITHIN_THREAD_GROUP));

                        Function* simdSizeIntrinsic = GenISAIntrinsic::getDeclaration(
                            module,
                            GenISAIntrinsic::GenISA_simdSize);

                        Value* simdSize = IRB.CreateZExtOrTrunc(
                            IRB.CreateCall(simdSizeIntrinsic),
                            IRB.getInt32Ty());

                        Function* simdLaneIdIntrinsic = GenISAIntrinsic::getDeclaration(
                            module,
                            GenISAIntrinsic::GenISA_simdLaneId);

                        Value* subgroupLocalInvocationId = IRB.CreateZExtOrTrunc(
                            IRB.CreateCall(simdLaneIdIntrinsic),
                            IRB.getInt32Ty());

                        threadIDX = IRB.CreateAdd(
                            IRB.CreateMul(subgroupId, simdSize),
                            subgroupLocalInvocationId,
                            VALUE_NAME("TID"));
                    }

                    onThread = IRB.CreateICmpEQ(threadIDX, IRB.getInt32(0));
                }

                // 1. All threads do fence, scope=local, flush=None
                for (auto* I : m_LscMemoryFences)
                {
                    if (GetLscMem(I) == LSC_SLM)
                    {
                        Function* FenceFn = GenISAIntrinsic::getDeclaration(
                            module,
                            GenISAIntrinsic::GenISA_LSCFence);

                        Value* Args[] = {
                            IRB.getInt32(LSC_SLM),
                            IRB.getInt32(LSC_SCOPE_GROUP),
                            IRB.getInt32(LSC_FENCE_OP_NONE)
                        };

                        IRB.CreateCall(FenceFn, Args);
                    }
                }

                // 2. All threads barrier (if in group?)
                if (m_ThreadGroupBarriers.size() > 0)
                {
                    Function* BarrierFn = GenISAIntrinsic::getDeclaration(
                        module,
                        GenISAIntrinsic::GenISA_threadgroupbarrier);

                    IRB.CreateCall(BarrierFn);
                }

                // 3. One thread designated to do a fence, scope=GPU, flush=evict
                // if (thread0) - pick the owning thread
                llvm::Instruction* br = SplitBlockAndInsertIfThen(onThread, nextInst->getNextNode(), false);
                IRB.SetInsertPoint(&(*br->getParent()->begin()));

                // create new lsc fence based on the fence mem
                for (auto* I : m_LscMemoryFences)
                {
                    LSC_SFID lscMem = GetLscMem(I);

                    if (lscMem != LSC_SLM)
                    {
                        Function* FenceFn = GenISAIntrinsic::getDeclaration(
                            module,
                            GenISAIntrinsic::GenISA_LSCFence);

                        Value* Args[] = {
                            IRB.getInt32(lscMem),
                            IRB.getInt32(LSC_SCOPE_GPU),
                            IRB.getInt32(LSC_FENCE_OP_EVICT)
                        };

                        IRB.CreateCall(FenceFn, Args);
                    }
                }

                // ends the if-then block
                IRB.SetInsertPoint(&(*br->getSuccessor(0)->begin()));

                if (m_ThreadGroupBarriers.size() > 0)
                {
                    Function* BarrierFn = GenISAIntrinsic::getDeclaration(
                        module,
                        GenISAIntrinsic::GenISA_threadgroupbarrier);

                    IRB.CreateCall(BarrierFn);
                }

                bModified = true;
            }
        }
    }

    return bModified;
}

void BarrierControlFlowOptimization::EraseOldInstructions()
{
    for (auto& B : m_OrderedFenceBarrierInstructionsBlock)
    {
        for (llvm::Instruction* I : B)
        {
            I->eraseFromParent();
        }
    }
}

////////////////////////////////////////////////////////////////////////
/// @brief Processes an analysis which results in pointing out redundancies
/// among synchronization instructions appearing in the analyzed function.
bool BarrierControlFlowOptimization::ProcessFunction()
{
    const CodeGenContext* const pContext = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    bool isDisabled =
        IsStage1FastestCompile(pContext->m_CgFlag, pContext->m_StagingCtx) ||
        IGC_GET_FLAG_VALUE(ForceFastestSIMD);
    if (isDisabled)
    {
        return false;
    }

    CollectFenceBarrierInstructions();

    bool bModified = OptimizeBarrierControlFlow();

    // if optimized, then erase old instructions
    if (bModified)
    {
        EraseOldInstructions();
    }

    return bModified;
}

////////////////////////////////////////////////////////////////////////
void BarrierControlFlowOptimization::getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
    AU.setPreservesCFG();
    AU.addRequired<CodeGenContextWrapper>();
}

