1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "IGC/common/StringMacros.hpp"
#include "Compiler/Optimizer/OpenCLPasses/LSCFuncs/LSCFuncsResolution.hpp"
#include "Compiler/Optimizer/OCLBIUtils.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Pass.h>
#include <llvm/IR/InstVisitor.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/Support/Regex.h>
#include "common/LLVMWarningsPop.hpp"
#include "visa_igc_common_header.h"
#include <limits>
#include <string>
#include "Probe/Assertion.h"
#include <algorithm>
#include <sstream>
using namespace llvm;
using namespace IGC;
namespace {
struct LscTypeInfo {
LSC_DATA_SIZE dataSize;
LSC_DATA_ELEMS vectorSize;
int sizeOfType; // e.g. float4 => sizeof(float4) for D32 V4
};
/// @brief LSCFuncsTranslation pass : tranlate lsc builtin (__builtin_IB_*lsc*) into igc intrinsic.
///
/// This is not automated like the usual builtins because we have to do type
/// inference and do extra sanity checking here on inputs.
class LSCFuncsResolution : public FunctionPass, public InstVisitor<LSCFuncsResolution>
{
public:
// Pass identification, replacement for typeid
static char ID;
LSCFuncsResolution();
/// @brief Provides name of pass
virtual StringRef getPassName() const override
{
return "LSCFuncsResolution";
}
void getAnalysisUsage(AnalysisUsage &AU) const override
{
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<MetaDataUtilsWrapper>();
}
virtual bool runOnFunction(Function &F) override;
void visitCallInst(CallInst& CI);
private:
/// LSC Load intrinsics call method
Instruction* CreateLSCLoadIntrinsicCallInst(GenISAIntrinsic::ID op, bool isLocalMem);
Instruction* CreateLSCLoadCmaskIntrinsicCallInst(bool isLocalMem);
/// LSC Store intrinsics call method
Instruction* CreateLSCStoreIntrinsicCallInst(GenISAIntrinsic::ID op, bool isLocalMem);
Instruction* CreateLSCStoreCmaskIntrinsicCallInst(bool isLocalMem);
Instruction* CreateLSCSimdBlockPrefetchIntrinsicCallInst(llvm::StringRef funcName);
/// LSC Prefetch and load status intrinsics
Instruction* CreateLSCLoadStatusPreftchIntrinsicCallInst(
GenISAIntrinsic::ID prefetchOp);
/// LSC block 2d with address payload as a single argument
Instruction* CreateLSC2DBlockAddressPayload(CallInst &CI);
Instruction* CopyLSC2DBlockAddressPayload(CallInst& CI);
Instruction* SetLSC2DBlockAddressPayloadField(CallInst &CI, LSC2DBlockField Field, bool IsAddend);
Instruction* CreateSubGroup2DBlockOperationAP(CallInst &CI, StringRef funcName, bool isRead);
/// LSC subgroup 2d block read/write intrinsics
Instruction* CreateSubGroup2DBlockOperation(llvm::CallInst& CI, llvm::StringRef funcName, bool isRead);
/// LSC Fence intrinsics call method
Instruction* CreateLSCFenceIntrinsicCallInst();
Instruction* CreateLSCFenceEvictToMemory();
/// LSC Atomic intrinsics call method
Instruction* CreateLSCAtomicIntrinsicCallInst(bool isLocalMem);
///////////////////////////////////////////////////////////////////////
/// Helpers
///////////////////////////////////////////////////////////////////////
/// Decode the data size and vector size from the function name.
/// Return true if sucessful; false otherwise.
/// Suffix's format: <DS>_<VS>
/// DS - dataSize: uchar,ushort,uint,ulong
/// VS - vectorSize: <2|3|4|8|16|32|64>
///
LscTypeInfo decodeTypeInfoFromName();
/// Decode the SFID from the function name.
/// Return true if sucessful; false otherwise.
/// Suffix's format: <MP>
/// MP - memport: ugm,ugml,tgm,slm
LSC_SFID decodeSfidFromName();
/// Decode the atomic op from the function name.
/// Return true if sucessful; false otherwise.
/// Suffix's format: <AOP>
/// AOP - atomic operation: FP64 add, FP64 sub
AtomicOp decodeAtomicOpFromName();
/// obnoxious that we can't use std::pair or std::tuple and constexpr
/// (something about compiler toolchain support made use elminate this
/// in the past)
struct SymbolMapping {
const char *symbol;
int value;
};
/// Searches a table of mappings
template <typename T,int N>
bool findFirstInfixMapping(
StringRef FN, const SymbolMapping enums[N], T &value)
{
for (int i = 0; i < N && enums[i].symbol; i++)
if (FN.find(enums[i].symbol) != StringRef::npos) {
value = static_cast<T>(enums[i].value);
return true;
}
return false;
}
//// Gets an i32 with a given value
Constant *getConstantInt32(int value) {
Type* i32 = Type::getInt32Ty(m_pCurrInst->getContext());
return ConstantInt::get(i32, value, true);
}
/// E.g. for cache controls, fence options, etc
Constant *getImmediateEnum(int i, int lo, int hi);
///
/// Fetches and validates the immediate element offset.
/// Ensures the element offset is immediate and fits in 32b
// (after scaling by type)
Constant *getImmediateElementOffset(int ix, LscTypeInfo ti);
/// Gets an operand as cache control options and sanity checks it.
/// Atomics have some special constraints.
Constant *getCacheControlOpts(int i, bool isAtomic = false);
/// Reports an error in translating the intrinsic
void reportError(const char *what);
/// Someone called reportError on the current instruction
bool hasError() const {
// ick: tellp is not const
return m_ErrorMsg.rdbuf() && m_ErrorMsg.rdbuf()->in_avail() > 0;
}
/// Indicates if the pass changed the processed function
bool m_changed{};
bool isHalfSimdMode{};
/// state valid under visitCallInst(...)
std::stringstream m_ErrorMsg;
CodeGenContext* m_pCtx = nullptr;
CallInst* m_pCurrInst = nullptr;
Function* m_pCurrInstFunc = nullptr;
// For verifying address payload for block 2d read/write.
