1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2023-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
/// GenXLoadStoreLegalization
/// -------------------------
///
/// SIMD loads, stores, atomics and prefetches are considered legal if they
/// satisfy the following requirements:
///
/// 1. ExecSize is a power of 2 up to a device-specific MaxExecSize
/// 2. Operations with VectorSize > 1 must have DataType D32 or D64.
/// 3. The number of registers used by the data payload is no more than 8:
/// ceil(ExecSize * DataSize / GRFSize) * VectorSize <= 8
/// Here, ExecSize = max(ExecSize, MaxExecSize / 2).
/// That is, a single channel of data takes up at least 1 register if
/// DataType is D32 and at least 2 registers if DataType is D64. This
/// effectively means that the maximum legal VectorSize is 8 if DataType is
/// D32 and 4 if DataType is D64.
///
/// If a non-transposed operation doesn't obey rules 1 or 3, we make it legal
/// by splitting it into several parts. Data is loaded and stored
/// in Structure of Arrays format, so splitting requires some care.
/// If the instruction doesn't obey rule 2 or its VectorSize is larger than the
/// largest one allowed for its DataType, it can't be made legal, so we raise an
/// error.
///
/// SIMD1 Block loads, stores and prefetches are considered legal
/// if they satisfy the following requirements:
///
/// 1. DataType is either D32 or D64.
/// 2. The number of registers used by the data payload is no more than 8:
/// ceil(VectorSize * DataSize / GRFSize) <= 8
///
#include "GenX.h"
#include "GenXRegionUtils.h"
#include "GenXSubtarget.h"
#include "GenXTargetMachine.h"
#include "vc/InternalIntrinsics/InternalIntrinsics.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/Region.h"
#include <llvm/CodeGen/TargetPassConfig.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstVisitor.h>
#include <llvm/Pass.h>
#include <numeric>
#define DEBUG_TYPE "genx-load-store-legalization"
using namespace llvm;
using namespace genx;
namespace {
class GenXLoadStoreLegalization
: public FunctionPass,
public InstVisitor<GenXLoadStoreLegalization> {
public:
static char ID;
explicit GenXLoadStoreLegalization() : FunctionPass(ID) {}
StringRef getPassName() const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
void visitCallInst(CallInst &CI);
private:
unsigned getMaxLegalSimdWidth(CallInst &CI) const;
unsigned getMinLegalSimdWidth(CallInst &CI) const;
Value *splitMemoryOperation(Value *InsertTo, CallInst &CI,
unsigned SplitWidth, unsigned &Index) const;
Value *extendMemoryOperation(Value *InsertTo, CallInst &CI,
unsigned ExtendWidth, unsigned Index) const;
Function *getMemoryIntrinsic(CallInst &CI, unsigned NewWidth) const;
Value *createExtractFromSOAValue(Instruction *InsertBefore, Value *Data,
unsigned VectorSize, unsigned Index,
unsigned Width) const;
Value *createInsertToSOAValue(Instruction *InsertBefore, Value *InsertTo,
Value *Data, unsigned VectorSize,
unsigned Index, unsigned Width) const;
const GenXSubtarget *ST = nullptr;
};
char GenXLoadStoreLegalization::ID = 0;
} // namespace
namespace llvm {
void initializeGenXLoadStoreLegalizationPass(PassRegistry &);
} // namespace llvm
INITIALIZE_PASS_BEGIN(GenXLoadStoreLegalization, "GenXLoadStoreLegalization",
"GenXLoadStoreLegalization", false, false)
INITIALIZE_PASS_END(GenXLoadStoreLegalization, "GenXLoadStoreLegalization",
"GenXLoadStoreLegalization", false, false)
FunctionPass *llvm::createGenXLoadStoreLegalizationPass() {
initializeGenXLoadStoreLegalizationPass(*PassRegistry::getPassRegistry());
return new GenXLoadStoreLegalization;
}
StringRef GenXLoadStoreLegalization::getPassName() const {
return "GenX load store legalization";
}
void GenXLoadStoreLegalization::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.addRequired<GenXBackendConfig>();
AU.setPreservesCFG();
}
bool GenXLoadStoreLegalization::runOnFunction(Function &F) {
ST = &getAnalysis<TargetPassConfig>()
.getTM<GenXTargetMachine>()
.getGenXSubtarget();
IGC_ASSERT(ST);
visit(F);
return true;
}
void GenXLoadStoreLegalization::visitCallInst(CallInst &CI) {
const auto IID = vc::InternalIntrinsic::getInternalIntrinsicID(&CI);
if (!vc::InternalIntrinsic::isInternalMemoryIntrinsic(IID))
return;
