1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "GASResolving.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/InitializePasses.h"
#include "llvmWrapper/IR/DerivedTypes.h"
// Generic address space (GAS) pointer resolving is done in two steps:
// 1) Find cast from non-GAS pointer to GAS pointer
// 2) Propagate that non-GAS pointer to all users of that GAS pointer at best
// effort.
#define PASS_FLAG "igc-gas-resolve"
#define PASS_DESC "Resolve generic address space"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(GASResolving, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(GASResolving, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
FunctionPass* IGC::createResolveGASPass() { return new GASResolving(); }
char GASResolving::ID = 0;
bool GASResolving::runOnFunction(Function& F) {
LLVMContext& Ctx = F.getContext();
LoopInfo& LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BuilderType TheBuilder(Ctx);
GASPropagator ThePropagator(Ctx, &LI);
IRB = &TheBuilder;
Propagator = &ThePropagator;
bool Changed = false;
Changed |= canonicalizeAddrSpaceCasts(F);
Changed |= resolveMemoryFromHost(F);
bool LocalChanged = false;
do {
LocalChanged = resolveOnFunction(&F);
Changed |= LocalChanged;
} while (LocalChanged);
return Changed;
}
bool GASResolving::resolveOnFunction(Function* F) const {
bool Changed = false;
ReversePostOrderTraversal<Function*> RPOT(F);
for (auto& BB : RPOT)
Changed |= resolveOnBasicBlock(BB);
return Changed;
}
// Transform the following cast
//
// addrspacecast SrcTy addrspace(S)* to DstTy addrspace(T)*
//
// to
//
// bitcast SrcTy addrspace(S)* to DstTy addrspace(S)*
// addrspacecast DstTy addrspace(S)* to DstTy addrspace(T)*
//
// OpaquePointers TODO: This method will be useless once IGC is switched to opaque pointers
bool GASResolving::canonicalizeAddrSpaceCasts(Function& F) const {
std::vector<AddrSpaceCastInst*> GASAddrSpaceCasts;
for (auto& I : make_range(inst_begin(F), inst_end(F)))
if (AddrSpaceCastInst* ASCI = dyn_cast<AddrSpaceCastInst>(&I))
if (ASCI->getDestAddressSpace() == GAS)
GASAddrSpaceCasts.push_back(ASCI);
bool changed = false;
BuilderType::InsertPointGuard Guard(*IRB);
for (auto ASCI : GASAddrSpaceCasts)
{
Value* Src = ASCI->getPointerOperand();
Type* SrcType = Src->getType();
Type* DstElementType = IGCLLVM::getNonOpaquePtrEltTy(ASCI->getType());
if (IGCLLVM::getNonOpaquePtrEltTy(SrcType) == DstElementType)
continue;
PointerType* TransPtrTy = PointerType::get(DstElementType, SrcType->getPointerAddressSpace());
IRB->SetInsertPoint(ASCI);
Src = IRB->CreateBitCast(Src, TransPtrTy);
ASCI->setOperand(0, Src);
changed = true;
}
return changed;
}
bool GASResolving::resolveOnBasicBlock(BasicBlock* BB) const {
bool Changed = false;
for (auto BI = BB->begin(), BE = BB->end(); BI != BE; /* EMPTY */) {
Instruction* I = &(*BI++);
AddrSpaceCastInst* CI = dyn_cast<AddrSpaceCastInst>(I);
// Skip non `addrspacecast` instructions.
if (!CI)
continue;
PointerType* DstPtrTy = cast<PointerType>(CI->getType());
// Skip non generic address casting.
if (DstPtrTy->getAddressSpace() != GAS)
continue;
Changed = Propagator->propagateToAllUsers(CI);
// Re-update next instruction once there's change.
if (Changed)
BI = std::next(BasicBlock::iterator(CI));
// Remove this `addrspacecast` once it's no longer used.
