File: ShrinkArrayAlloca.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (495 lines) | stat: -rw-r--r-- 17,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvm/IR/InstIterator.h"
#include "common/LLVMWarningsPop.hpp"

#include "common/IGCIRBuilder.h"
#include "common/Types.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"
#include "ShrinkArrayAlloca.h"

#define PASS_FLAG "shrink-array-alloca"
#define PASS_DESCRIPTION "Detect and remove unused elements of array allocas"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false

namespace IGC
{
using namespace llvm;
IGC_INITIALIZE_PASS_BEGIN(ShrinkArrayAllocaPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(ShrinkArrayAllocaPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char ShrinkArrayAllocaPass::ID = 0;

////////////////////////////////////////////////////////////////////////////////
ShrinkArrayAllocaPass::ShrinkArrayAllocaPass() :
    FunctionPass(ShrinkArrayAllocaPass::ID)
{
    initializeShrinkArrayAllocaPassPass(
        *llvm::PassRegistry::getPassRegistry());
}

////////////////////////////////////////////////////////////////////////////////
llvm::StringRef ShrinkArrayAllocaPass::getPassName() const
{
    return "ShrinkArrayAllocaPass";
}

////////////////////////////////////////////////////////////////////////////////
// @brief Returns true if some but not all elements in the input vector are set.
inline bool PariallyUsed(const SmallVector<bool, 4>& used)
{
    size_t numUsed = std::count(used.begin(), used.end(), true);
    return (numUsed > 0 && numUsed < used.size());
}

////////////////////////////////////////////////////////////////////////////////
// @brief Returns the number of elements set to "true" in the input vector.
inline uint32_t NumUsed(const SmallVector<bool, 4>& used)
{
    uint32_t numUsed = 0;
    std::for_each(
        used.begin(),
        used.end(),
        [&numUsed](const bool n) { if (n) ++numUsed; });
    return numUsed;
}

////////////////////////////////////////////////////////////////////////////////
/// @brief Extracts a scalar type from the input type. The input type may be
/// a scalar or vector or a pointer to a scalar or vector.
inline Type* GetScalarType(Type* type)
{
    if (type->isPointerTy())
    {
        type = IGCLLVM::getNonOpaquePtrEltTy(type);
    }
    return type->getScalarType();
}

////////////////////////////////////////////////////////////////////////////////
// @brief Returns the number of elements in the vector type. The input type may
// be a scalar or vector or a pointer to a scalar or vector. If the input type
// is a scalar or a pointer to a scalar the function returns 1.
inline uint32_t GetNumElements(Type* type)
{
    if (type->isPointerTy())
    {
        type = IGCLLVM::getNonOpaquePtrEltTy(type);
    }
    IGC_ASSERT(type->isSingleValueType());
    uint32_t numElements = 1;
    if (type->isVectorTy())
    {
        numElements = int_cast<uint32_t>(
            cast<IGCLLVM::FixedVectorType>(type)->getNumElements());
    }
    return numElements;
}

////////////////////////////////////////////////////////////////////////////////
// @brief Constructs a new vector type in the number of components is greater
// than 1. If 'numElements' is 1 the returned type is the scalar type.
inline Type* GetNewType(Type* scalarType, uint32_t numElements)
{
    IGC_ASSERT(scalarType->isIntegerTy() || scalarType->isFloatingPointTy());
    return numElements == 1 ?
        scalarType :
        IGCLLVM::FixedVectorType::get(scalarType, numElements);
}

////////////////////////////////////////////////////////////////////////////////
// @brief Extracts used elements of the vector and repacks into a new vector.
inline Value* RepackToNewType(
    IGCLLVM::IRBuilder<>& builder,
    Value* data,
    const SmallVector<bool, 4>& used,
    const SmallVector<uint32_t, 4>& mapping)
{
    SmallVector<Value*, 4> elems;
    for (uint32_t idx = 0; idx < mapping.size(); ++idx)
    {
        if (used[idx])
        {
            elems.push_back(
                builder.CreateExtractElement(data, idx));
        }
    }
    if (elems.size() == 1)
    {
        return elems[0];
    }
    Type* type = IGCLLVM::FixedVectorType::get(
        elems[0]->getType(),
        elems.size());
    Value* vec = llvm::UndefValue::get(type);
    for (uint32_t i = 0; i < elems.size(); i++)
    {
        vec = builder.CreateInsertElement(vec, elems[i], (uint64_t)i);
    }
    return vec;
}