llvm::SmallVector<Instruction *, 32> m_lsc2dblock_readwrite;
void verifyBlock2DAddressPayload();
static const StringRef PREFIX_LSC_STORE_local;
static const StringRef PREFIX_LSC_STORE_global;
static const StringRef PREFIX_LSC_STORE_BLOCK_global;
static const StringRef PREFIX_LSC_STORE_CMASK_local;
static const StringRef PREFIX_LSC_STORE_CMASK_global;
static const StringRef PREFIX_LSC_LOAD_local;
static const StringRef PREFIX_LSC_LOAD_global;
static const StringRef PREFIX_LSC_LOAD_BLOCK_global;
static const StringRef PREFIX_LSC_LOAD_status;
static const StringRef PREFIX_SUBGROUP_BLOCK_READ_AP;
static const StringRef PREFIX_SUBGROUP_BLOCK_WRITE_AP;
static const StringRef PREFIX_SUBGROUP_BLOCK_READ;
static const StringRef PREFIX_SUBGROUP_BLOCK_WRITE;
static const StringRef PREFIX_LSC_LOAD_CMASK_local;
static const StringRef PREFIX_LSC_LOAD_CMASK_global;
static const StringRef PREFIX_LSC_FENCE;
static const StringRef PREFIX_LSC_FENCE_EVICT_TO_MEMORY;
static const StringRef PREFIX_LSC_ATOMIC;
static const StringRef PREFIX_LSC_PREFETCH;
static const StringRef PREFIX_LSC_SIMD_BLOCK_PREFETCH;
};
}
char LSCFuncsResolution::ID = 0;
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_local = "__builtin_IB_lsc_store_local_";
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_global = "__builtin_IB_lsc_store_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_BLOCK_global = "__builtin_IB_lsc_store_block_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_CMASK_local = "__builtin_IB_lsc_store_cmask_local_";
const StringRef LSCFuncsResolution::PREFIX_LSC_STORE_CMASK_global = "__builtin_IB_lsc_store_cmask_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_local = "__builtin_IB_lsc_load_local_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_global = "__builtin_IB_lsc_load_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_BLOCK_global = "__builtin_IB_lsc_load_block_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_status = "__builtin_IB_lsc_load_status_global_";
// Suffix _AP : builtin with address payload as a single argument
const StringRef LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_READ_AP = "__builtin_IB_subgroup_block_read_ap";
const StringRef LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_WRITE_AP = "__builtin_IB_subgroup_block_write_ap";
const StringRef LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_READ = "__builtin_IB_subgroup_block_read";
const StringRef LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_WRITE = "__builtin_IB_subgroup_block_write";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_CMASK_local = "__builtin_IB_lsc_load_cmask_local_";
const StringRef LSCFuncsResolution::PREFIX_LSC_LOAD_CMASK_global = "__builtin_IB_lsc_load_cmask_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_FENCE = "__builtin_IB_lsc_fence_";
const StringRef LSCFuncsResolution::PREFIX_LSC_FENCE_EVICT_TO_MEMORY = "__builtin_IB_lsc_fence_evict_to_memory";
const StringRef LSCFuncsResolution::PREFIX_LSC_ATOMIC = "__builtin_IB_lsc_atomic_";
const StringRef LSCFuncsResolution::PREFIX_LSC_PREFETCH = "__builtin_IB_lsc_prefetch_global_";
const StringRef LSCFuncsResolution::PREFIX_LSC_SIMD_BLOCK_PREFETCH = "__builtin_IB_lsc_simd_block_prefetch_";
// Register pass to igc-opt
#define PASS_FLAG "igc-lsc-funcs-translation"
#define PASS_DESCRIPTION "Translate lsc builtin functions into igc intrinsics"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LSCFuncsResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(LSCFuncsResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
LSCFuncsResolution::LSCFuncsResolution() : FunctionPass(ID)
{
initializeLSCFuncsResolutionPass(*PassRegistry::getPassRegistry());
}
bool LSCFuncsResolution::runOnFunction(Function &F)
{
m_pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
int defaultSimdSize = 0;
switch (m_pCtx->platform.getPlatformInfo().eProductFamily)
{
case IGFX_DG2:
case IGFX_METEORLAKE:
case IGFX_ARROWLAKE:
defaultSimdSize = 16;
break;
default:
defaultSimdSize = 32;
break;
}
auto m_pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
auto funcInfoMD = m_pMdUtils->getFunctionsInfoItem(&F);
int actualSimdSize = funcInfoMD->getSubGroupSize()->getSIMDSize();
isHalfSimdMode = defaultSimdSize != actualSimdSize; // SIMD8 on DG2, SIMD16 on PVC
m_changed = false;
visit(F);
verifyBlock2DAddressPayload();
if (hasError()) {
m_pCtx->EmitError(m_ErrorMsg.str().c_str(), &F);
m_ErrorMsg.str(std::string()); // clear stringstream
}
return m_changed;
}
void LSCFuncsResolution::visitCallInst(CallInst &CI)
{
/// Process LCS intrinsics
m_pCurrInstFunc = CI.getCalledFunction();
if (!m_pCurrInstFunc)
return;
m_pCurrInst = &CI;
StringRef FN = m_pCurrInstFunc->getName();
Instruction* lscCall = nullptr;
//////////////
// loads
if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_global)) {
lscCall = CreateLSCLoadIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCLoad, false);
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_BLOCK_global)) {
lscCall = CreateLSCLoadIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCLoadBlock, false);
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_local)) {
lscCall = CreateLSCLoadIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCLoad, true);
}
else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_CMASK_global)) {
lscCall = CreateLSCLoadCmaskIntrinsicCallInst(false);
}
else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_CMASK_local)) {
lscCall = CreateLSCLoadCmaskIntrinsicCallInst(true);
//////////////
// prefetches
} else if (FN.consume_front(LSCFuncsResolution::PREFIX_LSC_SIMD_BLOCK_PREFETCH)) {
lscCall = CreateLSCSimdBlockPrefetchIntrinsicCallInst(FN);
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_status)) {
lscCall = CreateLSCLoadStatusPreftchIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCLoadStatus);
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_PREFETCH)) {
lscCall = CreateLSCLoadStatusPreftchIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCPrefetch);
//////////////
// stores
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_global)) {
lscCall = CreateLSCStoreIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCStore, false);
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_BLOCK_global)) {
lscCall = CreateLSCStoreIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCStoreBlock, false);
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_local)) {
lscCall = CreateLSCStoreIntrinsicCallInst(
GenISAIntrinsic::GenISA_LSCStore, true);
}
else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_CMASK_global)) {
lscCall = CreateLSCStoreCmaskIntrinsicCallInst(false);
}
else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_STORE_CMASK_local)) {
lscCall = CreateLSCStoreCmaskIntrinsicCallInst(true);
//////////////
// 2d block intrinsics
} else if (FN.consume_front("__builtin_IB_subgroup_createBlock2DAddressPayload")) {
lscCall = CreateLSC2DBlockAddressPayload(CI);
} else if (FN.consume_front("__builtin_IB_subgroup_copyBlock2DAddressPayload")) {
lscCall = CopyLSC2DBlockAddressPayload(CI);
} else if (FN.consume_front("__builtin_IB_subgroup_setBlock2DAddressPayloadBase")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::BASE, false);
} else if (FN.consume_front("__builtin_IB_subgroup_setBlock2DAddressPayloadWidth")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::WIDTH, false);
} else if (FN.consume_front("__builtin_IB_subgroup_setBlock2DAddressPayloadHeight")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::HEIGHT, false);
} else if (FN.consume_front("__builtin_IB_subgroup_setBlock2DAddressPayloadPitch")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::PITCH, false);
} else if (FN.consume_front("__builtin_IB_subgroup_setBlock2DAddressPayloadBlockX")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::BLOCKX, false);
} else if (FN.consume_front("__builtin_IB_subgroup_setBlock2DAddressPayloadBlockY")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::BLOCKY, false);
} else if (FN.consume_front("__builtin_IB_subgroup_addBlock2DAddressPayloadBlockX")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::BLOCKX, true);
} else if (FN.consume_front("__builtin_IB_subgroup_addBlock2DAddressPayloadBlockY")) {
lscCall = SetLSC2DBlockAddressPayloadField(CI, LSC2DBlockField::BLOCKY, true);
} else if (FN.consume_front(LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_READ_AP)) {
lscCall = CreateSubGroup2DBlockOperationAP(CI, FN, true);
} else if (FN.consume_front(LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_WRITE_AP)) {
lscCall = CreateSubGroup2DBlockOperationAP(CI, FN, false);
} else if (FN.consume_front(LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_READ))
{
lscCall = CreateSubGroup2DBlockOperation(CI, FN, true);
}
else if (FN.consume_front(LSCFuncsResolution::PREFIX_SUBGROUP_BLOCK_WRITE))
{
lscCall = CreateSubGroup2DBlockOperation(CI, FN, false);
//////////////
// atomics
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_ATOMIC)) {
bool isLocalMem = FN.find("_local_") != StringRef::npos;
lscCall = CreateLSCAtomicIntrinsicCallInst(isLocalMem);
//////////////
// misc stuff