if (CI->use_empty()) {
CI->eraseFromParent();
Changed = true;
}
}
return Changed;
}
bool GASResolving::resolveMemoryFromHost(Function& F) const {
MetaDataUtils* pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
// skip all non-entry functions
if (!isEntryFunc(pMdUtils, &F))
return false;
// early check in order not to iterate whole function
if (!checkGenericArguments(F))
return false;
SmallVector<StoreInst*, 32> Stores;
SmallVector<LoadInst*, 32> Loads;
AliasAnalysis* AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
// collect load candidates and in parallel check for unsafe instructions
// visitor may be a more beautiful way to do this
bool HasASCast = false; // if there exists addrspace cast from non global/generic space
bool HasPtoi = false; // if there exists ptrtoint with global/generic space
for (BasicBlock& B : F) {
for (Instruction& I : B) {
if (auto LI = dyn_cast<LoadInst>(&I)) {
if (isLoadGlobalCandidate(LI)) {
Loads.push_back(LI);
}
}
else if (auto CI = dyn_cast<CallInst>(&I)) {
if (CI->onlyReadsMemory() || CI->onlyAccessesInaccessibleMemory())
continue;
// currently recognize only these ones
// in fact intrinsics should be marked as read-only
if (auto II = dyn_cast<IntrinsicInst>(CI)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end)
continue;
}
// if we have an unsafe call in the kernel, abort
// to improve we can collect arguments of writing calls as memlocations for alias analysis
return false;
}
else if (auto PI = dyn_cast<PtrToIntInst>(&I)) {
// if we have a ptrtoint we need to check data flow which we don't want to
if (PI->getPointerAddressSpace() != ADDRESS_SPACE_GLOBAL &&
PI->getPointerAddressSpace() != ADDRESS_SPACE_GENERIC)
return false;
else {
HasPtoi = true;
}
return false;
}
else if (auto AI = dyn_cast<AddrSpaceCastInst>(&I)) {
if (AI->getSrcAddressSpace() != ADDRESS_SPACE_GLOBAL &&
AI->getSrcAddressSpace() != ADDRESS_SPACE_GENERIC) {
HasASCast = true;
}
}
else if (auto SI = dyn_cast<StoreInst>(&I)) {
Value* V = SI->getValueOperand();
if (isa<PointerType>(V->getType())) {
// this store can potentially write non-global pointer to memory
Stores.push_back(SI);
}
}
else if (I.mayWriteToMemory()) {
// unsupported instruction poisoning memory
return false;
}
}
}
if (HasASCast && HasPtoi)
return false;
if (Loads.empty())
return false;
bool Changed = false;
while (!Loads.empty())
{
LoadInst* LI = Loads.pop_back_val();
// check that we don't have aliasing stores for this load
// we expect to have basic and addrspace AA available at the moment
// on optimization phase
bool aliases = false;
for (auto SI : Stores) {
if (AA->alias(MemoryLocation::get(SI), MemoryLocation::get(LI))) {
aliases = true;
break;
}
}
if (aliases)
continue;
convertLoadToGlobal(LI);
Changed = true;
}
return Changed;
}
bool GASResolving::isLoadGlobalCandidate(LoadInst* LI) const {
// first check that loaded address has generic address space
// otherwise it is not our candidate
PointerType* PtrTy = dyn_cast<PointerType>(LI->getType());
if (!PtrTy || PtrTy->getAddressSpace() != ADDRESS_SPACE_GENERIC)
return false;
// next check that it is a load from function argument + offset
// which is necessary to prove that this address has global addrspace
Value* LoadBase = LI->getPointerOperand()->stripInBoundsOffsets();
// WA for gep not_inbounds base, 0, 0 that is not handled in stripoffsets
LoadBase = LoadBase->stripPointerCasts();
if (!isa<Argument>(LoadBase))
return false;
// don't want to process cases when argument is from local address space
auto LoadTy = cast<PointerType>(LoadBase->getType());
if (LoadTy->getAddressSpace() != ADDRESS_SPACE_GLOBAL)
return false;
// TODO: skip cases that have been fixed on previous traversals
return true;
}
void GASResolving::convertLoadToGlobal(LoadInst* LI) const {
// create two addressspace casts: generic -> global -> generic
// the next scalar phase of this pass will propagate global to all uses of the load
PointerType* PtrTy = cast<PointerType>(LI->getType());
IRB->SetInsertPoint(LI->getNextNode());
PointerType* GlobalPtrTy = IGCLLVM::getWithSamePointeeType(PtrTy, ADDRESS_SPACE_GLOBAL);
Value* GlobalAddr = IRB->CreateAddrSpaceCast(LI, GlobalPtrTy);
Value* GenericCopyAddr = IRB->CreateAddrSpaceCast(GlobalAddr, PtrTy);
for (auto UI = LI->use_begin(), UE = LI->use_end(); UI != UE; /*EMPTY*/) {
Use& U = *UI++;
if (U.getUser() == GlobalAddr)
continue;
U.set(GenericCopyAddr);
}
}
bool GASResolving::checkGenericArguments(Function& F) const {
// check that we have a pointer to pointer or pointer to struct that has pointer elements
// and main pointer type is global while underlying pointer type is generic
auto* FT = F.getFunctionType();
for (unsigned p = 0; p < FT->getNumParams(); ++p) {
if (auto Ty = dyn_cast<PointerType>(FT->getParamType(p))) {
if (Ty->getAddressSpace() != ADDRESS_SPACE_GLOBAL)
continue;
auto PteeTy = IGCLLVM::getNonOpaquePtrEltTy(Ty);
if (auto PTy = dyn_cast<PointerType>(PteeTy)) {
if (PTy->getAddressSpace() == ADDRESS_SPACE_GENERIC)
return true;
}
if (auto STy = dyn_cast<StructType>(PteeTy)) {
for (unsigned e = 0; e < STy->getNumElements(); ++e) {
if (auto ETy = dyn_cast<PointerType>(STy->getElementType(e))) {
if (ETy->getAddressSpace() == ADDRESS_SPACE_GENERIC)
return true;
}
}
}
}
}
return false;
}
|