////////////////////////////////////////////////////////////////////////////////
// @brief Extracts elements of the input vector and repacks into a bigger vector
// whose type matches the unoptimized vector type used in the alloca.
inline Value* RepackToOldType(
    IGCLLVM::IRBuilder<>& builder,
    Value* data,
    const SmallVector<bool, 4>& used,
    const SmallVector<uint32_t, 4>& mapping)
{
    SmallVector<Value*, 4> elems;
    uint64_t numUsed = NumUsed(used);
    if (numUsed == 1)
    {
        elems.push_back(data);
    }
    else
    {
        for (uint64_t idx = 0; idx < NumUsed(used); ++idx)
        {
            elems.push_back(
                builder.CreateExtractElement(data, idx));
        }
    }

    Type* type = IGCLLVM::FixedVectorType::get(
        elems[0]->getType(),
        used.size());
    Value* vec = llvm::UndefValue::get(type);
    uint32_t usedIdx = 0;
    for (uint32_t i = 0; i < used.size(); i++)
    {
        if (used[i])
        {
            Value* elem = elems[usedIdx++];
            vec = builder.CreateInsertElement(vec, elem, (uint64_t)i);
        }
    }
    return vec;
}

////////////////////////////////////////////////////////////////////////////////
// @brief Checks uses of the input value and sets the information about accessed
// elements. Returns false if a dynamic or unsupported vector access pattern was
// found.
// Note: only some use patterns are supported, i.e.:
// - GEP access to entire vectors, not to vector elements
// - only bitcast, PHI, load, store and extract element instructions are
//   supported
inline bool GetUsedVectorElements(
    Value* parentVal,
    Value* val,
    SmallVector<bool, 4>& used)
{
    // Check for supported read patterns and update accesses vector elements.
    if (GetElementPtrInst* gepInst = dyn_cast<GetElementPtrInst>(val))
    {
        if (gepInst->getNumIndices() != 2)
        {
            // Unsupported alloca use type.
            return false;
        }
    }
    else if (ExtractElementInst* ee = dyn_cast<ExtractElementInst>(val))
    {
        Value* indexVal = ee->getIndexOperand();
        if (isa<ConstantInt>(indexVal))
        {
            uint32_t index = int_cast<uint32_t>(
                cast<ConstantInt>(indexVal)->getZExtValue());
            IGC_ASSERT(index < used.size());
            used[index] = true;
            return true;
        }
        // Bail early if dynamic index was found.
        return false;
    }
    else if (BitCastInst* bc = dyn_cast<BitCastInst>(val))
    {
        // Currently supported use pattern is a bitcast to a vector with
        // the same number of components and with the scalar type of
        // the same bitwidth.
        Type* srcTy = bc->getOperand(0)->getType();
        Type* dstTy = bc->getType();
        if (srcTy->isPointerTy() != dstTy->isPointerTy())
        {
            return false;
        }
        if (srcTy->isPointerTy() && dstTy->isPointerTy())
        {
            srcTy = IGCLLVM::getNonOpaquePtrEltTy(srcTy);
            dstTy = IGCLLVM::getNonOpaquePtrEltTy(dstTy);
        }
        if (!srcTy->isVectorTy() || !dstTy->isVectorTy())
        {
            return false;
        }
        IGC_ASSERT(GetNumElements(srcTy) == used.size());
        if (GetNumElements(srcTy) != GetNumElements(dstTy) ||
            srcTy->getScalarSizeInBits() != dstTy->getScalarSizeInBits())
        {
            return false;
        }
        // Supported bit cast type, check users for extract element
        // instructions.
    }
    else if (StoreInst* store = dyn_cast<StoreInst>(val))
    {
        // This function only needs to check read access.
        if (store->getPointerOperand() == parentVal)
        {
            return true;
        }
        // Bail as the entire vector (loaded from a candidate alloca) is stored
        // elsewhere.
        IGC_ASSERT(store->getValueOperand()->getType()->isVectorTy());
        return false;
    }
    else if (!(isa<AllocaInst>(val) ||
        isa<PHINode>(val) ||
        isa<LoadInst>(val)))
    {
        return false;
    }

    // Follow the def-use chain
    for (User* user : val->users())
    {
        if (!GetUsedVectorElements(val, user, used))
        {
            return false;
        }
    }
    return true;
}