LLVM_DEBUG(dbgs() << "Trying: " << CI << "\n");
const auto ExecSize = vc::InternalIntrinsic::getMemorySimdWidth(&CI);
const uint64_t VectorSize =
vc::InternalIntrinsic::getMemoryVectorSizePerLane(&CI);
const auto MaxWidth = getMaxLegalSimdWidth(CI);
const auto MinWidth = getMinLegalSimdWidth(CI);
// No legalization needed: scalar/block operation or legal simd width
if (vc::InternalIntrinsic::isMemoryBlockIntrinsic(&CI) ||
(isPowerOf2_32(ExecSize) && ExecSize >= MinWidth &&
ExecSize <= MaxWidth)) {
LLVM_DEBUG(dbgs() << "The instruction is already legal: " << CI << "\n");
return;
}
// Legalization is impossible, emit an error
if (MaxWidth == 0 || MinWidth == 0) {
vc::diagnose(CI.getContext(), "GenXLoadStoreLegalization",
"Cannot legalize illegal memory intrinsic", &CI);
return;
}
auto *RetTy = CI.getType();
Value *Ret = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
unsigned Index = 0;
Ret = splitMemoryOperation(Ret, CI, MaxWidth, Index);
unsigned RestSize = ExecSize - Index;
if (RestSize != 0) {
auto ExtWidth = std::max<unsigned>(PowerOf2Ceil(RestSize), MinWidth);
Ret = extendMemoryOperation(Ret, CI, ExtWidth, Index);
}
if (Ret) {
CI.replaceAllUsesWith(Ret);
Ret->takeName(&CI);
}
CI.eraseFromParent();
}
Value *GenXLoadStoreLegalization::splitMemoryOperation(Value *InsertTo,
CallInst &CI,
unsigned SplitWidth,
unsigned &Index) const {
const auto ExecSize = vc::InternalIntrinsic::getMemorySimdWidth(&CI);
const uint64_t VectorSize =
vc::InternalIntrinsic::getMemoryVectorSizePerLane(&CI);
auto *Func = getMemoryIntrinsic(CI, SplitWidth);
IRBuilder<> Builder(&CI);
for (; Index + SplitWidth <= ExecSize; Index += SplitWidth) {
SmallVector<Value *, 13> Args;
std::transform(CI.arg_begin(), CI.arg_end(), Func->arg_begin(),
std::back_inserter(Args), [&](Value *Arg, auto &NewArg) {
auto *VTy =
dyn_cast<IGCLLVM::FixedVectorType>(Arg->getType());
auto *NewTy = NewArg.getType();
if (!VTy || VTy == NewTy)
return Arg;
auto NumElements = VTy->getNumElements();
bool IsSOA = NumElements == VectorSize * ExecSize;
IGC_ASSERT(NumElements == ExecSize || IsSOA);
return createExtractFromSOAValue(
&CI, Arg, IsSOA ? VectorSize : 1, Index, SplitWidth);
});
auto *NewCI = Builder.CreateCall(Func, Args);
LLVM_DEBUG(dbgs() << "Created split: " << *NewCI << "\n");
if (InsertTo)
InsertTo = createInsertToSOAValue(&CI, InsertTo, NewCI, VectorSize, Index,
SplitWidth);
}
return InsertTo;
}
Value *GenXLoadStoreLegalization::extendMemoryOperation(Value *InsertTo,
CallInst &CI,
unsigned ExtendWidth,
unsigned Index) const {
const auto ExecSize = vc::InternalIntrinsic::getMemorySimdWidth(&CI);
const uint64_t VectorSize =
vc::InternalIntrinsic::getMemoryVectorSizePerLane(&CI);
const auto RestSize = ExecSize - Index;
if (RestSize == 0)
return InsertTo;
IGC_ASSERT(RestSize <= ExtendWidth);
auto *Func = getMemoryIntrinsic(CI, ExtendWidth);
IRBuilder<> Builder(&CI);
SmallVector<Value *, 13> Args;
std::transform(
CI.arg_begin(), CI.arg_end(), Func->arg_begin(), std::back_inserter(Args),
[&](Value *Arg, auto &NewArg) -> Value * {
auto *VTy = dyn_cast<IGCLLVM::FixedVectorType>(Arg->getType());
auto *NewTy = NewArg.getType();
if (!VTy || VTy == NewTy)
return Arg;
auto NumElements = VTy->getNumElements();
bool IsSOA = NumElements == VectorSize * ExecSize;
if (NumElements != ExecSize && !IsSOA)
return Arg;
if (Index > 0)
Arg = createExtractFromSOAValue(&CI, Arg, IsSOA ? VectorSize : 1,
Index, RestSize);
if (RestSize == ExtendWidth)
return Arg;
auto *ETy = VTy->getElementType();
auto *InsTy = IGCLLVM::FixedVectorType::get(
ETy, IsSOA ? VectorSize * ExtendWidth : ExtendWidth);
if (!ETy->isIntegerTy(1))
return createInsertToSOAValue(&CI, UndefValue::get(InsTy), Arg,
IsSOA ? VectorSize : 1, 0, RestSize);
if (RestSize == 4 || RestSize == 8 || RestSize == 16 ||
!isa<CmpInst>(Arg))
return createInsertToSOAValue(&CI, Constant::getNullValue(InsTy), Arg,
IsSOA ? VectorSize : 1, 0, RestSize);
// If a predicate is illegally sized, it will cause problems later in
// GenXLegalization pass because wrpredregion must follow offset
// alignment restrictions. In case when the illegal predicate is result
// of cmp instruction we can also extend this instruction instead of
// just writing its result into a legal-sized predicate.
