1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// Implementation of methods for Region class
//
//===----------------------------------------------------------------------===//
#include "GenXAlignmentInfo.h"
#include "GenXBaling.h"
#include "GenXSubtarget.h"
#include "GenXUtil.h"
#include "vc/GenXOpts/GenXAnalysis.h"
#include "vc/Utils/GenX/GlobalVariable.h"
#include "vc/Utils/General/IRBuilder.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include <unordered_map>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"
using namespace llvm;
using namespace genx;
namespace {
/***********************************************************************
* Local function for testing one assertion statement.
* It returns true if all is ok.
* If region index is a vector it should has given number of elements.
*/
bool testRegionIndexForSizeMismatch(const llvm::Value *const V,
const unsigned &Width,
const unsigned &NumElements) {
bool Result = true;
auto *const VT = dyn_cast<IGCLLVM::FixedVectorType>(V->getType());
if (VT) {
const unsigned VectorElements = (VT->getNumElements() * Width);
Result = (VectorElements == NumElements);
IGC_ASSERT_MESSAGE(Result, "vector region index size mismatch");
}
return Result;
}
/***********************************************************************
* Local function for testing one assertion statement.
* It returns true if all is ok.
* Instruction 'or' should be changed to 'add' without any errors.
*/
bool testOperator(const llvm::Instruction *const Operator) {
IGC_ASSERT(Operator);
IGC_ASSERT(Operator->getModule());
const unsigned Opcode = Operator->getOpcode();
const bool IsAdd = (Instruction::Add == Opcode);
const bool IsSub = (Instruction::Sub == Opcode);
const bool IsOr = (Instruction::Or == Opcode);
const bool IsAddAddr = (GenXIntrinsic::genx_add_addr ==
GenXIntrinsic::getGenXIntrinsicID(Operator));
bool Result = (IsAdd || IsSub || IsOr || IsAddAddr);
IGC_ASSERT_MESSAGE(
Result, "your offset seems to be calculated not through ADD or OR");
// check if instruction 'or' could be changed to 'add'
if (Result && IsOr) {
const llvm::Value *const Op0 = Operator->getOperand(0);
const llvm::Value *const Op1 = Operator->getOperand(1);
const DataLayout &DL = Operator->getModule()->getDataLayout();
Result = llvm::haveNoCommonBitsSet(Op0, Op1, DL);
IGC_ASSERT_MESSAGE(Result, "OR should be changed to ADD with no errors");
}
return Result;
}
} // namespace
static cl::opt<bool>
AdjustValidWidthForTarget("adj-width-for-target", cl::Hidden,
cl::init(false),
cl::desc("Adjust valid width on the CM side"));
/***********************************************************************
* makeRegionWithOffset: get a Region given a rdregion/wrregion, baling in
* constant add of offset
*
* This constructs the Region with a variable index that is a constant add
* baled in (i.e. Region::Indirect and Region::Offset both set to the
* operands of the add). It is for use when baling information is not
* available, but the caller wants the constant offset separated out like
* that.
*/
Region genx::makeRegionWithOffset(const Instruction *Inst,
bool WantParentWidth) {
unsigned OperandNum = 0;
switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
OperandNum = GenXIntrinsic::GenXRegion::RdIndexOperandNum;
break;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
case GenXIntrinsic::genx_wrconstregion:
OperandNum = GenXIntrinsic::GenXRegion::WrIndexOperandNum;
break;
default:
IGC_ASSERT_EXIT_MESSAGE(0, "not rdregion or wrregion");
break;
}
BaleInfo BI;
if (GenXBaling::isBalableIndexAdd(Inst->getOperand(OperandNum)))
BI.setOperandBaled(OperandNum);
return makeRegionFromBaleInfo(Inst, BI, WantParentWidth);
}
/***********************************************************************
* Region constructor from a rd/wr region and its BaleInfo
* This also works with rdpredregion and wrpredregion, with Offset in
* bits rather than bytes, and with ElementBytes set to 1.
