1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021-2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
///
/// GenXPrologEpilogInsertion
/// ---------------------
/// This pass generates IR for stack ABI we need to comply with on the IGC side
///
/// To make vISA emit accesses to its predefined registers we generate
/// genx.read/write.predef.reg intrinsics baled into rd/wrregions.
/// VISA regalloc makes sure that dests & sources of the generated instructions
/// are allocated to the proper predefined VISA regs
///
/// Lets say before transformation we have call with arg loaded from surface:
/// %arg = call <8 x float> @llvm.genx.oword.ld.v8f32(i32 0, i32 1, i32 %addr)
/// %ret = call spir_func <8 x float> @foo(<8 x float> %arg)
///
/// Then after we will see something like this:
/// %arg = call <8 x float> @llvm.genx.oword.ld.v8f32(i32 0, i32 1, i32 %addr)
/// %R8 = call <256 x float> read.predef.reg(i32 PREDEFINED_ARG, undef)
/// %NEWR8 = <256 x float> wrregion(<256 x float> %R8, <8 x float> %arg,
/// i32 0, i32 8, i32 1, OFFSET, ...)
/// ; Here OFFSET starts from 0 and is argument offset in predef register
/// %newarg = call <8 x float> write.predef.reg(i32 PREDEFINED_ARG,
/// <256 x float> %NEWR8)
/// %ret = call spir_func <8 x float> @foo(<8 x float> %newarg)
///
/// So we have explicit stack layout relatively early to use 64-bit splitting
/// on later stages if 64-bit pointers are used as SP/FP
///
//===----------------------------------------------------------------------===//
#include "GenX.h"
#include "GenXIntrinsics.h"
#include "GenXModule.h"
#include "GenXTargetMachine.h"
#include "GenXUtil.h"
#include "vc/Support/BackendConfig.h"
#include "vc/Support/GenXDiagnostic.h"
#include "vc/Utils/GenX/KernelInfo.h"
#include "vc/Utils/General/IndexFlattener.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/GenXIntrinsics/GenXMetadata.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Function.h"
#include "llvmWrapper/IR/InstrTypes.h"
#include "llvmWrapper/IR/Instructions.h"
#define DEBUG_TYPE "GENX_PROLOGUE"
#include <unordered_set>
using namespace llvm;
using namespace genx;
static cl::opt<unsigned> ArgRegSizeInGRFsOpt(
"vc-arg-reg-size", cl::init(visa::ArgRegSizeInGRFs), cl::Hidden,
cl::desc("Set max ARG size in registers to use for arguments passing"));
static cl::opt<unsigned> RetRegSizeInGRFsOpt(
"vc-ret-reg-size", cl::init(visa::RetRegSizeInGRFs), cl::Hidden,
cl::desc("Set max RET size in registers to use for return value passing"));
namespace {
inline unsigned calcPadding(uint64_t Val, unsigned Align) {
IGC_ASSERT(Align);
if (Val % Align == 0)
return 0;
return Align - Val % Align;
}
// FIXME: This should be transformed to stack analysis eventually.
class ArgsAnalyzer {
const DataLayout &DL;
const unsigned ArgRegByteSize;
const unsigned RetRegByteSize;
const unsigned GRFByteSize;
unsigned StackBytesUsedForArgs = 0;
unsigned StackBytesUsedForRet = 0;
unsigned ArgRegBytesUsed = 0;
unsigned RetRegBytesUsed = 0;
struct ArgPlace {
unsigned ArgNo = 0;
unsigned Offset = 0;
};
using StorageTy = std::vector<ArgPlace>;
using const_iterator = StorageTy::const_iterator;
StorageTy InReg;
StorageTy InStack;
public:
ArgsAnalyzer(unsigned ArgRegByteSizeIn, unsigned RetRegByteSizeIn,
unsigned GRFByteSizeIn, const DataLayout &DLIn)
: ArgRegByteSize(ArgRegByteSizeIn), RetRegByteSize(RetRegByteSizeIn),
GRFByteSize(GRFByteSizeIn), DL(DLIn) {}
void analyze(const FunctionType &FTy, const GenXBackendConfig &BEConf,
bool InternalCC);
void clear();
unsigned getStackBytesUsed() const {
return StackBytesUsedForArgs + StackBytesUsedForRet;
}
unsigned getStackBytesUsedForArgs() const { return StackBytesUsedForArgs; }
unsigned getStackBytesUsedForRet() const { return StackBytesUsedForRet; }
unsigned getArgRegBytesUsed() const { return ArgRegBytesUsed; }
unsigned getRetRegBytesUsed() const { return RetRegBytesUsed; }
iterator_range<const_iterator> in_reg() const {
return make_range(InReg.begin(), InReg.end());
}
iterator_range<const_iterator> in_stack() const {
return make_range(InStack.begin(), InStack.end());
}
};
class GenXPrologEpilogInsertion
: public FunctionPass,
public InstVisitor<GenXPrologEpilogInsertion> {
const DataLayout *DL = nullptr;
const GenXSubtarget *ST = nullptr;
const GenXBackendConfig *BEConf = nullptr;
unsigned ArgRegByteSize = 0;
unsigned RetRegByteSize = 0;
// is stack used for stack calls (args, ret) or private memory.
bool StackUsed = false;
// is arg reg used for arguments passing.
bool ArgRegUsed = false;
// is ret reg used for return value passing.