} else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_FENCE_EVICT_TO_MEMORY)) {
// LSC fence
lscCall = CreateLSCFenceEvictToMemory();
}
else if (FN.startswith(LSCFuncsResolution::PREFIX_LSC_FENCE)) {
// LSC fence
lscCall = CreateLSCFenceIntrinsicCallInst();
} else {
// not an LSC message, bail silently
return;
}
// LSC is not supported/enabled
if (!m_pCtx->platform.isProductChildOf(IGFX_DG2)) {
IGC_ASSERT_MESSAGE(0, "LSC not supported on this platform");
reportError("LSC not supported on this platform");
return;
}
if (lscCall != nullptr) {
lscCall->setDebugLoc(CI.getDebugLoc());
CI.replaceAllUsesWith(lscCall);
CI.eraseFromParent();
m_changed = true;
}
}
Instruction* LSCFuncsResolution::CreateLSCLoadIntrinsicCallInst(
GenISAIntrinsic::ID op, bool isLocalMem)
{
auto typeInfo = decodeTypeInfoFromName();
if (hasError()) {
return nullptr;
}
Value* args[5] {
m_pCurrInst->getArgOperand(0), // base address
getImmediateElementOffset(1, typeInfo), // imm element offset
getConstantInt32(typeInfo.dataSize), // e.g. D32
getConstantInt32(typeInfo.vectorSize), // e.g. V4
isLocalMem ? // cache options (default value for SLM)
getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(2)
};
Type* OvldTys[2] {
m_pCurrInstFunc->getReturnType(),
args[0]->getType()
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), op, OvldTys);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSC2DBlockAddressPayload(CallInst& CI) {
Value* Base = CI.getArgOperand(0);
Value* Width = CI.getArgOperand(1);
Value* Height = CI.getArgOperand(2);
Value* Pitch = CI.getArgOperand(3);
Value* BlkX = CI.getArgOperand(4);
Value* BlkY = CI.getArgOperand(5);
Value* BlkWidth = CI.getArgOperand(6);
Value* BlkHeight = CI.getArgOperand(7);
Value* NumBlks = CI.getArgOperand(8);
if (!isa<ConstantInt>(BlkWidth) || !isa<ConstantInt>(BlkHeight) ||
!isa<ConstantInt>(NumBlks)) {
IGC_ASSERT_MESSAGE(0, "Block2D address payload: block_x, block_y,"
" and num of blocks must be constant!");
return nullptr;
}
Value* args[]{ Base, Width, Height, Pitch, BlkX,
BlkY, BlkWidth, BlkHeight, NumBlks };
Type* Tys[1] = { CI.getType() };
Function* Func = GenISAIntrinsic::getDeclaration(
CI.getModule(), GenISAIntrinsic::GenISA_LSC2DBlockCreateAddrPayload, Tys);
Instruction* I = CallInst::Create(Func, args, "Block2D_AddrPayload", &CI);
updateDebugLoc(&CI, I);
return I;
}
Instruction* LSCFuncsResolution::CopyLSC2DBlockAddressPayload(CallInst& CI) {
Value* args[]{ CI.getArgOperand(0) };
Function* Func = GenISAIntrinsic::getDeclaration(
CI.getModule(), GenISAIntrinsic::GenISA_LSC2DBlockCopyAddrPayload,
CI.getType());
Instruction* I = CallInst::Create(Func, args, "Block2D_AddrPayload", &CI);
updateDebugLoc(&CI, I);
return I;
}
Instruction *LSCFuncsResolution::SetLSC2DBlockAddressPayloadField(
CallInst &CI, LSC2DBlockField Field, bool IsAddend)
{
Value *args[4];
args[0] = CI.getArgOperand(0);
args[1] = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Field);
args[2] = CI.getArgOperand(1);
args[3] = ConstantInt::get(Type::getInt1Ty(CI.getContext()), IsAddend);
Type* tys[2] = { args[0]->getType(), args[2]->getType() };
Function* Func = GenISAIntrinsic::getDeclaration(
CI.getModule(), GenISAIntrinsic::GenISA_LSC2DBlockSetAddrPayloadField, tys);
Instruction *I = CallInst::Create(Func, args, "", &CI);
updateDebugLoc(&CI, I);
return I;
}
Instruction *LSCFuncsResolution::CreateSubGroup2DBlockOperationAP(
CallInst &CI, StringRef funcName, bool isRead)
{
const char *fname = funcName.data();
bool isPrefetch = funcName.consume_front("_prefetch");
uint32_t isTranspose = funcName.consume_front("_transpose") ? 1 : 0;
uint32_t isVnniTransform = funcName.consume_front("_transform") ? 1 : 0;
uint32_t elemSize = 0;
uint32_t blkWidth = 0;
uint32_t blkHeight = 0;
uint32_t numBlks = 0;
if (funcName.consume_front("_u8")) {
elemSize = 8;
} else if (funcName.consume_front("_u16")) {
elemSize = 16;
} else if (funcName.consume_front("_u32")) {
elemSize = 32;
} else if (funcName.consume_front("_u64")) {
elemSize = 64;
} else {
IGC_ASSERT_MESSAGE(0, "Invalid or missing element size in: %s\n", fname);
return nullptr;
}
if (funcName.consume_front("_m32")) {
blkHeight = 32;
} else if (funcName.consume_front("_m16")) {
blkHeight = 16;
} else if (funcName.consume_front("_m8")) {
blkHeight = 8;
} else if (funcName.consume_front("_m4")) {
blkHeight = 4;
} else if (funcName.consume_front("_m2")) {
blkHeight = 2;
} else if (funcName.consume_front("_m1")) {
blkHeight = 1;
} else {
std::stringstream ss;
ss << "Missing or unsupported m element in : " << fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0, "%s", ss.str().c_str());
return nullptr;
}
if (funcName.consume_front("k64")) {
blkWidth = 64;
} else if (funcName.consume_front("k32")) {
blkWidth = 32;
} else if (funcName.consume_front("k16")) {
blkWidth = 16;
} else if (funcName.consume_front("k8")) {
blkWidth = 8;
} else if (funcName.consume_front("k4")) {
blkWidth = 4;
} else if (funcName.consume_front("k2")) {
blkWidth = 2;
} else if (funcName.consume_front("k1")) {
blkWidth = 1;
} else {
std::stringstream ss;
ss << "Missing or unsupported k element in : " << fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0, "Unsupported k element in : %s\n", fname);
return nullptr;
}
if (funcName.consume_front("v1")) {
numBlks = 1;
} else if (funcName.consume_front("v2")) {
numBlks = 2;
} else if (funcName.consume_front("v4")) {
numBlks = 4;
} else {
std::stringstream ss;
ss << "Missing or unsupported v element in : " << fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0, "Unsupported v element in : %s\n", fname);
return nullptr;
}
if (!isTranspose && !isVnniTransform) {
uint32_t rowBytesPerBlk = ((elemSize / 8) * blkWidth);
if ((rowBytesPerBlk * numBlks) > 64 || rowBytesPerBlk < 4) {
std::stringstream ss;
ss << "width x numBlocks > 64 bytes: " << fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0, "width x numBlocks should be no "
"larger than 64 bytes : %s\n", fname);
return nullptr;
}
} else if (isTranspose && !isVnniTransform) {
bool isLegitW8 = false;
bool isValid64 = (elemSize == 64 && blkHeight == 8 &&
(blkWidth <= 4 || (blkWidth == 8 && isLegitW8)));
bool isValid32 = (elemSize == 32 && blkHeight <= 32 && blkWidth <= 8);
if (numBlks != 1 || !(isValid32 || isValid64)) {
std::stringstream ss;
ss << "Unsupported m/k/v transpose combination in: " << fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0,
"Unsupported m/k/v transpose combination in : %s\n", fname);
return nullptr;
}
} else if (!isTranspose && isVnniTransform) {
bool isValid8 = (elemSize == 8 && blkHeight >= 4 && blkWidth >= 4);
bool isValid16 = (elemSize == 16 && blkHeight >= 2 && blkWidth >= 2 &&
blkWidth <= 32);
if (!(isValid8 || isValid16)) {
std::stringstream ss;
ss << "Unsupported m/k/v transform combination in: " << fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(
0, "Unsupported m/k/v transform combination in : %s\n", fname);
return nullptr;
}
} else {
std::stringstream ss;
ss << "Transpose and transform are not allowed to be used together : "
<< fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0, "Transpose and transform are not allowed "
"to be used together: %s\n", fname);
return nullptr;
}
Value *AddrPayload = CI.getArgOperand(0);
Value *ImmX = CI.getArgOperand(1);
Value *ImmY = CI.getArgOperand(2);
Value *cacheArg = CI.getArgOperand(isRead ? 3 : 4);
if (!isa<ConstantInt>(cacheArg)) {
std::stringstream ss;
ss << "cacheopts must be an immediate constant : "
<< fname << "\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0,
"cacheopts must be an immediate constant: %s\n", fname);
return nullptr;
}
uint32_t cacheOptsArgNum = isRead ? 3 : 4;
Value* cacheOpts = getCacheControlOpts(cacheOptsArgNum);
LLVMContext &C = CI.getContext();
ConstantInt *eltVal = ConstantInt::get((Type::getInt32Ty(C)), elemSize);
ConstantInt *wVal = ConstantInt::get((Type::getInt32Ty(C)), blkWidth);
ConstantInt *hVal = ConstantInt::get((Type::getInt32Ty(C)), blkHeight);
ConstantInt *nblkVal = ConstantInt::get((Type::getInt32Ty(C)), numBlks);
ConstantInt *tranVal = ConstantInt::get((Type::getInt1Ty(C)), isTranspose);
ConstantInt *vnniVal = ConstantInt::get((Type::getInt1Ty(C)), isVnniTransform);
SmallVector<Value*, 16> args{AddrPayload, ImmX, ImmY, eltVal, wVal, hVal, nblkVal,
tranVal, vnniVal, cacheOpts, };
Function *Func = nullptr;
if (isRead) {
if (isPrefetch) {
Func = GenISAIntrinsic::getDeclaration(
CI.getCalledFunction()->getParent(),
GenISAIntrinsic::GenISA_LSC2DBlockPrefetchAddrPayload,
AddrPayload->getType());
}
else {
Type* tys[2] = { CI.getType(), AddrPayload->getType() };
Func = GenISAIntrinsic::getDeclaration(
CI.getCalledFunction()->getParent(),
GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload,
tys);
}
} else {
Value *storedVal = CI.getArgOperand(3);
args.push_back(storedVal);
Type* tys[2] = {AddrPayload->getType(), storedVal->getType() };
Func = GenISAIntrinsic::getDeclaration(
CI.getCalledFunction()->getParent(),
GenISAIntrinsic::GenISA_LSC2DBlockWriteAddrPayload, tys);
}
Instruction *callI = CallInst::Create(Func, args, "", &CI);
updateDebugLoc(&CI, callI);
// For verifying block dimension at the end of runOnFuncion.