*/
Region genx::makeRegionFromBaleInfo(const Instruction *Inst, const BaleInfo &BI,
bool WantParentWidth) {
Region Result;
// Determine where to get the subregion value from and which arg index
// the region parameters start at.
unsigned ArgIdx = 0;
const Value *Subregion = nullptr;
IGC_ASSERT(isa<CallInst>(Inst));
auto CallI = cast<CallInst>(Inst);
IGC_ASSERT(CallI->getCalledFunction());
switch (GenXIntrinsic::getGenXIntrinsicID(CallI->getCalledFunction())) {
case GenXIntrinsic::genx_rdpredregion:
Result.NumElements =
cast<IGCLLVM::FixedVectorType>(Inst->getType())->getNumElements();
Result.Width = Result.NumElements;
Result.Offset = cast<ConstantInt>(Inst->getOperand(1))->getZExtValue();
Result.ElementBytes = 1;
return Result;
case GenXIntrinsic::genx_wrpredregion:
Result.NumElements =
cast<IGCLLVM::FixedVectorType>(Inst->getOperand(1)->getType())
->getNumElements();
Result.Width = Result.NumElements;
Result.Offset = cast<ConstantInt>(Inst->getOperand(2))->getZExtValue();
Result.ElementBytes = 1;
return Result;
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf:
ArgIdx = 1;
// The size/type of the region is given by the return value:
Subregion = Inst;
break;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
case GenXIntrinsic::genx_wrconstregion:
ArgIdx = 2;
// The size/type of the region is given by the "subregion value to
// write" operand:
Subregion = Inst->getOperand(1);
// For wrregion, while we're here, also get the mask. We set mask to NULL
// if the mask operand is constant 1 (i.e. not predicated).
Result.Mask =
Inst->getOperand(GenXIntrinsic::GenXRegion::PredicateOperandNum);
if (auto C = dyn_cast<Constant>(Result.Mask))
if (C->isAllOnesValue())
Result.Mask = 0;
break;
default:
IGC_ASSERT_EXIT(0);
}
// Get the region parameters.
IGC_ASSERT_EXIT(Subregion);
Result.ElementTy = Subregion->getType();
if (auto *VT = dyn_cast<IGCLLVM::FixedVectorType>(Result.ElementTy)) {
Result.ElementTy = VT->getElementType();
Result.NumElements = VT->getNumElements();
}
const DataLayout &DL = Inst->getModule()->getDataLayout();
static_assert(genx::ByteBits);
IGC_ASSERT(DL.getTypeSizeInBits(Result.ElementTy) % genx::ByteBits == 0);
Result.ElementBytes = DL.getTypeSizeInBits(Result.ElementTy) / genx::ByteBits;
Result.VStride = cast<ConstantInt>(Inst->getOperand(ArgIdx))->getSExtValue();
Result.Width =
cast<ConstantInt>(Inst->getOperand(ArgIdx + 1))->getSExtValue();
Result.Stride =
cast<ConstantInt>(Inst->getOperand(ArgIdx + 2))->getSExtValue();
ArgIdx += 3;
// Get the start index.
Value *V = Inst->getOperand(ArgIdx);
IGC_ASSERT_MESSAGE(V->getType()->getScalarType()->isIntegerTy(16),
"region index must be i16 or vXi16 type");
IGC_ASSERT(
testRegionIndexForSizeMismatch(V, Result.Width, Result.NumElements));
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Result.Offset = CI->getSExtValue(); // Constant index.
else {
Result.Indirect = V; // Index is variable; assume no baled in add.
if (BI.isOperandBaled(ArgIdx)) {
Instruction *Operator = cast<Instruction>(V);
// The index is variable and has something baled in. We want to process
// a baled in add or add_addr, and ignore a baled in rdregion.
if (!GenXIntrinsic::isRdRegion(Operator)) {
// The index is variable and has a baled in or/add/sub/add_addr.
// offset is calculated through 'add' or 'or'
IGC_ASSERT(testOperator(Operator));
Constant *C = cast<Constant>(Operator->getOperand(1));
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI)
CI = cast<ConstantInt>(C->getSplatValue());
Result.Offset = CI->getSExtValue();
if (Operator->getOpcode() == Instruction::Sub)
Result.Offset = -Result.Offset;
Result.Indirect = Operator->getOperand(0);
}
}
// For a variable index, get the parent width arg.