bool RetRegUsed = false;
// Variable length arrays
bool HasVLA = false;
std::vector<AllocaInst *> Allocas;
void clear();
void initializeStack(Function &F);
void generatePrologEpilog(Function &F);
Value *generateStackCallProlog(Function &F, const ArgsAnalyzer &Info);
Value *generateSubroutineProlog(Function &F) const;
void generateStackCallEpilog(ReturnInst &RI, Value *TmpFP,
const ArgsAnalyzer &Info);
void generateSubroutineEpilog(ReturnInst &RI, Value *TmpFP) const;
void removeAttrs(Function &F) const;
bool isStackPrimitivesUsed() const;
Value *saveFP(IRBuilder<> &IRB) const;
void restoreFPAndSP(Value *TmpFP, IRBuilder<> &IRB) const;
// caller side argument layout
void generateStackCall(CallInst &CI);
void emitPrivateMemoryAllocations();
void passArgsInReg(CallInst &CI, const ArgsAnalyzer &Info,
IRBuilder<> &IRB) const;
void passInReg(Value &Op, unsigned OffsetInReg, IRBuilder<> &IRB,
PreDefined_Vars RegID, unsigned RegSize) const;
void passNonAggrInReg(Value &Op, unsigned OffsetInReg, IRBuilder<> &IRB,
PreDefined_Vars RegID, unsigned RegSize) const;
void passAggrInReg(Value &Op, unsigned OffsetInReg, IRBuilder<> &IRB,
PreDefined_Vars RegID, unsigned RegSize) const;
void readArgsFromReg(Function &F, const ArgsAnalyzer &Info,
IRBuilder<> &IRB) const;
void readFromRegAndReplace(Value &V, unsigned OffsetInReg, IRBuilder<> &IRB,
PreDefined_Vars RegID, unsigned RegSize) const;
Value *readNonAggrFromReg(Type &Ty, unsigned OffsetInReg, IRBuilder<> &IRB,
PreDefined_Vars RegID, unsigned RegSize) const;
Value *readAggrFromReg(Type &Ty, unsigned OffsetInReg, IRBuilder<> &IRB,
PreDefined_Vars RegID, unsigned RegSize) const;
void passArgsOnStack(CallInst &CI, const ArgsAnalyzer &Info, IRBuilder<> &IRB,
Value &InitSP) const;
void readArgsFromStack(Function &F, const ArgsAnalyzer &Info,
IRBuilder<> &IRB, Value &InitSP) const;
void push(Value &V, IRBuilder<> &IRB, Value &SP) const;
Value *pop(Type &ArgTy, IRBuilder<> &IRB, Value &InitSP) const;
Value *getNextSP(Type &Ty, IRBuilder<> &IRB, Value &SP) const;
// *** Helper functions ***
// All params should be easy to understand.
// BuildTempVal is used if the predefined register must be copied instead of
// simply read. For example, when an argument is in ARGV and we cannot be sure
// that between its uses ARGV will not be overwritten, the argument must be
// read as a copy from ARG.
Instruction *buildReadPredefReg(PreDefined_Vars RegID, IRBuilder<> &IRB,
Type *Ty, bool BuildTempVal = false,
bool AllowScalar = true, unsigned Offset = 0,
unsigned Width = 1) const;
Instruction *buildReadPredefReg(PreDefined_Vars RegID, IRBuilder<> &IRB,
Type *Ty, Value *Dep,
bool BuildTempVal = false,
bool AllowScalar = true, unsigned Offset = 0,
unsigned Width = 1) const;
Instruction *buildReadPredefRegNoRegion(PreDefined_Vars RegID,
IRBuilder<> &IRB, Type *Ty) const;
Instruction *buildReadPredefRegNoRegion(PreDefined_Vars RegID,
IRBuilder<> &IRB, Type *Ty,
Value *Dep) const;
Instruction *buildWritePredefReg(PreDefined_Vars RegID, IRBuilder<> &IRB,
Value *Input) const;
Instruction *buildWritePredefReg(PreDefined_Vars RegID, IRBuilder<> &IRB,
Value *Input, Value *Dep,
unsigned Offset = 0) const;
std::pair<Value *, Value *>
createBinOpPredefReg(PreDefined_Vars RegID, IRBuilder<> &IRB,
Instruction::BinaryOps Opc, Value* Val,
bool Copy = false, bool UpdateReg = true) const;
std::pair<Value *, Value *>
createBinOpPredefReg(PreDefined_Vars RegID, IRBuilder<> &IRB,
Instruction::BinaryOps Opc, unsigned long long Val,
bool Copy = false, bool UpdateReg = true) const;
alignment_t getAllocaAlignment(AllocaInst *AI) const;
Value *getThreadID(Module *M, IRBuilder<> &IRB) const;
public:
static char ID;
explicit GenXPrologEpilogInsertion();
StringRef getPassName() const override {
return "GenX prolog & epilog insertion";
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
void visitAllocaInst(AllocaInst &I);
void visitCallInst(CallInst &I);
};
} // namespace
char GenXPrologEpilogInsertion::ID = 0;
namespace llvm {
void initializeGenXPrologEpilogInsertionPass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(GenXPrologEpilogInsertion, "GenXPrologEpilogInsertion",
"GenXPrologEpilogInsertion", false, false)
INITIALIZE_PASS_DEPENDENCY(GenXBackendConfig)
INITIALIZE_PASS_END(GenXPrologEpilogInsertion, "GenXPrologEpilogInsertion",
"GenXPrologEpilogInsertion", false, false)
FunctionPass *llvm::createGenXPrologEpilogInsertionPass() {
return new GenXPrologEpilogInsertion();
}
namespace {
static bool isStackCallImplicitlyVectorized(const llvm::Type &Ty) {
return Ty.isFloatingPointTy() || Ty.isIntegerTy() || Ty.isPointerTy();
}
// FIXME: Do we really need this MD? Isn't it better to use some analysis here
// and in cisa builder.
template <typename T>
static void appendArgRetMetadata(T &AppendTo, unsigned ArgSize,
unsigned RetSize, IRBuilder<> &IRB) {
LLVMContext &Ctx = AppendTo.getContext();
MDNode *ArgMD =
MDNode::get(Ctx, ConstantAsMetadata::get(IRB.getInt32(ArgSize)));
MDNode *RetMD =
MDNode::get(Ctx, ConstantAsMetadata::get(IRB.getInt32(RetSize)));
AppendTo.setMetadata(vc::InstMD::FuncArgSize, ArgMD);
AppendTo.setMetadata(vc::InstMD::FuncRetSize, RetMD);
}
void ArgsAnalyzer::clear() {
InReg.clear();
InStack.clear();
ArgRegBytesUsed = 0;
RetRegBytesUsed = 0;
StackBytesUsedForArgs = 0;
StackBytesUsedForRet = 0;
}
// FIXME: Revisit this after trampolineInsertion enabling
static bool isInternalCC(const Function &F) {
return F.hasLocalLinkage() && !vc::isIndirect(&F);
}
static bool isInternalCC(const CallInst &CI) {
if (CI.isIndirectCall())
return false;
Function *F = CI.getCalledFunction();
IGC_ASSERT(F);
return isInternalCC(*F);
}
static unsigned getTypeSizeNoPadding(Type *Ty, const DataLayout *DL) {
unsigned NumElts = IndexFlattener::getNumElements(Ty);
unsigned TotalSize = 0;
for (unsigned i = 0; i < NumElts; ++i) {
Type *EltTy = IndexFlattener::getElementType(Ty, i);
TotalSize += vc::getTypeSize(EltTy, DL).inBytes();
}
return TotalSize;
}
// FIXME: bool InternalCC might be replaced with llvm::CallingConv but firstly
// we should create/adapt some stack analyzes.
void ArgsAnalyzer::analyze(const FunctionType &FTy,
const GenXBackendConfig &BEConf, bool InternalCC) {
clear();
for (unsigned i = 0; i < FTy.getNumParams(); ++i) {
// Each arg passed on ArgReg must be GRF aligned. Each arg passed on stack
// must be oword aligned.