m_lsc2dblock_readwrite.push_back(callI);
return callI;
}
// Verify the block shape from address payload matches one specified
// in read/write/prefetch builtin.
void LSCFuncsResolution::verifyBlock2DAddressPayload() {
if (m_lsc2dblock_readwrite.empty()) {
return;
}
// Given the following:
// (1) int* AP = LSC2DBlockCreateAddrPayload(....)
// ...
// (2) LSC2DBLockSetBlockXY(AP, ...)
// ...
// (3) x = LSC2DBlockReadAddrPayload(AP1, ...)
// this function verifies that block dimention used in read at (3) is the
// same as one created at (1) (This is user's responsibility).
//
// rootAPMap maps an AP to a root AP. For the above, it maps (2) to (1).
// (1) is called the root AP.
std::unordered_map<GenIntrinsicInst *, GenIntrinsicInst *> rootAPMap;
auto isAPUpdateInst = [](GenIntrinsicInst *aG) {
switch (aG->getIntrinsicID()) {
// No longer returns a value
// case GenISAIntrinsic::GenISA_LSC2DBlockSetAddrPayloadField:
//
// Copy does not change block dimention, so it is treated not as
// a creation for the purpose of this verification
case GenISAIntrinsic::GenISA_LSC2DBlockCopyAddrPayload:
return true;
default:
break;
}
return false;
};
auto isAPCreateInst = [](GenIntrinsicInst *aG) {
switch (aG->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_LSC2DBlockCreateAddrPayload:
return true;
default:
break;
}
return false;
};
auto isSameDimension = [](
GenIntrinsicInst* RootGII, GenIntrinsicInst* GII, bool isGIIRoot) {
const int w_no = isGIIRoot ? 6 : 4;
const int h_no = isGIIRoot ? 7 : 5;
const int b_no = isGIIRoot ? 8 : 6;
int width = (int)cast<ConstantInt>(GII->getArgOperand(w_no))->getZExtValue();
int height = (int)cast<ConstantInt>(GII->getArgOperand(h_no))->getZExtValue();
int numBlks = (int)cast<ConstantInt>(GII->getArgOperand(b_no))->getZExtValue();
int rt_width = (int)cast<ConstantInt>(RootGII->getArgOperand(6))->getZExtValue();
int rt_height = (int)cast<ConstantInt>(RootGII->getArgOperand(7))->getZExtValue();
int rt_numBlks = (int)cast<ConstantInt>(RootGII->getArgOperand(8))->getZExtValue();
return (height == rt_height && width == rt_width && numBlks == rt_numBlks);
};
for (auto V : m_lsc2dblock_readwrite) {
GenIntrinsicInst *GII = dyn_cast<GenIntrinsicInst>(V);
if (!GII)
continue; // safety check
auto GID = GII->getIntrinsicID();
if (GID != GenISAIntrinsic::GenISA_LSC2DBlockReadAddrPayload &&
GID != GenISAIntrinsic::GenISA_LSC2DBlockWriteAddrPayload &&
GID != GenISAIntrinsic::GenISA_LSC2DBlockPrefetchAddrPayload)
continue; // safety check
// worklist : list of AP defining insts
std::list<Value*> worklist;
Value* aAP = GII->getArgOperand(0);
worklist.push_back(aAP);
auto currII = worklist.begin();
GenIntrinsicInst *rootGII = nullptr;
for (; currII != worklist.end(); ++currII) {
Value* V = *currII;
if (GenIntrinsicInst* pGI = dyn_cast<GenIntrinsicInst>(V)) {
GenIntrinsicInst* thisRoot = nullptr;
auto II = rootAPMap.find(GII);
if (II != rootAPMap.end())
thisRoot = II->second;
else if (isAPCreateInst(pGI))
thisRoot = pGI;
if (thisRoot != nullptr) {
if (rootGII == nullptr) {
rootGII = thisRoot;
}
else if (rootGII != thisRoot &&
!isSameDimension(rootGII, thisRoot, true)) {
IGC_ASSERT_MESSAGE(0, "Block2D address payload: "
"addressPayload argument is defined by more than "
"one create builtins with different dimensions");
return;
}
continue;
}
if (isAPUpdateInst(pGI)) {
Value* tV = pGI->getArgOperand(0);
if (std::find(worklist.begin(), worklist.end(), tV) ==
worklist.end())
worklist.push_back(tV);
}
else {
IGC_ASSERT_MESSAGE(0,
"AddressPayload is created with incorrect builtin!");
return;
}
}
else if (PHINode* PHI = dyn_cast<PHINode>(V)) {
for (uint i = 0, e = PHI->getNumOperands(); i != e; ++i) {
Value* Src = PHI->getOperand(i);
if (std::find(worklist.begin(), worklist.end(), Src) ==
worklist.end()) {
worklist.push_back(Src);
}
}
}
else {
IGC_ASSERT_MESSAGE(0, "Block2D address payload: must be "
"created with creation builtin in the current function");
return;
}
}
if (rootGII == nullptr) {
IGC_ASSERT_MESSAGE(0, "Block2D address payload: not defined");
return;
}
for (auto V : worklist) {
GenIntrinsicInst* GII = dyn_cast<GenIntrinsicInst>(V);
if (!GII)
continue;
rootAPMap[GII] = rootGII;
}
if (!isSameDimension(rootGII, GII, false)) {
std::stringstream ss;
ss << "Block2D address payload: read/write builtins' "
<< "block dimention do not match address payload's\n";
reportError(ss.str().c_str());
IGC_ASSERT_MESSAGE(0, "Block2D address payload: read/write builtins' "
"block dimention do not match address payload's");
return;
}
}
}
Instruction* LSCFuncsResolution::CreateSubGroup2DBlockOperation(llvm::CallInst& CI, llvm::StringRef funcName, bool isRead)
{
IGC::IGCMD::MetaDataUtils* pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
IGC::IGCMD::FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(CI.getParent()->getParent());
unsigned int subGrpSize = funcInfoMD->getSubGroupSize()->getSIMDSize();
funcName.consume_front("_flat");
bool isPrefetch = funcName.consume_front("_prefetch");
bool hasCacheOpts = funcName.consume_front("_cacheopts") || isPrefetch;
uint32_t isTranspose = funcName.consume_front("_transpose") ? 1 : 0;
uint32_t isVnniTransform = funcName.consume_front("_transform") ? 1 : 0;
hasCacheOpts |= funcName.consume_front("_cacheopts");
uint32_t elemSize = 0;
if (funcName.consume_front("_u8"))
{
elemSize = 8;
}
else if (funcName.consume_front("_u16"))
{
elemSize = 16;
}
else if (funcName.consume_front("_u32"))
{
elemSize = 32;
}
else if (funcName.consume_front("_u64"))
{
elemSize = 64;
}
if (elemSize == 0)
{
IGC_ASSERT_MESSAGE(0, "Invalid element size settings for subgroup_block_read/write.");
return nullptr;
}
// Optional number of elements per work item. If not present, the value is
// assumed to be equal to dimension M. The actual value is not needed here;
// only used to differentiate builtins.
