File: GenXPromotePredicate.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.17791.18-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 102,312 kB
  • sloc: cpp: 935,343; lisp: 286,143; ansic: 16,196; python: 3,279; yacc: 2,487; lex: 1,642; pascal: 300; sh: 174; makefile: 27
file content (342 lines) | stat: -rw-r--r-- 11,688 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//
/// GenXPromotePredicate
/// --------------------
///
/// GenXPromotePredicate is an optimization pass that promotes vector operations
/// on predicates (n x i1) to operations on wider integer types (<n x i16>).
/// This often reduces flag register pressure and improves code quality.
///
//===----------------------------------------------------------------------===//

#include "GenX.h"
#include "GenXSubtarget.h"
#include "GenXTargetMachine.h"
#include "GenXUtil.h"

#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"

#include "llvmWrapper/IR/DerivedTypes.h"

#define DEBUG_TYPE "genx-promote-predicate"

using namespace llvm;
using namespace genx;

static cl::opt<unsigned> LogicOpsThreshold(
    "logical-ops-threshold", cl::init(5), cl::Hidden,
    cl::desc("Number of logical predicate operations to apply GRF promotion"));

STATISTIC(NumCollectedPredicateWebs, "Number of collected predicate webs");
STATISTIC(NumPromotedPredicateWebs, "Number of GRF-promoted predicate webs");

namespace {

class GenXPromotePredicate : public FunctionPass {
public:
  static char ID;
  GenXPromotePredicate() : FunctionPass(ID) {}
  bool runOnFunction(Function &F) override;
  StringRef getPassName() const override { return "GenXPromotePredicate"; }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetPassConfig>();
    AU.setPreservesCFG();
  }
};

} // namespace

char GenXPromotePredicate::ID = 0;

namespace llvm {
void initializeGenXPromotePredicatePass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(GenXPromotePredicate, "GenXPromotePredicate",
                      "GenXPromotePredicate", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(GenXPromotePredicate, "GenXPromotePredicate",
                    "GenXPromotePredicate", false, false)

FunctionPass *llvm::createGenXPromotePredicatePass() {
  initializeGenXPromotePredicatePass(*PassRegistry::getPassRegistry());
  return new GenXPromotePredicate;
}

static constexpr unsigned PromotedPredicateWidth = 16;

// Get predicate value with grf type.
static Value *getExtendedValue(Value *Val, Instruction *InsertBefore) {
  IGC_ASSERT(Val->getType()->isIntOrIntVectorTy(1));
  IRBuilder<> IRB(InsertBefore);
  Type *NewTy =
      IGCLLVM::getWithNewBitWidth(Val->getType(), PromotedPredicateWidth);
  return IRB.CreateSExt(Val, NewTy, Val->getName() + ".widened");
}

// Get grf value with predicate type.
static Value *getTruncatedValue(Value *Val, Instruction *InsertBefore) {
  IGC_ASSERT(Val->getType()->isIntOrIntVectorTy(PromotedPredicateWidth));
  IRBuilder<> IRB(InsertBefore);
  Type *NewTy = IGCLLVM::getWithNewBitWidth(Val->getType(), 1);
  return IRB.CreateTrunc(Val, NewTy, Val->getName() + ".truncated");
}

static Value *scalarizeInputPredicate(Value *V, Type *Ty, IRBuilder<> &IRB) {
  if (auto *C = dyn_cast<Constant>(V)) {
    if (C->isAllOnesValue())
      return Constant::getAllOnesValue(Ty);
    if (C->isNullValue())
      return Constant::getNullValue(Ty);
  }
  return IRB.CreateBitCast(V, Ty);
}

// Promote a vector predicate operation into scalar integer one.
static Value *promoteInstToScalar(Instruction *Inst) {
  IRBuilder<> IRB(Inst);

  auto *VTy = cast<IGCLLVM::FixedVectorType>(Inst->getType());
  auto Width = VTy->getNumElements();
  IGC_ASSERT(VTy->isIntOrIntVectorTy(1));
  IGC_ASSERT(Width == 8 || Width == 16 || Width == 32);

  auto *STy = IRB.getIntNTy(Width);

  // Special case - phi node.
  if (auto *Phi = dyn_cast<PHINode>(Inst)) {
    auto *ScalarPhi = IRB.CreatePHI(STy, Phi->getNumIncomingValues(),
                                    Phi->getName() + ".scalar");
    for (unsigned I = 0; I < Phi->getNumIncomingValues(); ++I) {
      auto *IncomingBlock = Phi->getIncomingBlock(I);
      auto *IncomingValue = Phi->getIncomingValue(I);