IGC_ASSERT_MESSAGE(calcPadding(ArgRegBytesUsed, GRFByteSize) == 0,
"Must be grf aligned");
IGC_ASSERT_MESSAGE(calcPadding(StackBytesUsedForArgs, OWordBytes) == 0,
"Must be oword aligned");
Type *ArgTy = FTy.getParamType(i);
// FIXME: Do we have a way to unambiguously understand whether an aggregate
// type satisfies the IGC calling conv or not?
unsigned ArgSize = getTypeSizeNoPadding(ArgTy, &DL);
IGC_ASSERT_MESSAGE(ArgSize, "Arg size cannot be zero");
bool Overflow = ArgRegBytesUsed + ArgSize > ArgRegByteSize;
if (!Overflow) {
// Fits in ArgReg.
InReg.push_back({i, ArgRegBytesUsed});
ArgRegBytesUsed += ArgSize;
ArgRegBytesUsed += calcPadding(ArgRegBytesUsed, GRFByteSize);
} else {
// Doesn't fit. The stack must be used.
// Stack args are OWord aligned.
InStack.push_back({i, StackBytesUsedForArgs});
if (ArgTy->isAggregateType()) {
IGC_ASSERT_MESSAGE(InternalCC,
"IGC calling convention does not allow passing "
"aggregate operands by value on stack");
// Do not pack aggregates when passing on stack.
ArgSize = vc::getTypeSize(ArgTy, &DL).inBytes();
}
StackBytesUsedForArgs += ArgSize;
StackBytesUsedForArgs += calcPadding(StackBytesUsedForArgs, OWordBytes);
}
}
Type *RetTy = FTy.getReturnType();
if (RetTy->isVoidTy())
return;
const auto RetSize = getTypeSizeNoPadding(RetTy, &DL) *
(!InternalCC && isStackCallImplicitlyVectorized(*RetTy)
? BEConf.getInteropSubgroupSize()
: 1);
if (RetSize > RetRegByteSize)
StackBytesUsedForRet = RetSize + calcPadding(RetSize, OWordBytes);
else
RetRegBytesUsed = RetSize + calcPadding(RetSize, GRFByteSize);
}
GenXPrologEpilogInsertion::GenXPrologEpilogInsertion() : FunctionPass(ID) {
initializeGenXPrologEpilogInsertionPass(*PassRegistry::getPassRegistry());
}
void GenXPrologEpilogInsertion::getAnalysisUsage(AnalysisUsage &AU) const {
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<GenXBackendConfig>();
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
}
bool GenXPrologEpilogInsertion::isStackPrimitivesUsed() const {
return StackUsed || ArgRegUsed || RetRegUsed;
}
// If stack or ARG/RET reg used, the function cannot be readnone, readonly or
// writeonly.
// FIXME: actually, it can, but it requires deeper analysis. Maybe we can
// improve this after stack usage analysis improvement.
void GenXPrologEpilogInsertion::removeAttrs(Function &F) const {
if (!isStackPrimitivesUsed())
return;
F.removeFnAttr(Attribute::ReadNone);
F.removeFnAttr(Attribute::ReadOnly);
F.removeFnAttr(Attribute::WriteOnly);
}
static void removeCallInstAttrs(CallInst &CI) {
IGCLLVM::removeFnAttr(&CI, Attribute::ReadNone);
IGCLLVM::removeFnAttr(&CI, Attribute::ReadOnly);
IGCLLVM::removeFnAttr(&CI, Attribute::WriteOnly);
}
bool GenXPrologEpilogInsertion::runOnFunction(Function &F) {
clear();
BEConf = &getAnalysis<GenXBackendConfig>();
DL = &F.getParent()->getDataLayout();
ST = &getAnalysis<TargetPassConfig>()
.getTM<GenXTargetMachine>()
.getGenXSubtarget();
ArgRegByteSize = ArgRegSizeInGRFsOpt * ST->getGRFByteSize();
RetRegByteSize = RetRegSizeInGRFsOpt * ST->getGRFByteSize();
LLVM_DEBUG(dbgs() << "ArgReg size is " << ArgRegByteSize << "\n");
LLVM_DEBUG(dbgs() << "RetReg size is " << RetRegByteSize << "\n");
// Generate caller code for stack calls and private memory allocations first.
// Only after that generate prolog and epilog code. Such order is important
// because it allows saying whether the stack is used inside the function.
// This knowledge is required to decide on what must be generated in prolog
// and epilog. For example, we can omit to save FP if the stack won't be used.
// visit alloca
// visit call inst
visit(F);
// All allocations were collected. Now we can efficiently generate
// private memory allocations.
emitPrivateMemoryAllocations();
if (vc::isKernel(&F))
initializeStack(F);
else
// stack calls and subroutines
generatePrologEpilog(F);
removeAttrs(F);
return isStackPrimitivesUsed();
}
Value *GenXPrologEpilogInsertion::getThreadID(Module *M,
IRBuilder<> &IRB) const {
Function *Func = vc::InternalIntrinsic::getInternalDeclaration(
M, vc::InternalIntrinsic::logical_thread_id, {});
auto *TID = IRB.CreateCall(Func);
return TID;
}
// FE_SP = PrivateBase + HWTID * PrivMemPerThread
// FE_FP = FE_SP
void GenXPrologEpilogInsertion::initializeStack(Function &F) {
IGC_ASSERT(vc::isKernel(&F));
LLVM_DEBUG(dbgs() << "Initialize stack for kenrel " << F.getName() << "\n");
IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt());
int StackAmount =
vc::getStackAmount(&F, BEConf->getStatelessPrivateMemSize());
// Nothing to do. Stack is guaranteed not to be used.