if (funcName.consume_front("_wi"))
{
funcName = funcName.drop_until([](char c) { return c == '_' || c == '\0'; });
}
uint32_t tileWidth = 0;
uint32_t tileHeight = 0;
uint32_t numBlocksV = 2;
if (!isTranspose && !isVnniTransform)
{
// 2x ATile Block Read
// __builtin_IB_subgroup_block_read_flat_u8_m1k32v2
// __builtin_IB_subgroup_block_read_flat_u8_m2k32v2
// __builtin_IB_subgroup_block_read_flat_u8_m4k32v2
// __builtin_IB_subgroup_block_read_flat_u8_m8k32v2
// __builtin_IB_subgroup_block_read_flat_u16_m1k16v2
// __builtin_IB_subgroup_block_read_flat_u16_m2k16v2
// __builtin_IB_subgroup_block_read_flat_u16_m4k16v2
// __builtin_IB_subgroup_block_read_flat_u16_m8k16v2
if (funcName.consume_front("_m32"))
{
tileHeight = 32;
}
else if (funcName.consume_front("_m16"))
{
tileHeight = 16;
}
else if (funcName.consume_front("_m8"))
{
tileHeight = 8;
}
else if (funcName.consume_front("_m4"))
{
tileHeight = 4;
}
else if (funcName.consume_front("_m2"))
{
tileHeight = 2;
}
else if (funcName.consume_front("_m1"))
{
tileHeight = 1;
}
else
{
IGC_ASSERT_MESSAGE(0, "Unrecognized m element in __builtin_IB_subgroup_block_read/write.");
return nullptr;
}
if (funcName.consume_front("k64"))
{
tileWidth = 64;
}
else if (funcName.consume_front("k32"))
{
tileWidth = 32;
}
else if (funcName.consume_front("k16"))
{
tileWidth = 16;
}
else if (funcName.consume_front("k8"))
{
tileWidth = 8;
}
else
{
IGC_ASSERT_MESSAGE(0, "Unrecognized k element in __builtin_IB_subgroup_block_read/write.");
return nullptr;
}
if (funcName.consume_front("v1"))
{
numBlocksV = 1;
}
else if (isRead && funcName.consume_front("v4"))
{
numBlocksV = 4;
}
else
{
IGC_ASSERT_MESSAGE(funcName.consume_front("v2"), "Unrecognized v element in __builtin_IB_subgroup_block_read/write.");
}
}
else if (isTranspose && !isVnniTransform)
{
if (elemSize == 64)
{
numBlocksV = 1;
tileHeight = subGrpSize;
funcName.consume_front("_");
if (funcName.consume_front("k4"))
{
// __builtin_IB_subgroup_block_read_flat_transpose_u64_k4
tileWidth = 4;
}
else
{
IGC_ASSERT_MESSAGE(0, "Transpose with 64 bit element size only supports width 4.");
return nullptr;
}
}
else if (elemSize == 32)
{
// isTranspose, dword elements
// __builtin_IB_subgroup_block_read_flat_transpose_u32_k8
// can be used as equivalent of:
// transpose_transform_u8_k32
// transpose_transform_u16_k16
numBlocksV = 1;
tileHeight = subGrpSize;
if (funcName.consume_front("_m32"))
{
// not tied to subgroup size,
// each SIMD lane gets two rows in SIMD16
tileHeight = 32;
}
tileWidth = 8;
funcName.consume_front("_");
if (funcName.consume_front("k8"))
{
tileWidth = 8;
}
else if (funcName.consume_front("k4"))
{
tileWidth = 4;
}
else if (funcName.consume_front("k2"))
{
tileWidth = 2;
}
else
{
IGC_ASSERT_MESSAGE(0, "Transpose with 32 bit element size only supports width 8.");
return nullptr;
}
}
else
{
IGC_ASSERT_MESSAGE(0, "Transpose only supports elemSize 32.");
return nullptr;
}
}
else if (isVnniTransform && !isTranspose)
{
numBlocksV = 1;
if (elemSize == 8)
{
bool is32Height = funcName.consume_front("_k32");
IGC_ASSERT_MESSAGE(is32Height, "Only k32 is supported for 8 bit element size, at the moment.");
// __builtin_IB_subgroup_block_read_flat_transform_u8_k32v2
if (funcName.consume_front("v2"))
{
numBlocksV = 2;
}
// __builtin_IB_subgroup_block_read_flat_transform_u8_k32v4
else if(funcName.consume_front("v4"))
{
numBlocksV = 4;
}
// __builtin_IB_subgroup_block_read_flat_transform_u8_k32
tileHeight = 32;
}
else
{
// __builtin_IB_subgroup_block_read_flat_transform_u16_k16
if (funcName.consume_front("_k16"))
{
tileHeight = 16;
}
// __builtin_IB_subgroup_block_read_flat_transform_u16_k32
else if (funcName.consume_front("_k32"))
{
tileHeight = 32;
}
else
{
IGC_ASSERT_MESSAGE(0, "Unrecognized k element in __builtin_IB_subgroup_block_read/write.");
return nullptr;
}
// __builtin_IB_subgroup_block_read_flat_transform_u16_k16v2
// __builtin_IB_subgroup_block_read_flat_transform_u16_k32v2
if (funcName.consume_front("v2"))
{
numBlocksV = 2;
}
}
tileWidth = subGrpSize;
}
else
{
IGC_ASSERT_MESSAGE(0, "Transpose and transform should not be used together.");
return nullptr;
}
if (tileWidth == 0 || tileHeight == 0)
{
if (subGrpSize == 0)
{
IGC_ASSERT_MESSAGE(0, "Invalid tile width / tile height settings for subgroup_block_read because intel_reqd_sub_group_size(16) is not set in the kernel!");
}
else
{
IGC_ASSERT_MESSAGE(0, "Invalid tile width / tile height settings for subgroup_block_read.");
}
return nullptr;
}
if (isTranspose && isVnniTransform)
{
IGC_ASSERT_MESSAGE(0, "Cannot use both hw transpose and hw vnni at the same time for subgroup_block_read.");
return nullptr;
}
Value* imageResBaseoffset = CI.getArgOperand(0);
Value* imageResWidth = CI.getArgOperand(1);
Value* imageResHeight = CI.getArgOperand(2);
Value* imageResPitch = CI.getArgOperand(3);
SmallVector<Value*, 14> args;
args.push_back(imageResBaseoffset);
args.push_back(imageResWidth);
args.push_back(imageResHeight);
args.push_back(imageResPitch);
LLVMContext& C = CI.getCalledFunction()->getContext();
ConstantInt* constIndex = ConstantInt::get((Type::getInt32Ty(C)), 0);
Instruction* xOffset = ExtractElementInst::Create(CI.getArgOperand(4), constIndex, "xOffset", &CI);
ConstantInt* constIndex2 = ConstantInt::get((Type::getInt32Ty(C)), 1);
Instruction* yOffset = ExtractElementInst::Create(CI.getArgOperand(4), constIndex2, "yOffset", &CI);
updateDebugLoc(&CI, xOffset);
updateDebugLoc(&CI, yOffset);
args.push_back(xOffset);
args.push_back(yOffset);
ConstantInt* elemSizeConstant = ConstantInt::get((Type::getInt32Ty(C)), elemSize);
ConstantInt* tileWidthConstant = ConstantInt::get((Type::getInt32Ty(C)), tileWidth);
ConstantInt* tileHeightConstant = ConstantInt::get((Type::getInt32Ty(C)), tileHeight);
ConstantInt* numBlocksVConstant = ConstantInt::get((Type::getInt32Ty(C)), numBlocksV);
ConstantInt* isTransposeConstant = ConstantInt::get((Type::getInt1Ty(C)), isTranspose);
ConstantInt* isVnniTransformConstant = ConstantInt::get((Type::getInt1Ty(C)), isVnniTransform);
args.push_back(elemSizeConstant);
args.push_back(tileWidthConstant);
args.push_back(tileHeightConstant);
args.push_back(numBlocksVConstant);
args.push_back(isTransposeConstant);
args.push_back(isVnniTransformConstant);
if (hasCacheOpts)
{
unsigned cacheOptsId = isRead ? 5 : 6;
args.push_back(getCacheControlOpts(cacheOptsId));
}
else
{
args.push_back(getConstantInt32(LSC_L1DEF_L3DEF));
}
Function* BlockFunc = nullptr;
if (isRead)
{
BlockFunc = GenISAIntrinsic::getDeclaration(
CI.getCalledFunction()->getParent(),
isPrefetch ? GenISAIntrinsic::GenISA_LSC2DBlockPrefetch : GenISAIntrinsic::GenISA_LSC2DBlockRead,