      IRB.SetInsertPoint(IncomingBlock->getTerminator());
      auto *ScalarValue = scalarizeInputPredicate(IncomingValue, STy, IRB);

      ScalarPhi->addIncoming(ScalarValue, IncomingBlock);
    }

    IRB.SetInsertPoint(Phi->getParent()->getFirstNonPHI());
    return IRB.CreateBitCast(ScalarPhi, VTy);
  }

  IGC_ASSERT(isa<BinaryOperator>(Inst));

  auto *Op1 = scalarizeInputPredicate(Inst->getOperand(0), STy, IRB);
  auto *Op2 = scalarizeInputPredicate(Inst->getOperand(1), STy, IRB);
  auto *ScalarInst = IRB.CreateBinOp(cast<BinaryOperator>(Inst)->getOpcode(),
                                     Op1, Op2, Inst->getName() + ".scalar");
  return IRB.CreateBitCast(ScalarInst, VTy);
}

// Promote one predicate instruction to grf - promote all its operands and
// instruction itself, and then sink the result back to predicate.
static Value *promoteInst(Instruction *Inst, bool AllowScalarPromotion) {
  if (auto *VTy = dyn_cast<IGCLLVM::FixedVectorType>(Inst->getType());
      VTy && AllowScalarPromotion) {
    IGC_ASSERT(VTy->isIntOrIntVectorTy(1));
    auto Width = VTy->getNumElements();

    if (Width == 8 || Width == 16 || Width == 32)
      return promoteInstToScalar(Inst);
  }

  IRBuilder<> IRB(Inst);
  // Special case - phi node.
  if (auto *Phi = dyn_cast<PHINode>(Inst)) {
    auto *WidenedPhi = IRB.CreatePHI(
        IGCLLVM::getWithNewBitWidth(Phi->getType(), PromotedPredicateWidth),
        Phi->getNumIncomingValues(), Phi->getName() + ".promoted");
    for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
      auto IncomingValue = Phi->getIncomingValue(i);
      auto IncomingBlock = Phi->getIncomingBlock(i);
      WidenedPhi->addIncoming(
          getExtendedValue(IncomingValue, IncomingBlock->getTerminator()),
          IncomingBlock);
    }
    return getTruncatedValue(WidenedPhi, Phi->getParent()->getFirstNonPHI());
  }
  // Process binary operators.
  IGC_ASSERT(isa<BinaryOperator>(Inst));
  Value *Op1 = getExtendedValue(Inst->getOperand(0), Inst),
        *Op2 = getExtendedValue(Inst->getOperand(1), Inst);
  Value *PromotedInst =
      IRB.CreateBinOp(cast<BinaryOperator>(Inst)->getOpcode(), Op1, Op2,
                      Inst->getName() + ".promoted");
  return getTruncatedValue(PromotedInst, Inst);
}

// Cleanup trunc->sext chains and lower trunc if there are remaining uses:
// trunc <n x i16> %val to <n x i1> => icmp %val, 0
// This is done in assumption that all bits in truncated value are the same
// (this is always true in predicate web).
static void foldTruncAndSExt(TruncInst *TI) {
  Value *SrcVal = TI->getOperand(0);
  Type *SrcTy = TI->getSrcTy();
  SmallVector<Instruction *, 4> ToErase;
  for (auto U : TI->users()) {
    auto *SI = dyn_cast<SExtInst>(U);
    if (!SI || SI->getDestTy() != SrcTy)
      continue;
    ToErase.push_back(SI);
  }
  for (auto SI : ToErase) {
    SI->replaceAllUsesWith(SrcVal);
    SI->eraseFromParent();
  }
  if (!TI->user_empty()) {
    auto Cmp =
        IRBuilder<>(TI).CreateICmpNE(SrcVal, Constant::getNullValue(SrcTy));
    TI->replaceAllUsesWith(Cmp);
  }
  TI->eraseFromParent();
}

static void foldBitcast(BitCastInst *Cast) {
  auto *Src = Cast->getOperand(0);
  auto *SrcTy = Src->getType();