////////////////////////////////////////////////////////////////////////////////
// @brief Replaces uses of the old operand value with the new operand value.
// Propagates the new type to the entire def-use chain.
//
// @param user user instruction to replace the operand uses in
// @param oldOp operand value whose uses need to be updated
// @param newOp operand value to replace the old operand
// @param used information about used vector elements
// @param mapping vector element indices mapping
inline void ReplaceUseWith(
    Value* user,
    Value* oldOp,
    Type* newOpTy,
    Value* newOp,
    const SmallVector<bool, 4>& used,
    const SmallVector<uint32_t, 4>& mapping)
{
    uint32_t numElements = NumUsed(used);
    bool isScalar = 1 == numElements;

    Value* newInst = nullptr;
    Type* newInstElTy = nullptr;
    if (GetElementPtrInst* gepInst = dyn_cast<GetElementPtrInst>(user))
    {
        IGCLLVM::IRBuilder<> builder(gepInst);
        IGC_ASSERT(isa<AllocaInst>(oldOp));
        IGC_ASSERT(isa<AllocaInst>(newOp));
        IGC_ASSERT(gepInst->getNumIndices() == 2);
        SmallVector<Value*, 4> indices(gepInst->indices());

        newInst = gepInst->isInBounds() ?
            builder.CreateInBoundsGEP(newOpTy, newOp, indices, gepInst->getName()) :
            builder.CreateGEP(newOpTy, newOp, indices, gepInst->getName());
        newInstElTy = cast<llvm::GetElementPtrInst>(newInst)->getResultElementType();
    }
    else if (LoadInst* load = dyn_cast<LoadInst>(user))
    {
        IGCLLVM::IRBuilder<> builder(load);
        LoadInst* newLoad = builder.CreateLoad(newOpTy, newOp, load->getName());
        newLoad->setAlignment(
            IGCLLVM::getCorrectAlign(newLoad->getType()->getPrimitiveSizeInBits() / 8));
        newInst = newLoad;
        newInstElTy = newLoad->getType();
    }
    else if (BitCastInst* bc = dyn_cast<BitCastInst>(user))
    {
        IGCLLVM::IRBuilder<> builder(bc);
        Type* scalarType = GetScalarType(bc->getType());
        Type* newDstType = GetNewType(scalarType, numElements);
        newInstElTy = newDstType;
        if (bc->getType()->isPointerTy())
        {
            newDstType = PointerType::get(newDstType, ADDRESS_SPACE_PRIVATE);
        }
        newInst = builder.CreateBitCast(newOp, newDstType, bc->getName());
    }
    else if (ExtractElementInst* ee = dyn_cast<ExtractElementInst>(user))
    {
        IGCLLVM::IRBuilder<> builder(ee);
        Value* indexVal = ee->getIndexOperand();
        IGC_ASSERT(isa<ConstantInt>(indexVal));
        uint32_t index = int_cast<uint32_t>(
            cast<ConstantInt>(indexVal)->getZExtValue());
        IGC_ASSERT(index < mapping.size());
        index = mapping[index];
        Value* newVal = isScalar ?
            newOp :
            builder.CreateExtractElement(newOp, (uint64_t)index, ee->getName());
        if (isa<Instruction>(newVal))
        {
            cast<Instruction>(newVal)->copyMetadata(*ee);
        }
        ee->replaceAllUsesWith(newVal);
        ee->eraseFromParent();
    }
    else if (isa<StoreInst>(user) &&
        oldOp == cast<StoreInst>(user)->getPointerOperand())
    {
        StoreInst* st = cast<StoreInst>(user);
        IGCLLVM::IRBuilder<> builder(st);
        Value* data = st->getValueOperand();
        Value* newData = RepackToNewType(builder, data, used, mapping);
        StoreInst* newStore = builder.CreateStore(newData, newOp, st->isVolatile());
        newStore->setAlignment(
            IGCLLVM::getCorrectAlign(newData->getType()->getPrimitiveSizeInBits() / 8));
        newStore->copyMetadata(*st);
        st->eraseFromParent();
    }
    else if (Instruction* inst = dyn_cast<Instruction>(user))
    {
        IGCLLVM::IRBuilder<> builder(inst);
        if (isa<PHINode>(user))
        {
            builder.SetInsertPoint(
                cast<Instruction>(newOp)->getParent()->getTerminator());
        }
        IGC_ASSERT(oldOp->getType()->isVectorTy());
        Value* newData = RepackToOldType(builder, newOp, used, mapping);
        inst->replaceUsesOfWith(oldOp, newData);
    }
    else
    {
        IGC_ASSERT_MESSAGE(0, "Unexpected value type!");
    }
    if (newInst)
    {
        if (isa<Instruction>(newInst) &&
            isa<Instruction>(user))
        {
            cast<Instruction>(newInst)->copyMetadata(
                *(cast<Instruction>(user)));
        }
        for (auto uit = user->user_begin(), eit = user->user_end(); uit != eit;)
        {
            Value* user1 = *uit++;
            ReplaceUseWith(user1, user, newInstElTy, newInst, used, mapping);
        }
        cast<Instruction>(user)->eraseFromParent();
    }
}