CI.getCalledFunction()->getReturnType());
}
else
{
Value *srcVal = CI.getArgOperand(5);
args.push_back(srcVal);
BlockFunc = GenISAIntrinsic::getDeclaration(
CI.getCalledFunction()->getParent(),
GenISAIntrinsic::GenISA_LSC2DBlockWrite,
srcVal->getType());
}
Instruction* BlockOp = CallInst::Create(BlockFunc, args, "", &CI);
return BlockOp;
}
Instruction* LSCFuncsResolution::CreateLSCLoadCmaskIntrinsicCallInst(
bool isLocalMem)
{
auto typeInfo = decodeTypeInfoFromName();
if (hasError()) {
return nullptr;
}
Value* args[5]{
m_pCurrInst->getArgOperand(0), // base address
getImmediateElementOffset(1, typeInfo), // imm element offset
getConstantInt32(typeInfo.dataSize), // e.g. D32
getConstantInt32(typeInfo.vectorSize), // e.g. V4
isLocalMem ? // cache options (default value for SLM)
getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(2)
};
Type* OvldTys[2]{
m_pCurrInstFunc->getReturnType(),
args[0]->getType()
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), GenISAIntrinsic::GenISA_LSCLoadCmask, OvldTys);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSCSimdBlockPrefetchIntrinsicCallInst(StringRef funcName)
{
Regex pattern1DBlockRead("(uchar|ushort|uint|ulong)(2|4|8|16)?");
SmallVector<StringRef, 3> matches;
bool matched = pattern1DBlockRead.match(funcName, &matches);
IGC_ASSERT_MESSAGE(matched, "Unsupported simd block prefetch!");
if (!matched) return nullptr;
StringRef elementTypeName = matches[1];
uint32_t numElements = matches[2] == "" ? 1 : std::stoi(matches[2].str());
LscTypeInfo typeInfo{};
if (elementTypeName.equals("uchar"))
{
typeInfo.dataSize = LSC_DATA_SIZE_8b;
}
else if (elementTypeName.equals("ushort"))
{
typeInfo.dataSize = LSC_DATA_SIZE_16b;
}
else if (elementTypeName.equals("uint"))
{
typeInfo.dataSize = LSC_DATA_SIZE_32b;
}
else if (elementTypeName.equals("ulong"))
{
typeInfo.dataSize = LSC_DATA_SIZE_64b;
}
switch (numElements)
{
case 1:
typeInfo.vectorSize = LSC_DATA_ELEMS_1;
break;
case 2:
typeInfo.vectorSize = LSC_DATA_ELEMS_2;
break;
case 4:
typeInfo.vectorSize = LSC_DATA_ELEMS_4;
break;
case 8:
typeInfo.vectorSize = LSC_DATA_ELEMS_8;
break;
case 16:
typeInfo.vectorSize = LSC_DATA_ELEMS_16;
IGC_ASSERT_MESSAGE(
typeInfo.dataSize == LSC_DATA_SIZE_8b || typeInfo.dataSize == LSC_DATA_SIZE_16b,
"16-elements vector size is only supported for uchar and ushort!");
break;
default:
IGC_ASSERT_MESSAGE(false, "Unsupported simd block prefetch variant!");
break;
}
Value* args[4]{
m_pCurrInst->getArgOperand(0), // base address
getConstantInt32(typeInfo.dataSize),
getConstantInt32(typeInfo.vectorSize),
m_pCurrInst->getArgOperand(1) // cache controls
};
Type* OvldTys[1]{
args[0]->getType(), // only one overloaded type
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), GenISAIntrinsic::GenISA_LSCSimdBlockPrefetch, OvldTys);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSCLoadStatusPreftchIntrinsicCallInst(
GenISAIntrinsic::ID prefetchOp)
{
auto typeInfo = decodeTypeInfoFromName();
if (hasError()) {
return nullptr;
}
// warning this is trusting the user's typing to be correct
// we end up using args[i]->getType()
Value* args[5] {
m_pCurrInst->getArgOperand(0), // base address
getImmediateElementOffset(1, typeInfo), // element offset
getConstantInt32(typeInfo.dataSize),
getConstantInt32(typeInfo.vectorSize),
getCacheControlOpts(2) // cache options
};
Type* OvldTys[1] {
args[0]->getType(), // only one overloaded type
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), prefetchOp, OvldTys);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
if (prefetchOp == GenISAIntrinsic::GenISA_LSCLoadStatus) {
// the intrinic treats bool as i1, but OCL treats bools as i8
Type* i8 = Type::getInt8Ty(m_pCurrInst->getContext());
lscCall =
BitCastInst::CreateZExtOrBitCast(lscCall, i8, "", m_pCurrInst);
}
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSCStoreIntrinsicCallInst(
GenISAIntrinsic::ID op, bool isLocalMem)
{
auto typeInfo = decodeTypeInfoFromName();
if (hasError()) {
return nullptr;
}
Value* args[6] {
m_pCurrInst->getArgOperand(0), // memory address where the data is stored to
getImmediateElementOffset(1, typeInfo), // LSC immediate offset
m_pCurrInst->getArgOperand(2), // data to store
getConstantInt32(typeInfo.dataSize),
getConstantInt32(typeInfo.vectorSize),
isLocalMem ? // cache options (must be default for local)
getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(3)
};
Type* OvldTys[2] {
args[0]->getType(), // memory addr
args[2]->getType(), // data to store
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), op, OvldTys);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSCStoreCmaskIntrinsicCallInst(
bool isLocalMem)
{
auto typeInfo = decodeTypeInfoFromName();
if (hasError()) {
return nullptr;
}
Value* args[6]{
m_pCurrInst->getArgOperand(0), // memory address where the data is stored to
getImmediateElementOffset(1, typeInfo), // LSC immediate offset
m_pCurrInst->getArgOperand(2), // data to store
getConstantInt32(typeInfo.dataSize),
getConstantInt32(typeInfo.vectorSize),
isLocalMem ? // cache options (must be default for local)
getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(3)
};
Type* OvldTys[2]{
args[0]->getType(), // memory addr
args[2]->getType(), // data to store
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), GenISAIntrinsic::GenISA_LSCStoreCmask, OvldTys);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSCFenceIntrinsicCallInst() {
LSC_SFID memPort = decodeSfidFromName();
auto context = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
if (hasError()) {
return nullptr;
}
Value* args[3] {
getConstantInt32(memPort), // immediate sfid
memPort == LSC_SLM ?
getConstantInt32(LSC_SCOPE_GROUP) : // force SLM to use thread-group scope
getImmediateEnum(0, LSC_SCOPE_GROUP, LSC_SCOPE_SYSACQ), // immediate scope of the fence
memPort == LSC_SLM ||
(memPort == LSC_TGM &&
context->platform.getPlatformInfo().eRenderCoreFamily == IGFX_XE_HPC_CORE) ?
getConstantInt32(LSC_FENCE_OP_NONE) :
getImmediateEnum(1, LSC_FENCE_OP_NONE, LSC_FENCE_OP_FLUSHL3) // immediate flush type
};
auto scope = dyn_cast<ConstantInt>(args[1]);
if (scope && (scope->getZExtValue() == LSC_SCOPE_SYSACQ || scope->getZExtValue() == LSC_SCOPE_SYSREL))
{
if (!context->platform.supportSystemFence())
{
reportError("platform does not support system fence");
}
}
Function *lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), GenISAIntrinsic::GenISA_LSCFence, None);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
// Resolve __builtin_IB_lsc_fence_evict_to_memory() builtin.