if (StackAmount == 0)
return;
StackUsed |= true;
Value *TID = getThreadID(F.getParent(), IRB);
Value *StackAmountPerThread = IRB.getInt32(StackAmount);
if ((uint64_t)ST->getMaxThreadsNumPerSubDevice() * StackAmount >
std::numeric_limits<uint32_t>::max()) {
TID = IRB.CreateZExt(TID, IRB.getInt64Ty());
StackAmountPerThread =
IRB.CreateZExt(StackAmountPerThread, IRB.getInt64Ty());
}
auto *Mul = IRB.CreateMul(TID, StackAmountPerThread);
auto *MulCasted = IRB.CreateZExtOrBitCast(Mul, IRB.getInt64Ty());
auto &PrivBase =
vc::getImplicitArg(F, vc::KernelMetadata::IMP_OCL_PRIVATE_BASE);
auto *Add = IRB.CreateAdd(&PrivBase, MulCasted);
buildWritePredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB, Add);
Value *SP = buildReadPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
IRB.getInt64Ty(), false);
buildWritePredefReg(PreDefined_Vars::PREDEFINED_FE_FP, IRB, SP);
}
Value *GenXPrologEpilogInsertion::saveFP(IRBuilder<> &IRB) const {
Value *TmpFP = buildReadPredefReg(PreDefined_Vars::PREDEFINED_FE_FP, IRB,
IRB.getInt64Ty(), true);
Value *SP = buildReadPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
IRB.getInt64Ty(), false);
buildWritePredefReg(PreDefined_Vars::PREDEFINED_FE_FP, IRB, SP);
return TmpFP;
}
void GenXPrologEpilogInsertion::restoreFPAndSP(Value *TmpFP,
IRBuilder<> &IRB) const {
Value *FP = buildReadPredefReg(PreDefined_Vars::PREDEFINED_FE_FP, IRB,
IRB.getInt64Ty(), false);
buildWritePredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB, FP);
buildWritePredefReg(PreDefined_Vars::PREDEFINED_FE_FP, IRB, TmpFP);
}
// Stack call calling conv: behave in accordance with IGC calling conv.
// entry:
// tmpFP = FP
// FP = SP
// ...
// retBlock: (any)
// SP = FP
// FP = tmpFP
// ret
//
// Subroutine calling conv: internal calling conv. We have to create tmpFP
// variable to store SP so as to restore SP before the returns after possible
// allocations + run-time alignments.
// entry:
// tmpFP = SP
// ...
// retBlock: (any)
// SP = tmpFP
void GenXPrologEpilogInsertion::generatePrologEpilog(Function &F) {
/*NB/TODO: ArgsAnalyzer Info is only used for stack call cases below and
isInternalCC is always false in those cases. If ArgsAnalyzer can not be
reused for subroutine-related parts, the code needs to be refactored to
eliminate excessive entities.
*/
ArgsAnalyzer Info(ArgRegByteSize, RetRegByteSize, ST->getGRFByteSize(), *DL);
Value *TmpFP = nullptr;
if (vc::requiresStackCall(&F)) {
Info.analyze(*F.getFunctionType(), *BEConf,
/*NB/TODO: this is always false here*/ isInternalCC(F));
TmpFP = generateStackCallProlog(F, Info);
} else
TmpFP = generateSubroutineProlog(F);
for (auto &BB : F) {
auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
if (!RI)
continue;
if (vc::requiresStackCall(&F))
generateStackCallEpilog(*RI, TmpFP, Info);
else
generateSubroutineEpilog(*RI, TmpFP);
}
}
void GenXPrologEpilogInsertion::generateSubroutineEpilog(ReturnInst &RI,
Value *TmpFP) const {
if (!TmpFP) {
IGC_ASSERT_MESSAGE(
!StackUsed,
"SP must be restored from temporary value if stack was used");
return;
}
IGC_ASSERT_MESSAGE(StackUsed, "Stack was not used, there is no need to "
"restore SP from temporary value");
IRBuilder<> IRB(&RI);
buildWritePredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB, TmpFP);
}
void GenXPrologEpilogInsertion::generateStackCallEpilog(
ReturnInst &RI, Value *TmpFP, const ArgsAnalyzer &Info) {
IRBuilder<> IRB(&RI);
if (TmpFP)
restoreFPAndSP(TmpFP, IRB);
if (!Info.getRetRegBytesUsed() && !Info.getStackBytesUsedForRet())
return;
Value *RetVal = RI.getReturnValue();
// Implicitly vectorize the returned value based on calling convention
// requirement. This is supported only for scalars.
// https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_invoke_simd.asciidoc
if (isStackCallImplicitlyVectorized(*RetVal->getType()))
RetVal = IRB.CreateVectorSplat(BEConf->getInteropSubgroupSize(), RetVal,
"call_conv_vectorized_retval");
if (Info.getRetRegBytesUsed()) {
IGC_ASSERT(!Info.getStackBytesUsedForRet());
passInReg(*RetVal, 0, IRB, PreDefined_Vars::PREDEFINED_RET, RetRegByteSize);
RetRegUsed |= true;
} else if (Info.getStackBytesUsedForRet()) {
Value *RetSP = nullptr;
std::tie(std::ignore, RetSP) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Sub,
Info.getStackBytesUsed(), false, false);
push(*RetVal, IRB, *RetSP);
StackUsed |= true;
}
}
Value *GenXPrologEpilogInsertion::generateSubroutineProlog(Function &F) const {
LLVM_DEBUG(dbgs() << "Generating function prologue for " << F.getName()
<< " (subroutine)\n");
IRBuilder<> IRB(&F.getEntryBlock().front());
if (StackUsed)
return buildReadPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
IRB.getInt64Ty(), true);
return nullptr;
}
Value *
GenXPrologEpilogInsertion::generateStackCallProlog(Function &F,
const ArgsAnalyzer &Info) {
LLVM_DEBUG(dbgs() << "Generating function prologue for " << F.getName()
<< " (stackcall)\n");
IRBuilder<> IRB(&F.getEntryBlock().front());
Value *TmpFP = nullptr;
if (StackUsed)
TmpFP = saveFP(IRB);
if (Info.getArgRegBytesUsed()) {
readArgsFromReg(F, Info, IRB);
ArgRegUsed |= true;
}
if (Info.getStackBytesUsedForArgs()) {
StackUsed |= true;
Value *SpArgBegin = nullptr;
std::tie(std::ignore, SpArgBegin) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Sub,
Info.getStackBytesUsedForArgs(), false, false);
IGC_ASSERT(SpArgBegin);
readArgsFromStack(F, Info, IRB, *SpArgBegin);