  SmallVector<User *, 4> ToErase;
  llvm::copy_if(Cast->users(), std::back_inserter(ToErase), [SrcTy](auto *U) {
    return isa<BitCastInst>(U) && U->getType() == SrcTy;
  });

  for (auto *U : ToErase) {
    auto *I = cast<Instruction>(U);
    I->replaceAllUsesWith(Src);
    I->eraseFromParent();
  }

  if (Cast->user_empty())
    Cast->eraseFromParent();
}

class PredicateWeb {
public:
  template <class InputIt>
  PredicateWeb(InputIt First, InputIt Last, bool AllowScalarAllAny)
      : Web(First, Last), AllowScalarAllAny(AllowScalarAllAny) {}
  void print(llvm::raw_ostream &O) const {
    for (auto Inst : Web)
      O << *Inst << '\n';
  }
  void dump() const { print(dbgs()); }
  bool isBeneficialToPromote() const {
    unsigned NumBinaryOps =
        std::count_if(Web.begin(), Web.end(),
                      [](auto *Inst) { return isa<BinaryOperator>(Inst); });
    return NumBinaryOps >= LogicOpsThreshold;
  }
  void doPromotion() const {
    auto AllowScalar = true;
    if (!AllowScalarAllAny)
      AllowScalar = llvm::none_of(Web, [](auto *Inst) {
        return llvm::any_of(Inst->users(), [](auto *U) {
          auto IID = vc::getAnyIntrinsicID(U);
          return IID == GenXIntrinsic::genx_any ||
                 IID == GenXIntrinsic::genx_all;
        });
      });

    // Do promotion.
    SmallVector<Instruction *, 8> Worklist;
    for (auto *Inst : Web) {
      auto *PromotedInst = promoteInst(Inst, AllowScalar);

      if (isa<TruncInst>(PromotedInst) || isa<BitCastInst>(PromotedInst))
        Worklist.push_back(cast<Instruction>(PromotedInst));

      Inst->replaceAllUsesWith(PromotedInst);
      Inst->eraseFromParent();
    }
    // Do cleanup.
    for (auto *I : Worklist)
      if (auto *Trunc = dyn_cast<TruncInst>(I))
        foldTruncAndSExt(Trunc);
      else if (auto *Cast = dyn_cast<BitCastInst>(I))
        foldBitcast(Cast);
  }

private:
  SmallPtrSet<Instruction *, 16> Web;
  bool AllowScalarAllAny;
};

constexpr const char IdxMDName[] = "pred.index";
// Comparator to keep sequence of instructions - otherwise it will compare
// dynamically allocated pointers
struct Comparator {
  long getMd(Instruction *const &I) const {
    auto *IMd = I->getMetadata(IdxMDName);
    IGC_ASSERT_EXIT(IMd);
    return cast<ConstantInt>(
               cast<ConstantAsMetadata>(IMd->getOperand(0).get())->getValue())
        ->getZExtValue();
  }
  bool operator()(Instruction *const &Lhs, Instruction *const &Rhs) const {
    return getMd(Lhs) > getMd(Rhs);
  }
};

bool GenXPromotePredicate::runOnFunction(Function &F) {
  auto &ST = getAnalysis<TargetPassConfig>()
                 .getTM<GenXTargetMachine>()
                 .getGenXSubtarget();
  bool AllowScalarAllAny = !ST.hasFusedEU();

  // Put every predicate instruction into its own equivalence class.
  long Idx = 0;
  llvm::EquivalenceClasses<Instruction *, Comparator> PredicateWebs;
  for (auto &I : instructions(F)) {
    if (!genx::isPredicate(&I))
      continue;
    if (!I.isBitwiseLogicOp() && !isa<PHINode>(&I))
      continue;
    auto &Ctx = I.getContext();
    auto *MD = ConstantAsMetadata::get(
        ConstantInt::get(Ctx, llvm::APInt(64, ++Idx, false)));
    I.setMetadata(IdxMDName, MDNode::get(Ctx, MD));
    PredicateWebs.insert(&I);
  }
  // Connect data-flow related instructions together.
  for (auto &EC : PredicateWebs) {
    Instruction *Inst = EC.getData();
    for (auto &Op : Inst->operands()) {
      Instruction *In = dyn_cast<Instruction>(Op);

      if (!In || !In->hasMetadata(IdxMDName))
        continue;
      PredicateWebs.unionSets(Inst, In);
    }
  }
  // Promote web if it is big enough (likely to cause flag spills).
  bool Modified = false;
  for (auto I = PredicateWebs.begin(), E = PredicateWebs.end(); I != E; ++I) {
    if (!I->isLeader())
      continue;
    PredicateWeb Web(PredicateWebs.member_begin(I), PredicateWebs.member_end(),
                     AllowScalarAllAny);
    LLVM_DEBUG(dbgs() << "Predicate web:\n"; Web.dump());
    ++NumCollectedPredicateWebs;
    if (!Web.isBeneficialToPromote())
      continue;
    LLVM_DEBUG(dbgs() << "Beneficial to promote\n");
    Web.doPromotion();
    ++NumPromotedPredicateWebs;
    Modified = true;
  }
  return Modified;
}