File: fptoi.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (149 lines) | stat: -rw-r--r-- 5,156 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*========================== begin_copyright_notice ============================

Copyright (C) 2021-2023 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include <cm-cl/math.h>
#include <cm-cl/vector.h>

#include "../helpers.h"

using namespace cm;

namespace {
template <bool IsSigned, int N>
CM_NODEBUG CM_INLINE vector<uint64_t, N> __impl_fptoi(vector<float, N> a) {
  // vector of floats -> vector of ints
  vector<uint32_t, N> Uifl = a.template format<uint32_t>();
  const vector<uint32_t, N> ExpMask(0xff);
  const vector<uint32_t, N> MantissaMask((1u << 23) - 1);
  const vector<uint32_t, N> Zero(0);
  const vector<uint32_t, N> Ones(0xffffffff);
  const vector<uint32_t, N> One(1);

  vector<uint32_t, N> Exp = (Uifl >> 23) & ExpMask;
  // mantissa without hidden bit
  vector<uint32_t, N> Pmantissa = Uifl & MantissaMask;
  // take hidden bit into account
  vector<uint32_t, N> Mantissa = Pmantissa | vector<uint32_t, N>(1 << 23);
  vector<uint32_t, N> Data_h = Mantissa << 8;
  vector<uint32_t, N> Data_l = Zero;

  // this block do Logical Shift Right
  vector<uint32_t, N> Shift = vector<uint32_t, N>(0xbe) - Exp;
  vector<uint32_t, N> Sha = Shift & vector<uint32_t, N>(0x3f);
  vector<uint32_t, N> Vec32 = vector<uint32_t, N>(32);
  vector<uint32_t, N> Sh32 = Vec32 - Sha;
  auto Flag_large_shift = (Sha >= Vec32);
  auto Flag_zero_shift = (Sha == Zero);
  vector<uint32_t, N> Mask1 = Ones;
  Mask1.merge(Zero, Flag_large_shift);
  vector<uint32_t, N> Mask0 = Ones;
  Mask0.merge(Zero, Flag_zero_shift);
  vector<uint32_t, N> TmpH1 = ((Data_h & Mask0) << Sh32) & Mask1;
  vector<uint32_t, N> TmpH2 = (Data_h >> (Sha - Vec32)) & ~Mask1;
  vector<uint32_t, N> TmpL = (Data_l >> Sha) & Mask1;
  vector<uint32_t, N> Lo = TmpL | TmpH1 | TmpH2;
  vector<uint32_t, N> Hi = (Data_h >> Sha) & Mask1;

  // Discard results if shift is greater than 63
  vector<uint32_t, N> Mask = Ones;
  auto FlagDiscard = (Shift > vector<uint32_t, N>(63));
  Mask.merge(Zero, FlagDiscard);
  Lo = Lo & Mask;
  Hi = Hi & Mask;
  vector<uint32_t, N> SignedBitMask(1u << 31);
  vector<uint32_t, N> SignedBit = Uifl & SignedBitMask;
  auto FlagSignSet = (SignedBit != Zero);
  auto FlagNoSignSet = (SignedBit == Zero);
  // check for Exponent overflow (when sign bit set)
  auto FlagExpO = (Exp > vector<uint32_t, N>(0xbe));
  auto FlagExpUO = FlagNoSignSet & FlagExpO;
  auto IsNaN = (Exp == ExpMask) & (Pmantissa != Zero);
  if constexpr (IsSigned) {
    // calculate (NOT[Lo, Hi] + 1) (integer sign negation)
    vector<uint32_t, N> NegLo = ~Lo;
    vector<uint32_t, N> NegHi = ~Hi;

    auto AddC = cm::math::add_with_carry(NegLo, One);
    auto AddcResVal = AddC.first;
    vector<uint32_t, N> AddcResCB = AddC.second;

    NegHi = NegHi + AddcResCB;

    // if sign bit is set, alter the result with negated value
    // if (FlagSignSet)
    Lo.merge(AddcResVal, FlagSignSet);
    Hi.merge(NegHi, FlagSignSet);

    // Here we process overflows
    vector<uint32_t, N> LoOrHi = Lo | Hi;
    auto NZ = (LoOrHi != Zero);
    vector<uint32_t, N> HiHBit = Hi & SignedBitMask;
    auto NZ2 = SignedBit != HiHBit;
    auto Ovrfl1 = NZ2 & NZ;

    // In case of overflow, HW response is : 7fffffffffffffff
    // if (Ovrfl1)
    Lo.merge(Ones, Ovrfl1);
    Hi.merge(vector<uint32_t, N>((1u << 31) - 1), Ovrfl1);

    // if (FlagExpO)
    Lo.merge(Zero, FlagExpO);
    Hi.merge(vector<uint32_t, N>(1u << 31), FlagExpO);

    // if (FlagExpUO)
    Lo.merge(Ones, FlagExpUO);
    Hi.merge(vector<uint32_t, N>((1u << 31) - 1), FlagExpUO);

    // if (IsNaN)
    Lo.merge(Zero, IsNaN);
    Hi.merge(Zero, IsNaN);
  } else {
    // if (FlagSignSet)
    Lo.merge(Zero, FlagSignSet);
    Hi.merge(Zero, FlagSignSet);

    // if (FlagExpUO)
    Lo.merge(Ones, FlagExpUO);
    Hi.merge(Ones, FlagExpUO);

    // if (IsNaN)
    Lo.merge(Zero, IsNaN);
    Hi.merge(Zero, IsNaN);
  }
  return __impl_combineLoHi<N>(Lo, Hi);
}
} // namespace

CM_NODEBUG CM_NOINLINE extern "C" uint64_t __vc_builtin_fptosi_f32(float a) {
  vector<float, 1> va = a;
  return __impl_fptoi<true>(va)[0];
}

CM_NODEBUG CM_NOINLINE extern "C" uint64_t __vc_builtin_fptoui_f32(float a) {
  vector<float, 1> va = a;
  return __impl_fptoi<false>(va)[0];
}

#define FPTOI(WIDTH)                                                           \
  CM_NODEBUG CM_NOINLINE extern "C" cl_vector<uint64_t, WIDTH>                 \
      __vc_builtin_fptosi_v##WIDTH##f32(cl_vector<float, WIDTH> a) {           \
    vector<float, WIDTH> va{a};                                                \
    return __impl_fptoi<true>(va).cl_vector();                                 \
  }                                                                            \
  CM_NODEBUG CM_NOINLINE extern "C" cl_vector<uint64_t, WIDTH>                 \
      __vc_builtin_fptoui_v##WIDTH##f32(cl_vector<float, WIDTH> a) {           \
    vector<float, WIDTH> va{a};                                                \
    return __impl_fptoi<false>(va).cl_vector();                                \
  }

FPTOI(1)
FPTOI(2)
FPTOI(4)
FPTOI(8)
FPTOI(16)
FPTOI(32)