}
IGC_ASSERT(Info.getArgRegBytesUsed() % ST->getGRFByteSize() == 0);
IGC_ASSERT(Info.getRetRegBytesUsed() % ST->getGRFByteSize() == 0);
appendArgRetMetadata(F, Info.getArgRegBytesUsed() / ST->getGRFByteSize(),
Info.getRetRegBytesUsed() / ST->getGRFByteSize(), IRB);
return TmpFP;
}
void GenXPrologEpilogInsertion::visitAllocaInst(AllocaInst &AI) {
IGC_ASSERT(!AI.isUsedWithInAlloca());
const BasicBlock *Parent = AI.getParent();
if (Parent == &Parent->getParent()->front()) {
Allocas.push_back(&AI);
if (!isa<ConstantInt>(AI.getArraySize()))
HasVLA = true;
} else {
IRBuilder<> IRB(&AI);
unsigned Alignment = getAllocaAlignment(&AI);
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::Add, Alignment - 1);
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::And, ~(Alignment - 1));
Value *AllocaSize = nullptr;
if (isa<ConstantInt>(AI.getArraySize())) {
AllocaSize = IRB.getInt64(
divideCeil(*AI.getAllocationSizeInBits(*DL), genx::ByteBits));
} else {
unsigned ElementSize = llvm::divideCeil(
DL->getTypeAllocSizeInBits(AI.getAllocatedType()), genx::ByteBits);
AllocaSize =
IRB.CreateMul(IRB.getInt64(ElementSize),
IRB.CreateZExt(AI.getOperand(0), IRB.getInt64Ty()));
}
auto [OrigSP, _] =
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::Add, AllocaSize, true);
auto *AllocaAddr = IRB.CreateIntToPtr(OrigSP, AI.getType(), AI.getName());
AI.replaceAllUsesWith(AllocaAddr);
AI.eraseFromParent();
}
}
void GenXPrologEpilogInsertion::emitPrivateMemoryAllocations() {
LLVM_DEBUG(dbgs() << "In emitPrivateMemoryAllocations\n");
if (Allocas.empty()) {
LLVM_DEBUG(dbgs() << "no alloca instructions in the entry basic block\n");
return;
}
StackUsed |= true;
IRBuilder<> IRB(Allocas.front());
// Sort to have allocas alignment in decreasing order.
std::stable_sort(Allocas.begin(), Allocas.end(),
[this](AllocaInst *LHS, AllocaInst *RHS) {
return getAllocaAlignment(LHS) > getAllocaAlignment(RHS);
});
// SP is oword bytes aligned at this point.
unsigned long long LargestAlignment = getAllocaAlignment(Allocas.front());
if (LargestAlignment > OWordBytes) {
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::Add, LargestAlignment - 1, false);
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::And, ~(LargestAlignment - 1), false);
}
std::vector<unsigned> NextAlignment;
std::transform(std::next(Allocas.begin()), Allocas.end(),
std::back_inserter(NextAlignment), [this](AllocaInst *AI) {
// visa::BytesPerSVMPtr is a minimal possible alignment
// that suits all data types.
return std::max(getAllocaAlignment(AI),
visa::BytesPerSVMPtr);
});
// After all private memory allocations SP must be oword aligned so as to
// keep SP alignment statically known.
NextAlignment.push_back(OWordBytes);
unsigned TotalSize = 0;
for (auto &&[AI, Alignment] : zip(Allocas, NextAlignment)) {
Value *OrigSP = nullptr;
if (HasVLA) {
if (isa<ConstantInt>(AI->getArraySize())) {
unsigned AllocaSize =
llvm::divideCeil(*AI->getAllocationSizeInBits(*DL), genx::ByteBits);
std::tie(OrigSP, std::ignore) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Add,
AllocaSize + Alignment - 1, true);
} else {
unsigned ElementSize = llvm::divideCeil(
DL->getTypeAllocSizeInBits(AI->getAllocatedType()), genx::ByteBits);
Value *AllocaSize =
IRB.CreateMul(IRB.getInt64(ElementSize),
IRB.CreateZExt(AI->getOperand(0), IRB.getInt64Ty()));
std::tie(OrigSP, std::ignore) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Add,
IRB.CreateAdd(AllocaSize, IRB.getInt64(Alignment - 1)), true);
}
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::And, ~(Alignment - 1));
} else {
unsigned AllocaSize =
llvm::divideCeil(*AI->getAllocationSizeInBits(*DL), genx::ByteBits);
TotalSize += AllocaSize;
unsigned AllocaPadding = calcPadding(TotalSize, Alignment);
TotalSize += AllocaPadding;
std::tie(OrigSP, std::ignore) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Add,
AllocaSize + AllocaPadding, true);
}
CastInst *AllocaAddr = CastInst::Create(Instruction::IntToPtr, OrigSP,
AI->getType(), AI->getName(), AI);
AllocaAddr->setDebugLoc(AI->getDebugLoc());
AI->replaceAllUsesWith(AllocaAddr);
}
// erase allocas in a separate loop so as not to invalidate IRBuilder
// insertion point.
std::for_each(Allocas.begin(), Allocas.end(),
[](AllocaInst *AI) { AI->eraseFromParent(); });
}
void GenXPrologEpilogInsertion::visitCallInst(CallInst &I) {
if (I.isInlineAsm())
return;
if (GenXIntrinsic::isAnyNonTrivialIntrinsic(&I))
return;
bool IsIndirectCall = I.isIndirectCall();
// FIXME: Temporary solution until SPIRV translator conversion of unnamed
// structure types is fixed for intrinsics.
bool IsIntrinsicIndirect = false;
Value *Op = I.getCalledOperand();
if (auto *CE = dyn_cast<ConstantExpr>(Op);
CE && CE->getOpcode() == Instruction::BitCast) {
auto *CalledFunction = cast<Function>(CE->getOperand(0));
IsIntrinsicIndirect =
GenXIntrinsic::isAnyNonTrivialIntrinsic(CalledFunction);
IGC_ASSERT_MESSAGE(IsIntrinsicIndirect, "Only intrinsic is expected");
}
bool IsStackCall =
!IsIntrinsicIndirect &&
(IsIndirectCall || vc::requiresStackCall(I.getCalledFunction()));
// We have a subroutine or stack call that won't be correctly analyzed. The
// analysis is supposed to answer a question of whether ARG, RET registers
// are used. Until this analysis is implemented, let's assume that the call
// can overwrite ARG and RET. This allows generating always correct code.
