1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "VLD_SPIRVSplitter.hpp"
#include <llvm/ADT/ScopeExit.h>
#include "Probe/Assertion.h"
#include "spirv/unified1/spirv.hpp"
#include "spirv-tools/libspirv.h"
// helper function from SPIR-V Tools.
std::string spvDecodeLiteralStringOperand(const spv_parsed_instruction_t& inst,
const uint16_t operand_index);
namespace IGC {
namespace VLD {
llvm::Expected<SPVMetadata> GetVLDMetadata(const char *spv_buffer,
uint32_t spv_buffer_size_in_bytes) {
return SpvSplitter().Parse(spv_buffer, spv_buffer_size_in_bytes);
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>>
SplitSPMDAndESIMD(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
SpvSplitter splitter;
return splitter.Split(spv_buffer, spv_buffer_size_in_bytes);
}
llvm::Expected<spv_result_t> SpvSplitter::ParseSPIRV(const char* spv_buffer, uint32_t spv_buffer_size_in_bytes) {
const spv_target_env target_env = SPV_ENV_UNIVERSAL_1_5;
spv_context context = spvContextCreate(target_env);
if (!context) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Couldn't create SPIR-V Tools context!");
}
const uint32_t *const binary = reinterpret_cast<const uint32_t *>(spv_buffer);
const size_t word_count = (spv_buffer_size_in_bytes / sizeof(uint32_t));
spv_diagnostic diagnostic = nullptr;
auto scope_exit = llvm::make_scope_exit([&] {
spvDiagnosticDestroy(diagnostic);
spvContextDestroy(context);
});
const spv_result_t result = spvBinaryParse(
context, this, binary, word_count, SpvSplitter::HandleHeaderCallback,
SpvSplitter::HandleInstructionCallback, &diagnostic);
if (result != SPV_SUCCESS) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
diagnostic->error);
}
if (!has_spmd_functions_ && !has_esimd_functions_) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"SPIR-V file did not contain any SPMD or ESIMD functions!");
}
return result;
}
SPIRVTypeEnum SpvSplitter::GetCurrentSPIRVType() const {
if (has_spmd_functions_ && has_esimd_functions_) {
return SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD;
} else if (has_spmd_functions_) {
return SPIRVTypeEnum::SPIRV_SPMD;
}
return SPIRVTypeEnum::SPIRV_ESIMD;
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>>
SpvSplitter::Split(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
this->Reset();
this->only_detect_ = false;
auto result = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);
if (!result) {
return result.takeError();
}
// Add declarations of ESIMD functions that are called from SPMD module,
// otherwise SPIR-V reader might fail.
for (auto esimd_func_id : esimd_functions_to_declare_) {
if (esimd_function_declarations_.find(esimd_func_id) ==
esimd_function_declarations_.end()) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"SPIR-V Splitter error: ESIMD function declaration not found!");
}
spmd_program_.insert(spmd_program_.end(),
esimd_function_declarations_[esimd_func_id].begin(),
esimd_function_declarations_[esimd_func_id].end());
}
switch (GetCurrentSPIRVType()) {
case SPIRVTypeEnum::SPIRV_ESIMD:
spmd_program_.clear();
break;
case SPIRVTypeEnum::SPIRV_SPMD:
esimd_program_.clear();
break;
case SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD:
default:
break;
}
return std::make_pair(spmd_program_, esimd_program_);
}
llvm::Expected<SPVMetadata>
SpvSplitter::Parse(const char* spv_buffer, uint32_t spv_buffer_size_in_bytes) {
this->Reset();
this->only_detect_ = true;
auto result = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);
if (!result) {
return result.takeError();
}
return GetVLDMetadata();
}
const std::string &SpvSplitter::GetErrorMessage() const {
return error_message_;
}
bool SpvSplitter::HasError() const { return !error_message_.empty(); }
bool SpvSplitter::HasEntryPoints() const {
auto CurSPIRVType = GetCurrentSPIRVType();
if (entry_points_.size() == 0) return false;
bool AllEntryPointsAreSPMD =
std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
return esimd_decorated_ids_.find(el) == esimd_decorated_ids_.end();
});
bool AllEntryPointsAreESIMD =
std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
return esimd_decorated_ids_.find(el) != esimd_decorated_ids_.end();
});
if (CurSPIRVType == SPIRVTypeEnum::SPIRV_ESIMD && AllEntryPointsAreSPMD) {
return false;
}
if (CurSPIRVType == SPIRVTypeEnum::SPIRV_SPMD && AllEntryPointsAreESIMD) {
return false;
}
// We currently do not support entry points in both parts.