////////////////////////////////////////////////////////////////////////
void BarrierControlFlowOptimization::InvalidateMembers()
{
    m_ThreadGroupBarriers.clear();
    m_LscMemoryFences.clear();
    m_OrderedFenceBarrierInstructions.clear();
    m_OrderedFenceBarrierInstructionsBlock.clear();
}

//////////////////////////////////////////////////////////////////////////
template<class... Ts> struct overloaded : Ts...
{
    template<typename T>
    overloaded<Ts...>& operator=(const T& lambda)
    {
        ((static_cast<Ts&>(*this) = lambda), ...);
        return *this;
    }

    using Ts::operator()...;
};
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;

//////////////////////////////////////////////////////////////////////////
using ForwardIterationCallbackT = std::function<void(llvm::BasicBlock::const_iterator, llvm::BasicBlock::const_iterator)>;

//////////////////////////////////////////////////////////////////////////
using BackwardIterationCallbackT = std::function<void(llvm::BasicBlock::const_reverse_iterator, llvm::BasicBlock::const_reverse_iterator)>;

//////////////////////////////////////////////////////////////////////////
using IterationCallbackT = overloaded<ForwardIterationCallbackT, BackwardIterationCallbackT>;

//////////////////////////////////////////////////////////////////////////
using ForwardBoundaryCallbackT = std::function<llvm::BasicBlock::const_iterator(llvm::BasicBlock::const_iterator, llvm::BasicBlock::const_iterator)>;

//////////////////////////////////////////////////////////////////////////
using BackwardBoundaryCallbackT = std::function<llvm::BasicBlock::const_reverse_iterator(llvm::BasicBlock::const_reverse_iterator, llvm::BasicBlock::const_reverse_iterator)>;

//////////////////////////////////////////////////////////////////////////
using BoundaryCallbackT = overloaded<ForwardBoundaryCallbackT, BackwardBoundaryCallbackT>;

//////////////////////////////////////////////////////////////////////////
using ForwardProcessCallbackT = std::function<bool(llvm::BasicBlock::const_iterator, llvm::BasicBlock::const_iterator)>;

//////////////////////////////////////////////////////////////////////////
using BackwardProcessCallbackT = std::function<bool(llvm::BasicBlock::const_reverse_iterator, llvm::BasicBlock::const_reverse_iterator)>;

//////////////////////////////////////////////////////////////////////////
using ProcessCallbackT = overloaded<ForwardProcessCallbackT, BackwardProcessCallbackT>;

////////////////////////////////////////////////////////////////////////
/// @brief Scan over basic blocks using a custom function which
/// analyzes instructions between the beginning and ending iterator
/// and decides if the scan should be continued. The direction of the
/// scanning process is defined by the kind of used iterators.
/// @param workList holds a collection with the beginning points of searching
/// @param visitedBasicBlocks holds a collection of fully visited basic blocks
/// @param ProcessInstructions holds a function returning information
/// based on the beginning and ending iterators of the currently scanned
/// basic blocks if adjacent basic blocks also should be scanned
/// @tparam BasicBlockterator a basic block iterator type indicating the scan direction
template<typename BasicBlockterator>
static void SearchInstructions(
    std::list<BasicBlockterator>& workList,
    llvm::DenseSet<const llvm::BasicBlock*>& visitedBasicBlocks,
    std::function<bool(BasicBlockterator, BasicBlockterator)>& ProcessInstructions)
{
    auto GetBeginIt = [](const llvm::BasicBlock* pBasicBlock) -> BasicBlockterator
    {
        constexpr bool isForwardDirection = std::is_same_v<BasicBlockterator, llvm::BasicBlock::const_iterator>;
        if constexpr (isForwardDirection)
        {
            return pBasicBlock->begin();
        }
        else
        {
            return pBasicBlock->rbegin();
        }
    };

    auto GetEndIt = [](const llvm::BasicBlock* pBasicBlock) -> BasicBlockterator
    {
        constexpr bool isForwardDirection = std::is_same_v<BasicBlockterator, llvm::BasicBlock::const_iterator>;
        if constexpr (isForwardDirection)
        {
            return pBasicBlock->end();
        }
        else
        {
            return pBasicBlock->rend();
        }
    };

    auto GetSuccessors = [](const llvm::BasicBlock* pBasicBlock)
    {
        constexpr bool isForwardDirection = std::is_same_v<BasicBlockterator, llvm::BasicBlock::const_iterator>;
        if constexpr (isForwardDirection)
        {
            return llvm::successors(pBasicBlock);
        }
        else
        {
            return llvm::predecessors(pBasicBlock);
        }
    };