// FIXME: Generated code may be non-optimal since it will always lead to
// ARG, REG copy generation in the presence of any calls. The described
// analysis should be added.
ArgRegUsed = true;
RetRegUsed = true;
if (!IsStackCall)
return;
generateStackCall(I);
removeCallInstAttrs(I);
}
void GenXPrologEpilogInsertion::clear() {
DL = nullptr;
ST = nullptr;
BEConf = nullptr;
ArgRegByteSize = 0;
RetRegByteSize = 0;
// is stack used for stack calls or private memory.
StackUsed = false;
ArgRegUsed = false;
RetRegUsed = false;
Allocas.clear();
}
// generate caller site of stack call
void GenXPrologEpilogInsertion::generateStackCall(CallInst &CI) {
ArgsAnalyzer Info(ArgRegByteSize, RetRegByteSize, ST->getGRFByteSize(), *DL);
Info.analyze(*CI.getFunctionType(), *BEConf, isInternalCC(CI));
IRBuilder<> IRB(&CI);
ArgRegUsed |= static_cast<bool>(Info.getArgRegBytesUsed());
RetRegUsed |= static_cast<bool>(Info.getRetRegBytesUsed());
passArgsInReg(CI, Info, IRB);
// Generate stack-related instructions only if it is used.
if (Info.getStackBytesUsed()) {
StackUsed |= true;
// Allocate space in stack for the ret value.
if (Info.getStackBytesUsedForRet())
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::Add, Info.getStackBytesUsedForRet(),
false);
// Allocate space in stack for the args and copy arg by arg.
if (Info.getStackBytesUsedForArgs()) {
Value *OrigSp = nullptr;
std::tie(OrigSp, std::ignore) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Add,
Info.getStackBytesUsedForArgs(), true);
IGC_ASSERT(OrigSp);
passArgsOnStack(CI, Info, IRB, *OrigSp);
}
}
IRB.SetInsertPoint(CI.getNextNode());
IGC_ASSERT(Info.getArgRegBytesUsed() % ST->getGRFByteSize() == 0);
IGC_ASSERT(Info.getRetRegBytesUsed() % ST->getGRFByteSize() == 0);
appendArgRetMetadata(CI, Info.getArgRegBytesUsed() / ST->getGRFByteSize(),
Info.getRetRegBytesUsed() / ST->getGRFByteSize(), IRB);
if (Info.getRetRegBytesUsed())
readFromRegAndReplace(CI, 0, IRB, PreDefined_Vars::PREDEFINED_RET,
RetRegByteSize);
else if (Info.getStackBytesUsedForRet()) {
Value *RetSP = nullptr;
std::tie(std::ignore, RetSP) = createBinOpPredefReg(
PreDefined_Vars::PREDEFINED_FE_SP, IRB, Instruction::Sub,
Info.getStackBytesUsed(), false, false);
Value *Ret = pop(*CI.getType(), IRB, *RetSP);
CI.replaceAllUsesWith(Ret);
}
if (Info.getStackBytesUsed())
createBinOpPredefReg(PreDefined_Vars::PREDEFINED_FE_SP, IRB,
Instruction::Sub, Info.getStackBytesUsed(), false);
}
std::pair<Value *, Value *> GenXPrologEpilogInsertion::createBinOpPredefReg(
PreDefined_Vars RegID, IRBuilder<> &IRB, Instruction::BinaryOps Opc,
unsigned long long Val, bool Copy, bool UpdateReg) const {
return createBinOpPredefReg(RegID, IRB, Opc, IRB.getInt64(Val), Copy,
UpdateReg);
}
std::pair<Value *, Value *> GenXPrologEpilogInsertion::createBinOpPredefReg(
PreDefined_Vars RegID, IRBuilder<> &IRB, Instruction::BinaryOps Opc,
Value *Val, bool Copy, bool UpdateReg) const {
Value *RegRead = buildReadPredefReg(RegID, IRB, IRB.getInt64Ty(), Copy, true);
Value *NewValue = IRB.CreateBinOp(Opc, RegRead, Val);
if (UpdateReg)
buildWritePredefReg(RegID, IRB, NewValue);
if (!Copy)
RegRead = nullptr;
return std::make_pair(RegRead, NewValue);
}
void GenXPrologEpilogInsertion::readArgsFromStack(Function &F,
const ArgsAnalyzer &Info,
IRBuilder<> &IRB,
Value &InitSP) const {
LLVM_DEBUG(dbgs() << "Reading these args from stack. Function " << F.getName()
<< "\n");
Value *SP = &InitSP;
for (const auto &ArgInfo : Info.in_stack()) {
Value *Arg = IGCLLVM::getArg(F, ArgInfo.ArgNo);
Type *ArgTy = Arg->getType();
Value *RealArg = pop(*ArgTy, IRB, *SP);
Arg->replaceAllUsesWith(RealArg);
SP = getNextSP(*ArgTy, IRB, *SP);
}
}
void GenXPrologEpilogInsertion::passArgsOnStack(CallInst &CI,
const ArgsAnalyzer &Info,
IRBuilder<> &IRB,
Value &InitSP) const {
Value *SP = &InitSP;
for (const auto &ArgInfo : Info.in_stack()) {
Value *Arg = CI.getArgOperand(ArgInfo.ArgNo);
push(*Arg, IRB, *SP);
SP = getNextSP(*Arg->getType(), IRB, *SP);
}
}
Value *GenXPrologEpilogInsertion::pop(Type &ArgTy, IRBuilder<> &IRB,
Value &InitSP) const {
// FIXME: There must be a correct addrspace.
Type *SPPtrTy = PointerType::getUnqual(&ArgTy);
Value *SPPtr = IRB.CreateIntToPtr(&InitSP, SPPtrTy);
return IRB.CreateLoad(&ArgTy, SPPtr);
}
// It does not allocate memory
Value *GenXPrologEpilogInsertion::getNextSP(Type &Ty, IRBuilder<> &IRB,
Value &SP) const {
// FIXME: type size calculations and padding should be moved to some
// analysis.
unsigned Size = vc::getTypeSize(&Ty, DL).inBytes();
Size += calcPadding(Size, OWordBytes);
return IRB.CreateAdd(&SP, IRB.getInt64(Size));
}
void GenXPrologEpilogInsertion::push(Value &V, IRBuilder<> &IRB,
Value &SP) const {
// FIXME: There must be a correct addrspace.