////////////////////////////////////////////////////////////////////////////////
/// @brief Gets all alloca instructions whose type is an array of vector
/// Note: this pass is supposed to be run after the function inliner.
/// LLVM inliner hoists all static alloca instructions to the beginning of
/// function's entry block.
void ShrinkArrayAllocaPass::GatherAllocas(Function& F)
{
    for (Instruction& I : F.getEntryBlock())
    {
        AllocaInst* alloca = dyn_cast<AllocaInst>(&I);
        if (!alloca)
        {
            // Note: it may be necessary to change the `break` to `continue`
            // if it turns out that optimization passes insert non-alloca
            // instructions before or in between alloca instructions in the
            // entry basic block.
            break;
        }
        Type* allocatedTy = alloca->getAllocatedType();
        uint32_t as = alloca->getType()->getAddressSpace();
        if (allocatedTy->isArrayTy() &&
            allocatedTy->getArrayElementType()->isVectorTy() &&
            as == ADDRESS_SPACE_PRIVATE)
        {
            Type* arrayElementType = allocatedTy->getArrayElementType();
            uint32_t numElements = int_cast<uint32_t>(
                cast<IGCLLVM::FixedVectorType>(arrayElementType)->getNumElements());
            UsageInfo used;
            used.resize(numElements, false);
            Value* dummyParentVal = nullptr;
            if (GetUsedVectorElements(dummyParentVal, alloca, used) &&
                PariallyUsed(used))
            {
                m_AllocaInfo.emplace_back(
                    std::make_pair(alloca, used));
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////////
/// @brief Replace array access to private vector variables with extract
/// and insert element instructions.
bool ShrinkArrayAllocaPass::Resolve()
{
    bool modified = false;
    for (const auto& info : m_AllocaInfo)
    {
        // Remap indices
        auto used = info.second;
        SmallVector<uint32_t, 4> mapping;
        mapping.resize(used.size());
        uint32_t newIdx = 0;
        for (uint32_t i = 0; i < used.size(); ++i)
        {
            if (used[i])
            {
                mapping[i] = newIdx++;
            }
        }
        AllocaInst* allocaInst = info.first;
        Type* arrayElementType = allocaInst->getAllocatedType()->getArrayElementType();

        Type* newArrayElementType = newIdx == 1 ?
            arrayElementType->getScalarType() :
            IGCLLVM::FixedVectorType::get(arrayElementType->getScalarType(), newIdx);
        Type* newType = ArrayType::get(
            newArrayElementType,
            allocaInst->getAllocatedType()->getArrayNumElements());

        IGCLLVM::IRBuilder<> builder(allocaInst);
        AllocaInst* newAlloca = builder.CreateAlloca(newType);
        newAlloca->setAlignment(
            IGCLLVM::getCorrectAlign(newArrayElementType->getPrimitiveSizeInBits() / 8));
        newAlloca->copyMetadata(*allocaInst);
        for (auto uit = allocaInst->user_begin(), eit = allocaInst->user_end(); uit != eit;)
        {
            Value* user = *uit++;
            ReplaceUseWith(user, allocaInst, newAlloca->getAllocatedType(), newAlloca, used, mapping);
        }

        allocaInst->eraseFromParent();
        modified = true;
    }
    return modified;
}

///////////////////////////////////////////////////////////////////////////////
bool ShrinkArrayAllocaPass::runOnFunction(llvm::Function& F)
{
    m_AllocaInfo.clear();
    GatherAllocas(F);

    const bool modified = Resolve();

    return modified;
}
}// namespace IGC