IGC_ASSERT(AllEntryPointsAreESIMD || AllEntryPointsAreSPMD);
return true;
}
SPVMetadata SpvSplitter::GetVLDMetadata() const {
SPVMetadata Metadata;
Metadata.SpirvType = GetCurrentSPIRVType();
Metadata.HasEntryPoints = HasEntryPoints();
Metadata.ForcedSubgroupSize = GetForcedSubgroupSize();
Metadata.ExportedFunctions = GetExportedFunctions();
Metadata.ImportedFunctions = GetImportedFunctions();
return Metadata;
}
const uint32_t SpvSplitter::GetForcedSubgroupSize() const {
if (entry_point_to_subgroup_size_map_.size() == 0) return 0;
IGC_ASSERT(std::all_of(entry_point_to_subgroup_size_map_.begin(), entry_point_to_subgroup_size_map_.end(), [&](auto& el) {
return el.second == entry_point_to_subgroup_size_map_.begin()->second;
}));
return entry_point_to_subgroup_size_map_.begin()->second;
}
const std::vector<std::string>& SpvSplitter::GetExportedFunctions() const {
return exported_functions_;
}
const std::vector<std::string>& SpvSplitter::GetImportedFunctions() const {
return imported_functions_;
}
void SpvSplitter::Reset() {
spmd_program_.clear();
esimd_program_.clear();
esimd_decorated_ids_.clear();
entry_points_.clear();
esimd_function_declarations_.clear();
esimd_functions_to_declare_.clear();
entry_point_to_subgroup_size_map_.clear();
exported_functions_.clear();
imported_functions_.clear();
is_inside_spmd_function_ = false;
is_inside_esimd_function_ = false;
has_spmd_functions_ = false;
has_esimd_functions_ = false;
cur_esimd_function_id_ = -1;
}
spv_result_t SpvSplitter::HandleInstructionCallback(
void *user_data, const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(user_data);
auto splitter = static_cast<SpvSplitter *>(user_data);
return splitter->HandleInstruction(parsed_instruction);
}
spv_result_t SpvSplitter::HandleHeaderCallback(
void *user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
uint32_t generator, uint32_t id_bound, uint32_t schema) {
IGC_ASSERT(user_data);
auto splitter = static_cast<SpvSplitter *>(user_data);
return splitter->HandleHeader(endian, magic, version, generator, id_bound,
schema);
}
spv_result_t SpvSplitter::HandleHeader(spv_endianness_t endian, uint32_t magic,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t schema) {
// insert the same header to both spmd and esimd programs.
auto append_header = [&](std::vector<uint32_t> &programVector) {
programVector.insert(programVector.end(),
{magic, version, generator, id_bound, schema});
};
if(!only_detect_) {
append_header(spmd_program_);
append_header(esimd_program_);
}
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleInstruction(
const spv_parsed_instruction_t *parsed_instruction) {
spv_result_t ret = SPV_SUCCESS;
// Handlers decide if given instruction should be addded.
switch (parsed_instruction->opcode) {
case spv::OpDecorate:
ret = HandleDecorate(parsed_instruction);
break;
case spv::OpGroupDecorate:
ret = HandleGroupDecorate(parsed_instruction);
break;
case spv::OpFunction:
ret = HandleFunctionStart(parsed_instruction);
break;
case spv::OpFunctionParameter:
ret = HandleFunctionParameter(parsed_instruction);
break;
case spv::OpFunctionEnd:
ret = HandleFunctionEnd(parsed_instruction);
break;
case spv::OpEntryPoint:
ret = HandleEntryPoint(parsed_instruction);
break;
case spv::OpExecutionMode:
ret = HandleExecutionMode(parsed_instruction);
break;
default:
if (!is_inside_spmd_function_) {
AddInstToProgram(parsed_instruction, esimd_program_);
}
if (!is_inside_esimd_function_) {
AddInstToProgram(parsed_instruction, spmd_program_);
}
break;
}
return ret;
}
// Looks for decorations that mark functions specific to ESIMD module.
spv_result_t SpvSplitter::HandleDecorate(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpDecorate);
auto getOperand = [&parsed_instruction](int operandNumber) {
return parsed_instruction->words[parsed_instruction->operands[operandNumber].offset];
};
auto isSpecificFunctionDecoration = [&parsed_instruction, &getOperand](
auto decoration_type) {
if (parsed_instruction->num_operands == 2 &&
parsed_instruction->operands[1].type == SPV_OPERAND_TYPE_DECORATION &&
getOperand(1) == decoration_type) {
uint32_t function_id = getOperand(0);
return function_id;
}
return (uint32_t)0;
};
// Look for VectorComputeFunctionINTEL decoration.
if (auto function_id = isSpecificFunctionDecoration(spv::DecorationVectorComputeFunctionINTEL)) {
esimd_decorated_ids_.insert(function_id);
} else if (auto function_id = isSpecificFunctionDecoration(spv::DecorationStackCallINTEL)) {
// StackCallINTEL is a decoration specific to ESIMD, so do not add it to SPMD program.