Type *SPPtrTy = PointerType::getUnqual(V.getType());
Value *SPPtr = IRB.CreateIntToPtr(&SP, SPPtrTy);
IRB.CreateStore(&V, SPPtr);
}
void GenXPrologEpilogInsertion::readArgsFromReg(Function &F,
const ArgsAnalyzer &Info,
IRBuilder<> &IRB) const {
for (const auto &ArgInfo : Info.in_reg()) {
Argument *Arg = IGCLLVM::getArg(F, ArgInfo.ArgNo);
readFromRegAndReplace(*Arg, ArgInfo.Offset, IRB,
PreDefined_Vars::PREDEFINED_ARG, ArgRegByteSize);
}
}
void GenXPrologEpilogInsertion::readFromRegAndReplace(Value &V,
unsigned OffsetInReg,
IRBuilder<> &IRB,
PreDefined_Vars RegID,
unsigned RegSize) const {
Type *Ty = V.getType();
Value *Read = nullptr;
if (Ty->isAggregateType())
Read = readAggrFromReg(*Ty, OffsetInReg, IRB, RegID, RegSize);
else
Read = readNonAggrFromReg(*Ty, OffsetInReg, IRB, RegID, RegSize);
V.replaceAllUsesWith(Read);
}
Value *GenXPrologEpilogInsertion::readNonAggrFromReg(Type &Ty,
unsigned OffsetInReg,
IRBuilder<> &IRB,
PreDefined_Vars RegID,
unsigned RegSize) const {
IGC_ASSERT(!Ty.isAggregateType());
Type *ToReadTy = &Ty;
Type *ScalarTy = ToReadTy->getScalarType();
if (ScalarTy->isIntegerTy(1)) {
auto *VTy = cast<IGCLLVM::FixedVectorType>(ToReadTy);
IGC_ASSERT(VTy->getNumElements() % genx::ByteBits == 0);
ScalarTy = IRB.getInt8Ty();
ToReadTy = IGCLLVM::FixedVectorType::get(ScalarTy, VTy->getNumElements() /
genx::ByteBits);
}
// Create a type for read.predef
Type *RegTy = IGCLLVM::FixedVectorType::get(
ScalarTy, RegSize / vc::getTypeSize(ScalarTy, DL).inBytes());
unsigned NumElts = 1;
if (auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(ToReadTy))
NumElts = VT->getNumElements();
bool CreateCopy = true;
if (RegID == PreDefined_Vars::PREDEFINED_ARG && !ArgRegUsed)
CreateCopy = false;
Value *Read =
buildReadPredefReg(RegID, IRB, RegTy, CreateCopy, !ToReadTy->isVectorTy(),
OffsetInReg, NumElts);
if (ToReadTy != &Ty)
Read = IRB.CreateBitCast(Read, &Ty);
return Read;
}
Value *GenXPrologEpilogInsertion::readAggrFromReg(Type &Ty,
unsigned OffsetInReg,
IRBuilder<> &IRB,
PreDefined_Vars RegID,
unsigned RegSize) const {
IGC_ASSERT(Ty.isAggregateType());
unsigned AggrNumElts = IndexFlattener::getNumElements(&Ty);
unsigned OffsetInAggr = 0;
Value *AggrRes = UndefValue::get(&Ty);
for (unsigned i = 0; i < AggrNumElts; ++i) {
Type *EltTy = IndexFlattener::getElementType(&Ty, i);
auto EltTySize = vc::getTypeSize(EltTy, DL);
// Reading each aggregate element as a vector of bytes.
Type *EltTyAsBytes =
IGCLLVM::FixedVectorType::get(IRB.getInt8Ty(), EltTySize.inBytes());
Value *Read = readNonAggrFromReg(*EltTyAsBytes, OffsetInReg + OffsetInAggr,
IRB, RegID, RegSize);
if (EltTy->isPointerTy()) {
Value *IntP = IRB.CreateBitCast(Read, IRB.getIntNTy(EltTySize.inBits()));
Read = IRB.CreateIntToPtr(IntP, EltTy);
} else
Read = IRB.CreateBitCast(Read, EltTy);
OffsetInAggr += EltTySize.inBytes();
auto Indices = IndexFlattener::unflatten(&Ty, i);
AggrRes = IRB.CreateInsertValue(AggrRes, Read, Indices);
}
return AggrRes;
}
void GenXPrologEpilogInsertion::passArgsInReg(CallInst &CI,
const ArgsAnalyzer &Info,
IRBuilder<> &IRB) const {
for (const auto &ArgInfo : Info.in_reg()) {
Value *Op = CI.getArgOperand(ArgInfo.ArgNo);
passInReg(*Op, ArgInfo.Offset, IRB, PreDefined_Vars::PREDEFINED_ARG,
ArgRegByteSize);
}
}
void GenXPrologEpilogInsertion::passInReg(Value &Op, unsigned OffsetInReg,
IRBuilder<> &IRB,
PreDefined_Vars RegID,
unsigned RegSize) const {
Type *OpTy = Op.getType();
if (OpTy->isAggregateType())
passAggrInReg(Op, OffsetInReg, IRB, RegID, RegSize);
else
passNonAggrInReg(Op, OffsetInReg, IRB, RegID, RegSize);
}
void GenXPrologEpilogInsertion::passNonAggrInReg(Value &Op,
unsigned OffsetInReg,
IRBuilder<> &IRB,
PreDefined_Vars RegID,
unsigned RegSize) const {
Value *ToWrite = &Op;
Type *ToWriteTy = ToWrite->getType();
IGC_ASSERT(!ToWriteTy->isAggregateType());
Type *ScalarTy = ToWriteTy->getScalarType();
if (ScalarTy->isIntegerTy(1)) {
auto *VOpTy = cast<IGCLLVM::FixedVectorType>(ToWriteTy);
IGC_ASSERT(VOpTy->getNumElements() % genx::ByteBits == 0);
ScalarTy = IRB.getInt8Ty();
ToWriteTy = IGCLLVM::FixedVectorType::get(
ScalarTy, VOpTy->getNumElements() / genx::ByteBits);
ToWrite = IRB.CreateBitCast(ToWrite, ToWriteTy);
}
// Each arg is copied to ARG in the way described below. It also contains a
// small example for %arg2.
// %arg2 = shl ...
// call void @f(i32 %arg1, i32 %arg2)
//
// 1. Read current ARG as original arg will only partially override its
// content. The scalar type or the read.predef is chosen to be the same as
// the original arg has (i32 for %arg2). This simplify the future steps.