// For XE platforms it is represented by the sequence of
// evict followed by lush_l3 calls.
Instruction* LSCFuncsResolution::CreateLSCFenceEvictToMemory()
{
auto context = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
if (hasError())
{
return nullptr;
}
Value* args[3]
{
getConstantInt32(LSC_UGM), // immediate sfid
getConstantInt32(LSC_SCOPE_GPU), // immediate scope of the fence
(context->platform.getPlatformInfo().eRenderCoreFamily == IGFX_XE_HPC_CORE) ?
getConstantInt32(LSC_FENCE_OP_NONE) :
getConstantInt32(LSC_FENCE_OP_EVICT) // immediate flush type
};
Function* lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), GenISAIntrinsic::GenISA_LSCFence, None);
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
if (context->platform.getPlatformInfo().eRenderCoreFamily == IGFX_XE_HPG_CORE)
{
args[2] = getConstantInt32(LSC_FENCE_OP_FLUSHL3);
lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
}
// It does not really matter which lscCall is returned, as
// that pointer is used to call ReplaceAllUsesWith,
// but these two instructions do not have any users.
return lscCall;
}
Instruction* LSCFuncsResolution::CreateLSCAtomicIntrinsicCallInst(
bool isLocalMem)
{
AtomicOp atomicOp = decodeAtomicOpFromName();
if (hasError()) {
return nullptr;
}
bool isFP64Atomic =
atomicOp == EATOMIC_FADD64 || atomicOp == EATOMIC_FSUB64;
bool isFP32Atomic =
atomicOp == EATOMIC_FCMPWR ||
atomicOp == EATOMIC_FADD || atomicOp == EATOMIC_FSUB ||
atomicOp == EATOMIC_FMIN || atomicOp == EATOMIC_FMAX;
bool hasSrc1 =
atomicOp != EATOMIC_INC && atomicOp != EATOMIC_DEC &&
atomicOp != EATOMIC_LOAD;
bool hasSrc2 =
atomicOp == EATOMIC_FCMPWR || atomicOp == EATOMIC_CMPXCHG;
Type* retTy = m_pCurrInstFunc->getReturnType();
//
// For unary and binary atomics some the extra atomic operands need to
// be set to some default value (we use zero); but we have to carefully
// pick a value with a type that matches the function overload
auto getZeroArg =
[&]() -> Constant * {
int bitSize = retTy->getScalarSizeInBits();
if (isFP32Atomic) {
return ConstantFP::get(
Type::getFloatTy(m_pCurrInst->getContext()), 0.0);
} else if (isFP64Atomic) {
return ConstantFP::get(
Type::getDoubleTy(m_pCurrInst->getContext()), 0.0);
} else if (bitSize == 64) {
return ConstantInt::get(
Type::getInt64Ty(m_pCurrInst->getContext()), 0, true);
} else {
return getConstantInt32(0);
}
};
//
Value *atomArg1 =
hasSrc1 ? m_pCurrInst->getArgOperand(2) : getZeroArg();
//
Value *atomArg2 =
hasSrc2 ? m_pCurrInst->getArgOperand(3) : getZeroArg();
//
const int ccOpndIx = hasSrc2 ? 4 : hasSrc1 ? 3 : 2;
Value* args[6] {
m_pCurrInst->getArgOperand(0), // memory ptr
m_pCurrInst->getArgOperand(1), // immediate element offset
atomArg1, // value or cmp [cmpxchg] or zero if unused
atomArg2, // value [cmpxchg] or zero if unused
getConstantInt32(atomicOp), // atomic op
isLocalMem ? // cache options (default for local)
getConstantInt32(LSC_L1DEF_L3DEF) : getCacheControlOpts(ccOpndIx, true)
};
GenISAIntrinsic::ID id =
isFP64Atomic ? GenISAIntrinsic::GenISA_LSCAtomicFP64 :
isFP32Atomic ? GenISAIntrinsic::GenISA_LSCAtomicFP32 :
GenISAIntrinsic::GenISA_LSCAtomicInts;
Function *lscFunc = nullptr;
if (!isFP32Atomic && !isFP64Atomic) {
Type* IntTysOvld [4] {
retTy, // anyint (return type)
args[0]->getType(), // anyptr
retTy, // [src1] anyint
retTy, // [src2] anyint
};
lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), id, IntTysOvld);
} else {
Type* FltTysOvld [1] {
args[0]->getType(), // anyptr
};
lscFunc = GenISAIntrinsic::getDeclaration(
m_pCurrInstFunc->getParent(), id, FltTysOvld);
}
Instruction* lscCall = CallInst::Create(lscFunc, args, "", m_pCurrInst);
return lscCall;
}
LscTypeInfo LSCFuncsResolution::decodeTypeInfoFromName()
{
StringRef FN = m_pCurrInstFunc->getName();
LscTypeInfo ti{LSC_DATA_SIZE_8b, LSC_DATA_ELEMS_1, 1};
// first match:
// ..load_{global,local,block_global}_uchar_to_uint(...)
// ..store_{global,local,block_global}_uchar_from_uint(...)
// bail early if we get a hit:
// prefetch/load_status will show up as non-conversion types since
// they don't return data
// everything else is suffixed by the type and maybe a vector integer
if ((FN.endswith("uchar_to_uint")) ||
(FN.endswith("uchar_from_uint")))
{
ti.dataSize = LSC_DATA_SIZE_8c32b;
ti.sizeOfType = 1;
return ti;
}
else if (
FN.endswith("ushort_to_uint") ||
FN.endswith("ushort_from_uint"))
{
ti.dataSize = LSC_DATA_SIZE_16c32b;
ti.sizeOfType = 2;
return ti;
}
// otherwise fall through and try the regular (non-conversion) types
// returns true if we matched the string (even if error)
// false if mismatched
auto matchTypeAndVector = [&] (
const char *name,
LSC_DATA_SIZE dsz,
int sizeofType)
{
// error already reported
if (hasError())
return false;
// Given "__builtin_IB_lsc_load_global_uint2", find "uint2"
auto typePos = FN.find(name);
if (typePos == StringRef::npos) {
return false;
}
// data type matches
ti.dataSize = dsz;
ti.sizeOfType = sizeofType;
// "...uchar16" -> "16"
size_t vecOff = typePos + strlen(name);
// if the function name suffix exactly matches (no string allocation)
auto vectorSuffixMatches = [&](const char *pat) {
if (vecOff + strlen(pat) != FN.size())
return false; // suffix is not equal length
// equal length and prefix ==> exact match
return FN.find(pat, vecOff) == vecOff;
};
// match the suffix exactly, reject garbage like
// "uint27" (has prefix "uint2")
if (vectorSuffixMatches("")) {
ti.vectorSize = LSC_DATA_ELEMS_1;
} else if (vectorSuffixMatches("2")) {
ti.vectorSize = LSC_DATA_ELEMS_2;
ti.sizeOfType *= 2;
} else if (vectorSuffixMatches("3") || vectorSuffixMatches("4")) {
if (vectorSuffixMatches("3")) {
ti.vectorSize = LSC_DATA_ELEMS_3;
ti.sizeOfType *= 3;
} else {
ti.vectorSize = LSC_DATA_ELEMS_4;
ti.sizeOfType *= 4;
}
} else if (vectorSuffixMatches("8")) {
ti.vectorSize = LSC_DATA_ELEMS_8;
ti.sizeOfType *= 8;
} else if (vectorSuffixMatches("16")) {
ti.vectorSize = LSC_DATA_ELEMS_16;
ti.sizeOfType *= 16;
// we only support up to OpenCL vector length 8
reportError("invalid vector size for data type");
return true; // bail to avoid later confusing errors
} else if (vectorSuffixMatches("32")) {
ti.vectorSize = LSC_DATA_ELEMS_32;
ti.sizeOfType *= 32;
//
// we only support up to OpenCL vector length 8
reportError("invalid vector size for data type");
return true; // bail to avoid later confusing errors
} else if (vectorSuffixMatches("64")) {
ti.vectorSize = LSC_DATA_ELEMS_64;
ti.sizeOfType *= 64;
//
// we only support up to OpenCL vector length 8
reportError("invalid vector size for data type");
return true; // bail to avoid later confusing errors
} else {
// totally bogus vector size
reportError("invalid vector size");
return true; // bail to avoid later confusing errors
}
// Some sanity checking.