esimd_functions_to_declare_.insert(function_id);
} else if (getOperand(1) == spv::DecorationLinkageAttributes) {
if (parsed_instruction->num_operands == 4 &&
parsed_instruction->operands[2].type ==
SPV_OPERAND_TYPE_LITERAL_STRING) {
auto funcName = spvDecodeLiteralStringOperand(*parsed_instruction, 2);
if (getOperand(3) == spv::LinkageTypeExport) {
exported_functions_.push_back(funcName);
} else if (getOperand(3) == spv::LinkageTypeImport) {
imported_functions_.push_back(funcName);
}
}
AddInstToProgram(parsed_instruction, spmd_program_);
AddInstToProgram(parsed_instruction, esimd_program_);
} else {
AddInstToProgram(parsed_instruction, spmd_program_);
}
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
// Looks for group decorations that mark functions specific to ESIMD module.
spv_result_t SpvSplitter::HandleGroupDecorate(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpGroupDecorate);
IGC_ASSERT(parsed_instruction->num_operands > 0);
// Look for decoration groups previously marked with
// VectorComputeFunctionINTEL decoration.
uint32_t group_id =
parsed_instruction->words[parsed_instruction->operands[0].offset];
if (esimd_decorated_ids_.find(group_id) != esimd_decorated_ids_.end()) {
for (uint32_t i = 1; i < parsed_instruction->num_operands; ++i) {
uint32_t id =
parsed_instruction->words[parsed_instruction->operands[i].offset];
esimd_decorated_ids_.insert(id);
}
} else {
AddInstToProgram(parsed_instruction, spmd_program_);
}
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleFunctionStart(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpFunction);
if (esimd_decorated_ids_.find(parsed_instruction->result_id) !=
esimd_decorated_ids_.end()) {
is_inside_esimd_function_ = true;
has_esimd_functions_ = true;
cur_esimd_function_id_ = parsed_instruction->result_id;
AddInstToProgram(parsed_instruction, esimd_program_);
AddInstToProgram(parsed_instruction,
esimd_function_declarations_[cur_esimd_function_id_]);
} else {
is_inside_spmd_function_ = true;
has_spmd_functions_ = true;
AddInstToProgram(parsed_instruction, spmd_program_);
}
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleFunctionParameter(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpFunctionParameter);
if (is_inside_esimd_function_) {
AddInstToProgram(parsed_instruction, esimd_program_);
AddInstToProgram(parsed_instruction,
esimd_function_declarations_[cur_esimd_function_id_]);
} else {
AddInstToProgram(parsed_instruction, spmd_program_);
}
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleFunctionEnd(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpFunctionEnd);
if (is_inside_esimd_function_) {
AddInstToProgram(parsed_instruction, esimd_program_);
AddInstToProgram(parsed_instruction,
esimd_function_declarations_[cur_esimd_function_id_]);
cur_esimd_function_id_ = -1;
}
if (is_inside_spmd_function_) {
AddInstToProgram(parsed_instruction, spmd_program_);
}
is_inside_esimd_function_ = false;
is_inside_spmd_function_ = false;
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleEntryPoint(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpEntryPoint);
IGC_ASSERT(parsed_instruction->num_operands > 0);
uint32_t id =
parsed_instruction->words[parsed_instruction->operands[1].offset];
entry_points_.insert(id);
AddInstToProgram(parsed_instruction, spmd_program_);
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
spv_result_t SpvSplitter::HandleExecutionMode(
const spv_parsed_instruction_t *parsed_instruction) {
IGC_ASSERT(parsed_instruction &&
parsed_instruction->opcode == spv::OpExecutionMode);
IGC_ASSERT(parsed_instruction->num_operands > 0);
uint32_t id =
parsed_instruction->words[parsed_instruction->operands[0].offset];
uint32_t execMode =
parsed_instruction->words[parsed_instruction->operands[1].offset];
if (execMode == spv::ExecutionModeSubgroupSize)
{
uint32_t sgSize =
parsed_instruction->words[parsed_instruction->operands[2].offset];
entry_point_to_subgroup_size_map_.insert({ id,sgSize });
}
AddInstToProgram(parsed_instruction, spmd_program_);
AddInstToProgram(parsed_instruction, esimd_program_);
return SPV_SUCCESS;
}
void SpvSplitter::AddInstToProgram(
const spv_parsed_instruction_t *parsed_instruction,
ProgramStreamType &program) {
if (!only_detect_) {
program.insert(program.end(), parsed_instruction->words,
parsed_instruction->words + parsed_instruction->num_words);
}
}
} // namespace VLD
} // namespace IGC
|