// %17 = call <256 x i32> @llvm.genx.read.predef.reg.v256i32.v256i32(i32
// 8, <256 x i32> undef)
//
// 2. Copy arg to the correct place in the read ARG (Example: copy i32 %arg2
// with offset = 32, because of alignment requirements).
// %18 = call <256 x i32> @llvm.genx.wrregioni.v256i32.i32.i16.i1(<256 x
// i32> %17, i32 %arg2, i32 0, i32 1, i32 1, i16 32, i32 undef, i1 true)
//
// 3. Save the updated ARG
// %19 = call i32 @llvm.genx.write.predef.reg.i32.v256i32(i32 8, <256 x
// i32> %18)
// Create a type for read.predef
Type *RegTy = IGCLLVM::FixedVectorType::get(
ScalarTy, RegSize / vc::getTypeSize(ScalarTy, DL).inBytes());
// Read ARG
Instruction *Reg = buildReadPredefRegNoRegion(RegID, IRB, RegTy);
// Write the arg to ARG
buildWritePredefReg(RegID, IRB, ToWrite, Reg, OffsetInReg);
}
void GenXPrologEpilogInsertion::passAggrInReg(Value &Op, unsigned OffsetInReg,
IRBuilder<> &IRB,
PreDefined_Vars RegID,
unsigned RegSize) const {
IGC_ASSERT(Op.getType()->isAggregateType());
unsigned AggrNumElts = IndexFlattener::getNumElements(Op.getType());
unsigned OffsetInAggr = 0;
for (unsigned i = 0; i < AggrNumElts; ++i) {
auto Indices = IndexFlattener::unflatten(Op.getType(), i);
Value *Elt = IRB.CreateExtractValue(&Op, Indices);
IGC_ASSERT_MESSAGE(!Elt->getType()->isAggregateType(),
"Stack call argument was not flattened correctly");
// Passing each aggregate element as a vector of bytes.
auto EltTySize = vc::getTypeSize(Elt->getType(), DL);
Type *EltTyAsBytes =
IGCLLVM::FixedVectorType::get(IRB.getInt8Ty(), EltTySize.inBytes());
if (Elt->getType()->isPointerTy())
Elt = IRB.CreatePtrToInt(Elt, IRB.getIntNTy(EltTySize.inBits()));
Elt = IRB.CreateBitCast(Elt, EltTyAsBytes);
passNonAggrInReg(*Elt, OffsetInReg + OffsetInAggr, IRB, RegID, RegSize);
OffsetInAggr += EltTySize.inBytes();
}
}
Instruction *GenXPrologEpilogInsertion::buildReadPredefReg(
PreDefined_Vars RegID, IRBuilder<> &IRB, Type *Ty, bool BuildTempVal,
bool AllowScalar, unsigned Offset, unsigned Width) const {
return buildReadPredefReg(RegID, IRB, Ty, UndefValue::get(Ty), BuildTempVal,
AllowScalar, Offset, Width);
}
Instruction *GenXPrologEpilogInsertion::buildReadPredefReg(
PreDefined_Vars RegID, IRBuilder<> &IRB, Type *Ty, Value *Dep,
bool BuildTempVal, bool AllowScalar, unsigned Offset,
unsigned Width) const {
auto *Result = buildReadPredefRegNoRegion(RegID, IRB, Ty, Dep);
Region R(Result);
R.Offset = Offset;
if (Width) {
R.NumElements = Width;
R.Width = Width;
}
Result = R.createRdRegion(Result, "", &*IRB.GetInsertPoint(),
IRB.getCurrentDebugLocation(),
AllowScalar && !BuildTempVal);
if (BuildTempVal) {
R.Offset = 0;
Result =
R.createWrRegion(UndefValue::get(Result->getType()), Result, "",
&*IRB.GetInsertPoint(), IRB.getCurrentDebugLocation());
if (Width == 1 && AllowScalar)
Result = R.createRdRegion(Result, "", &*IRB.GetInsertPoint(),
IRB.getCurrentDebugLocation(), AllowScalar);
}
return Result;
}
Instruction *GenXPrologEpilogInsertion::buildReadPredefRegNoRegion(
PreDefined_Vars RegID, IRBuilder<> &IRB, Type *Ty) const {
return buildReadPredefRegNoRegion(RegID, IRB, Ty, UndefValue::get(Ty));
}
Instruction *GenXPrologEpilogInsertion::buildReadPredefRegNoRegion(
PreDefined_Vars RegID, IRBuilder<> &IRB, Type *Ty, Value *Dep) const {
Function *RegReadIntr = GenXIntrinsic::getGenXDeclaration(
IRB.GetInsertPoint()->getModule(),
llvm::GenXIntrinsic::genx_read_predef_reg,
{(isa<VectorType>(Ty) ? Ty : IGCLLVM::FixedVectorType::get(Ty, 1)),
Dep->getType()});
auto *RegRead = IRB.CreateCall(RegReadIntr, {IRB.getInt32(RegID), Dep});
return RegRead;
}
Instruction *GenXPrologEpilogInsertion::buildWritePredefReg(
PreDefined_Vars RegID, IRBuilder<> &IRB, Value *Input) const {
return buildWritePredefReg(RegID, IRB, Input,
UndefValue::get(Input->getType()));
}
Instruction *GenXPrologEpilogInsertion::buildWritePredefReg(
PreDefined_Vars RegID, IRBuilder<> &IRB, Value *Input, Value *Dep,
unsigned Offset) const {
Region RWrite(Input, DL);
RWrite.Offset = Offset;
auto *Wrr =
RWrite.createWrRegion(Dep, Input, "", &*IRB.GetInsertPoint(), DebugLoc());
Function *RegWriteIntr = GenXIntrinsic::getGenXDeclaration(
IRB.GetInsertPoint()->getModule(),
llvm::GenXIntrinsic::genx_write_predef_reg,
{Input->getType(), Wrr->getType()});
auto *RegWrite = IRB.CreateCall(RegWriteIntr, {IRB.getInt32(RegID), Wrr});
return RegWrite;
}
alignment_t
GenXPrologEpilogInsertion::getAllocaAlignment(AllocaInst *AI) const {
auto Align = IGCLLVM::getAlignmentValue(AI);
if (Align == 0)
Align = DL->getPrefTypeAlignment(AI->getAllocatedType());
return Align;
}
} // namespace
|