    for (const auto& it : workList)
    {
        const llvm::BasicBlock* pCurrentBasicBlock = it->getParent();
        // use the iterator only if it wasn't visited or restricted
        auto bbIt = visitedBasicBlocks.find(pCurrentBasicBlock);
        if (bbIt != visitedBasicBlocks.end())
        {
            continue;
        }
        else if (GetBeginIt(pCurrentBasicBlock) == it)
        {
            visitedBasicBlocks.insert(pCurrentBasicBlock);
        }
        BasicBlockterator end = GetEndIt(pCurrentBasicBlock);
        if (ProcessInstructions(it, end))
        {
            for (const llvm::BasicBlock* pSuccessor : GetSuccessors(pCurrentBasicBlock))
            {
                if (visitedBasicBlocks.find(pSuccessor) == visitedBasicBlocks.end())
                {
                    workList.push_back(GetBeginIt(pSuccessor));
                }
            }
        }
    }
}

////////////////////////////////////////////////////////////////////////
/// @brief Scan over basic blocks using custom functions which
/// one of them analyzes instructions between the beginning and ending iterator
/// and second of them decides if the scan should be continued. The direction of the
/// scanning process is defined by the kind of used iterators.
/// @param workList holds a collection with the beginning points of searching
/// @param visitedBasicBlocks holds a collection of fully visited basic blocks
/// @param IterateOverMemoryInsts holds a function analyzing the content
/// between the beginning iterator and the boundary iterator.
/// @param GetBoundaryInst holds a function returning information
/// about the boundary of scanning if it is present in the analyzed basic
/// block, otherwise, it returns the ending iterator and it means the
/// scan process is proceeded.
/// based on the beginning and ending iterators of the currently scanned
/// basic blocks if adjacent basic blocks also should be scanned
/// @tparam BasicBlockterator a basic block iterator type indicating the scan direction
template<typename BasicBlockterator>
static void SearchInstructions(
    std::list<BasicBlockterator>& workList,
    llvm::DenseSet<const llvm::BasicBlock*>& visitedBasicBlocks,
    std::function<void(BasicBlockterator, BasicBlockterator)>& IterateOverMemoryInsts,
    std::function<BasicBlockterator(BasicBlockterator, BasicBlockterator)>& GetBoundaryInst)
{
    std::function<bool(BasicBlockterator, BasicBlockterator)> ProcessInstructions{};
    ProcessInstructions = [&GetBoundaryInst, &IterateOverMemoryInsts](auto it, auto end)
    {
        auto beg = it;
        it = GetBoundaryInst(beg, end);
        IterateOverMemoryInsts(beg, it);
        return it == end;
    };
    SearchInstructions(workList, visitedBasicBlocks, ProcessInstructions);
}

////////////////////////////////////////////////////////////////////////////////
static inline bool IsLscFenceOperation(const Instruction* pInst)
{
    const GenIntrinsicInst* pIntr = dyn_cast<GenIntrinsicInst>(pInst);
    if (pIntr && pIntr->isGenIntrinsic(GenISAIntrinsic::GenISA_LSCFence))
    {
        return true;
    }
    return false;
}

////////////////////////////////////////////////////////////////////////////////
static inline LSC_SFID GetLscMem(const Instruction* pInst)
{
    IGC_ASSERT(IsLscFenceOperation(pInst));
    return getImmValueEnum<LSC_SFID>(pInst->getOperand(0));
}

////////////////////////////////////////////////////////////////////////////////
static inline LSC_SCOPE GetLscScope(const Instruction* pInst)
{
    IGC_ASSERT(IsLscFenceOperation(pInst));
    return getImmValueEnum<LSC_SCOPE>(pInst->getOperand(1));
}

////////////////////////////////////////////////////////////////////////////////
static inline LSC_FENCE_OP GetLscFenceOp(const Instruction* pInst)
{
    IGC_ASSERT(IsLscFenceOperation(pInst));
    return getImmValueEnum<LSC_FENCE_OP>(pInst->getOperand(2));
}

////////////////////////////////////////////////////////////////////////
llvm::Pass* createBarrierControlFlowOptimization()
{
    return new BarrierControlFlowOptimization();
}

}

using namespace llvm;
using namespace IGC;

#define PASS_FLAG "igc-barrier-control-flow-optimization"
#define PASS_DESCRIPTION "BarrierControlFlowOptimization"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(BarrierControlFlowOptimization, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(BarrierControlFlowOptimization, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)