auto *Cmp = cast<CmpInst>(Arg);
auto *OpVTy =
cast<IGCLLVM::FixedVectorType>(Cmp->getOperand(0)->getType());
auto *NewOpTy = IGCLLVM::FixedVectorType::get(
OpVTy->getElementType(),
IsSOA ? VectorSize * ExtendWidth : ExtendWidth);
auto *NewOp0 = createInsertToSOAValue(
&CI, Constant::getNullValue(NewOpTy), Cmp->getOperand(0),
IsSOA ? VectorSize : 1, 0, RestSize);
auto *NewOp1 = createInsertToSOAValue(
&CI,
Cmp->isTrueWhenEqual() ? Constant::getAllOnesValue(NewOpTy)
: Constant::getNullValue(NewOpTy),
Cmp->getOperand(1), IsSOA ? VectorSize : 1, 0, RestSize);
auto *NewCmp =
CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewOp0,
NewOp1, Cmp->getName() + ".extended", &CI);
NewCmp->setDebugLoc(Cmp->getDebugLoc());
return NewCmp;
});
Value *Res = Builder.CreateCall(Func, Args);
LLVM_DEBUG(dbgs() << "Created extend: " << *Res << "\n");
if (InsertTo) {
if (RestSize != ExtendWidth)
Res = createExtractFromSOAValue(&CI, Res, VectorSize, 0, RestSize);
if (Index == 0)
InsertTo = Res;
else
InsertTo = createInsertToSOAValue(&CI, InsertTo, Res, VectorSize, Index,
RestSize);
}
return InsertTo;
}
Function *
GenXLoadStoreLegalization::getMemoryIntrinsic(CallInst &CI,
unsigned NewWidth) const {
const auto IID = vc::InternalIntrinsic::getInternalIntrinsicID(&CI);
IGC_ASSERT_EXIT(IID != vc::InternalIntrinsic::not_internal_intrinsic);
const uint64_t ExecSize = vc::InternalIntrinsic::getMemorySimdWidth(&CI);
const uint64_t VectorSize =
vc::InternalIntrinsic::getMemoryVectorSizePerLane(&CI);
SmallVector<Type *, 3> OverloadedTypes;
if (vc::InternalIntrinsic::isOverloadedRet(IID)) {
auto *ResVTy = cast<IGCLLVM::FixedVectorType>(CI.getType());
IGC_ASSERT(ResVTy->getNumElements() == VectorSize * ExecSize);
auto *ETy = ResVTy->getElementType();
auto *VTy = IGCLLVM::FixedVectorType::get(ETy, VectorSize * NewWidth);
OverloadedTypes.push_back(VTy);
}
const auto CacheControlIndex = vc::InternalIntrinsic::getMemoryCacheControlOperandIndex(&CI);
for (unsigned I = 0; I < CI.getNumOperands(); I++) {
if (!vc::InternalIntrinsic::isOverloadedArg(IID, I))
continue;
auto *Arg = CI.getOperand(I);
auto *ArgTy = Arg->getType();
if (!isa<IGCLLVM::FixedVectorType>(ArgTy) || CacheControlIndex == I) {
OverloadedTypes.push_back(ArgTy);
continue;
}
auto *ArgVTy = cast<IGCLLVM::FixedVectorType>(ArgTy);
auto *ETy = ArgVTy->getElementType();
auto NumElements = ArgVTy->getNumElements();
bool IsSOA = NumElements == VectorSize * ExecSize;
if (NumElements != ExecSize && !IsSOA) {
OverloadedTypes.push_back(ArgTy);
continue;
}
auto Width = IsSOA ? VectorSize * NewWidth : NewWidth;
auto *VTy = IGCLLVM::FixedVectorType::get(ETy, Width);
OverloadedTypes.push_back(VTy);
}
auto *Func = vc::InternalIntrinsic::getInternalDeclaration(
CI.getModule(), IID, OverloadedTypes);
return Func;
}
unsigned GenXLoadStoreLegalization::getMaxLegalSimdWidth(CallInst &CI) const {
IGC_ASSERT(vc::InternalIntrinsic::isInternalMemoryIntrinsic(&CI));
if (vc::InternalIntrinsic::isInternalSamplerIntrinsic(&CI))
return ST->getSamplerMaxWidth();