// The legal prototypes provided in the builtin file constrain
// most mischief, but remember anyone can write a prototype.
if (ti.dataSize == LSC_DATA_SIZE_8b || ti.dataSize == LSC_DATA_SIZE_16b) {
bool isPrefetchOrLoadStatus =
FN.startswith(LSCFuncsResolution::PREFIX_LSC_LOAD_status) ||
FN.startswith(LSCFuncsResolution::PREFIX_LSC_PREFETCH);
if (!isPrefetchOrLoadStatus) {
// D8 and D16 aren't supported yet in normal (non-prefetch)
// loads and stores
reportError("8b and 16b not supported");
return true;
} else {
if (ti.vectorSize != LSC_DATA_ELEMS_1) {
// because we use widening types to make this work
reportError("8b and 16b with vector not supported");
return true;
}
// use widening message
// no data will be returned for prefetch and status will
// broadcast bits of a single DW
ti.dataSize = ti.dataSize == LSC_DATA_SIZE_8b ?
LSC_DATA_SIZE_8c32b : LSC_DATA_SIZE_16c32b;
ti.sizeOfType = 4;
}
}
// even if errors were reported above, if we get here, it's a match
// and we'll stop trying other types
return true;
};
// N.b. certain data size and vector type may or may not exist on given
// platforms, but we rely on the builtin proto-types to police that.
// (We parse it successfully.)
if (!matchTypeAndVector("uchar", LSC_DATA_SIZE_8b, 1) &&
!matchTypeAndVector("ushort", LSC_DATA_SIZE_16b, 2) &&
!matchTypeAndVector("uint", LSC_DATA_SIZE_32b, 4) &&
!matchTypeAndVector("ulong", LSC_DATA_SIZE_64b, 8))
{
reportError("invalid type for lsc operation");
}
return ti;
}
AtomicOp LSCFuncsResolution::decodeAtomicOpFromName()
{
static const uint32_t numSymbols = 42;
static const SymbolMapping symbols[numSymbols] {
// FP 64 (local not suported)
{"_add_global_double", EATOMIC_FADD64},
{"_sub_global_double", EATOMIC_FSUB64},
// FP 32
{"_add_global_float", EATOMIC_FADD},
{"_add_local_float", EATOMIC_FADD},
{"_sub_global_float", EATOMIC_FSUB},
{"_sub_local_float", EATOMIC_FSUB},
{"_min_global_float", EATOMIC_FMIN},
{"_min_local_float", EATOMIC_FMIN},
{"_max_global_float", EATOMIC_FMAX},
{"_max_local_float", EATOMIC_FMAX},
{"_cmpxchg_global_float", EATOMIC_FCMPWR},
{"_cmpxchg_local_float", EATOMIC_FCMPWR},
/////////////////////////////////////////////////////
// I16,I32,I64
{"_add_", EATOMIC_IADD},
{"_sub_", EATOMIC_SUB},
// signed min/max
{"_min_global_short", EATOMIC_MIN},
{"_min_local_short", EATOMIC_MIN},
{"_min_global_int", EATOMIC_MIN},
{"_min_local_int", EATOMIC_MIN},
{"_min_global_long", EATOMIC_MIN},
// {"min_local_long", EATOMIC_MIN}, (global only)
{"_max_global_short", EATOMIC_MAX},
{"_max_local_short", EATOMIC_MAX},
{"_max_global_int", EATOMIC_MAX},
{"_max_local_int", EATOMIC_MAX},
{"_max_global_long", EATOMIC_MAX},
// {"max_local_long", EATOMIC_MAX}, (global only)
// unsigned min/max
{"_min_global_ushort", EATOMIC_UMIN},
{"_min_local_ushort", EATOMIC_UMIN},
{"_min_global_uint", EATOMIC_UMIN},
{"_min_local_uint", EATOMIC_UMIN},
{"_min_global_ulong", EATOMIC_UMIN},
// {"min_local_ulong", EATOMIC_UMIN}, (global only)
{"_max_global_ushort", EATOMIC_UMAX},
{"_max_local_ushort", EATOMIC_UMAX},
{"_max_global_uint", EATOMIC_UMAX},
{"_max_local_uint", EATOMIC_UMAX},
{"_max_global_ulong", EATOMIC_UMAX},
// {"max_local_ulong", EATOMIC_UMAX}, (global only)
//
// integer compare and exchange
{"_cmpxchg_", EATOMIC_CMPXCHG},
// inc/dec
{"_inc_", EATOMIC_INC},
{"_dec_", EATOMIC_DEC},
// and/xor/or
{"_and_", EATOMIC_AND},
{"_xor_", EATOMIC_XOR},
{"_or_", EATOMIC_OR},
// load/store
{"_load_", EATOMIC_LOAD},
{"_store_", EATOMIC_STORE},
};
// maybe a better way to do this, but the compiler seems to need an
// explicit size for inference below.
static_assert(sizeof(symbols)/sizeof(symbols[0]) == numSymbols);
AtomicOp atomicOp = EATOMIC_IADD;
StringRef FN = m_pCurrInstFunc->getName();
if (!findFirstInfixMapping<AtomicOp, numSymbols>(FN, symbols, atomicOp)) {
reportError("invalid lsc atomic operation");
}
return atomicOp;
}
LSC_SFID LSCFuncsResolution::decodeSfidFromName()
{
static const SymbolMapping symbols[4] {
{"_global_untyped_cross_tile", LSC_UGML},
{"_global_untyped", LSC_UGM},
{"_global_typed", LSC_TGM},
{"_local", LSC_SLM},
};
// c.f. reasoning in decodeAtomicOpFromName
static_assert(sizeof(symbols)/sizeof(symbols[0]) == 4);
StringRef FN = m_pCurrInstFunc->getName();
LSC_SFID memPort = LSC_UGM;
if (!findFirstInfixMapping<LSC_SFID,4>(FN, symbols, memPort)) {
reportError("invalid lsc SFID");
}
return memPort;
}
Constant *LSCFuncsResolution::getImmediateEnum(int i, int lo, int hi)
{
Value *v = m_pCurrInst->getOperand(i);
if (ConstantInt *ci = dyn_cast<ConstantInt>(v)) {
return ci;
} else {
std::stringstream ss;
ss << "operand " << i << " must be immediate";
reportError(ss.str().c_str());
return getConstantInt32(lo); // use lo for the error value
}
}
Constant *LSCFuncsResolution::getImmediateElementOffset(
int i, LscTypeInfo ti)
{
Value *v = m_pCurrInst->getOperand(i);
if (ConstantInt *ci = dyn_cast<ConstantInt>(v)) {
int64_t scaledValue = ci->getSExtValue() * ti.sizeOfType;
if (scaledValue < std::numeric_limits<int32_t>::min() ||
scaledValue > std::numeric_limits<int32_t>::max())
{
// The vISA LSC API will emulate large offsets,
// but is only int width
reportError("scaled element offset too large");
return getConstantInt32(0);
}
return getConstantInt32((int32_t)scaledValue);
} else {
reportError("element offset operand must be immediate");
return getConstantInt32(0);
}
}
Constant *LSCFuncsResolution::getCacheControlOpts(int i, bool isAtomic)
{
Constant *c = getImmediateEnum(i, LSC_L1DEF_L3DEF, LSC_L1IAR_WB_L3C_WB);
if (isAtomic)
{
ConstantInt* ci = cast<ConstantInt>(c);
switch (ci->getZExtValue())
{
case LSC_L1DEF_L3DEF:
case LSC_L1UC_L3UC:
case LSC_L1UC_L3C_WB:
break;
default:
reportError("atomic must not use caching on L1");
c = getConstantInt32(LSC_L1DEF_L3DEF);
}
}
return c;
}
void LSCFuncsResolution::reportError(const char *what) {
if (hasError())
m_ErrorMsg << "\n";
const DebugLoc &loc = m_pCurrInst->getDebugLoc();
if (loc)
m_ErrorMsg << "line " << loc.getLine() << ": ";
m_ErrorMsg << m_pCurrInstFunc->getName().str() << ": " << what;
}
FunctionPass* IGC::createLSCFuncsResolutionPass()
{
return new LSCFuncsResolution();
}
|