// FIXME: support legacy memory intrinsics
auto VectorSize = vc::InternalIntrinsic::getMemoryVectorSizePerLane(&CI);
auto ElementBytes =
vc::InternalIntrinsic::getMemoryRegisterElementSize(&CI) / ByteBits;
auto MaxWidth = ST->getLSCMaxWidth();
auto MaxBytes = ST->getGRFByteSize() * ST->getLSCMaxDataRegisters();
if (MaxBytes < MaxWidth * ElementBytes * VectorSize)
return getMinLegalSimdWidth(CI);
return MaxWidth;
}
unsigned GenXLoadStoreLegalization::getMinLegalSimdWidth(CallInst &CI) const {
IGC_ASSERT(vc::InternalIntrinsic::isInternalMemoryIntrinsic(&CI));
if (vc::InternalIntrinsic::isInternalSamplerIntrinsic(&CI))
return ST->getSamplerMinWidth();
auto VectorSize = vc::InternalIntrinsic::getMemoryVectorSizePerLane(&CI);
if (VectorSize == 1)
return 1;
// FIXME: support legacy memory intrinsics
auto ElementBytes =
vc::InternalIntrinsic::getMemoryRegisterElementSize(&CI) / ByteBits;
auto MaxWidth = ST->getLSCMinWidth();
auto MaxBytes = ST->getGRFByteSize() * ST->getLSCMaxDataRegisters();
if (MaxBytes < MaxWidth * ElementBytes * VectorSize)
return 0; // Invalid width
return MaxWidth;
}
Value *GenXLoadStoreLegalization::createExtractFromSOAValue(
Instruction *InsertBefore, Value *Data, unsigned VectorSize, unsigned Index,
unsigned Width) const {
auto *VTy = cast<IGCLLVM::FixedVectorType>(Data->getType());
auto *ETy = VTy->getElementType();
auto OrigWidth = VTy->getNumElements() / VectorSize;
auto *ResTy = IGCLLVM::FixedVectorType::get(ETy, Width * VectorSize);
if (isa<UndefValue>(Data))
return UndefValue::get(ResTy);
if (auto *C = dyn_cast<Constant>(Data); C && C->isNullValue())
return Constant::getNullValue(ResTy);
Value *Extract = nullptr;
const auto &DL = InsertBefore->getDebugLoc();
if (ETy->isIntegerTy(1)) {
IGC_ASSERT(VectorSize == 1);
Extract = Region::createRdPredRegionOrConst(Data, Index, Width, "",
InsertBefore, DL);
} else {
Region R(Data);
R.Offset = Index * R.ElementBytes;
R.VStride = OrigWidth;
R.Width = Width;
R.Stride = 1;
R.NumElements = Width * VectorSize;
Extract = R.createRdRegion(Data, "", InsertBefore, DL);
}
return Extract;
}
Value *GenXLoadStoreLegalization::createInsertToSOAValue(
Instruction *InsertBefore, Value *InsertTo, Value *Data,
unsigned VectorSize, unsigned Index, unsigned Width) const {
auto *VTy = cast<IGCLLVM::FixedVectorType>(InsertTo->getType());
auto OrigWidth = VTy->getNumElements() / VectorSize;
Value *Insert = nullptr;
const auto &DL = InsertBefore->getDebugLoc();
if (isa<UndefValue>(Data))
return InsertTo;
if (auto *C = dyn_cast<Constant>(Data);
C && C->isNullValue() && isa<UndefValue>(InsertTo))
return Constant::getNullValue(VTy);
if (VTy->getElementType()->isIntegerTy(1)) {
IGC_ASSERT(VectorSize == 1);
Insert =
Region::createWrPredRegion(InsertTo, Data, Index, "", InsertBefore, DL);
} else {
Region R(InsertTo);
R.Offset = Index * R.ElementBytes;
R.VStride = OrigWidth;
R.Width = Width;
R.Stride = 1;
R.NumElements = Width * VectorSize;
Insert = R.createWrRegion(InsertTo, Data, "", InsertBefore, DL);
}
return Insert;
}
|