ConstantInt *PW = dyn_cast<ConstantInt>(Inst->getOperand(ArgIdx + 1));
if (PW)
Result.ParentWidth = PW->getZExtValue();
}
// We do some trivial legalization here. The legalization pass does not
// make these changes; instead we do them here so they are not permanently
// written back into the IR but are made on the fly each time some other
// pass uses this code to get the region info.
if (Result.NumElements == 1) {
Result.Width = Result.Stride = 1;
Result.VStride = 0;
} else {
if (Result.NumElements <= Result.Width) {
Result.Width = Result.NumElements;
Result.VStride = 0;
} else if ((unsigned)Result.VStride == Result.Width * Result.Stride) {
// VStride == Width * Stride, so we can canonicalize to a 1D region,
// but only if not indirect or not asked to preserve parentwidth,
// and never if multi-indirect.
if (!Result.Indirect ||
(!isa<VectorType>(Result.Indirect->getType()) && !WantParentWidth)) {
Result.Width = Result.NumElements;
Result.VStride = 0;
Result.ParentWidth = 0;
}
} else if (Result.Width == 1) {
// We can turn a 2D width 1 region into a 1D region, but if it is
// indirect it invalidates ParentWidth. So only do it if not asked
// to keep ParentWidth. Also we cannot do it if it is multi-indirect.
if (!Result.Indirect ||
(!isa<VectorType>(Result.Indirect->getType()) && !WantParentWidth)) {
Result.Width = Result.NumElements;
Result.Stride = Result.VStride;
Result.VStride = 0;
Result.ParentWidth = 0;
}
}
if (Result.Stride == 0 && Result.Width == Result.NumElements) {
// Canonical scalar region.
Result.Width = 1;
Result.VStride = 0;
}
}
return Result;
}
/***********************************************************************
* Region::getLegalRegionSizeForTarget: get the max legal size of a region
*
* Enter: Idx = start index into the subregion
* Allow2D = whether to allow 2D region
* InputNumElements = number of elements in whole input vector (so
* we can tell if it is small enough that it cannot possibly
* cross a GRF boundary)
* ST = GenXSubtarget (so we can get gen specific crossing rules)
* AI = 0 else AlignmentInfo (to determine alignment of indirect index)
*/
unsigned genx::getLegalRegionSizeForTarget(const GenXSubtarget &ST,
const Region &R, unsigned Idx,
bool Allow2D, bool UseRealIdx,
unsigned InputNumElements,
AlignmentInfo *AI) {
Alignment Align;
if (R.Indirect) {
Align = Alignment::getUnknown();
if (AI)
Align = AI->get(R.Indirect);
}
return getLegalRegionSizeForTarget(ST, R, Idx, Allow2D, UseRealIdx,
InputNumElements, Align);
}
/***********************************************************************
* Region::getLegalRegionSizeForTarget : get the max legal size of a region
*
* Enter: Idx = start index into the subregion
* Allow2D = whether to allow 2D region
* InputNumElements = number of elements in whole input vector (so
* we can tell if it is small enough that it cannot possibly
* cross a GRF boundary)
* ST = GenXSubtarget (so we can get gen specific crossing rules)
* Align = alignment of indirect index if any
*
* The setting of Indirect is used as follows:
*
* 0: not indirect
* anything of scalar type: single indirect
* anything of vector type: multi indirect
*/
unsigned genx::getLegalRegionSizeForTarget(const GenXSubtarget &ST,
const Region &R, unsigned Idx,
bool Allow2D, bool UseRealIdx,
unsigned InputNumElements,
Alignment Align) {
// Determine the max valid width.
unsigned ValidWidth = 1;
unsigned GRFByteSize = ST.getGRFByteSize();
int MaxStride = 4;
unsigned LogGRFWidth = genx::log2(GRFByteSize);
unsigned NumGRF = 2;
if ((!R.Stride || exactLog2(R.Stride) >= 0) &&
(Allow2D || R.Stride <= MaxStride)) {
// The stride is legal, so we can potentially do more than one element at a
// time.
// Disallow 2D if the stride is too large for a real Gen region. For a
// source operand (Allow2D is true), we allow a 1D region with stride too
// large, because the vISA writer turns it into a 2D region with width 1.
bool StrideValid = (R.Stride <= MaxStride);
if (R.Indirect && isa<VectorType>(R.Indirect->getType())) {
// Multi indirect.
if (!Allow2D) {
// Multi indirect not allowed in wrregion.
if (!R.Stride)
ValidWidth = 1 << genx::log2(R.Width);
} else if (R.Width == 1 || !R.Stride) {
// Multi indirect with width 1 or stride 0.
// Return the max power of two number of elements that:
// 1. fit in 2 GRFs; and
// 2. fit in the whole region; and
// 3. fit in a row if the width is not legal
// 4. no more than getAddressRegisterElements elements in multi indirect
// (because there are only getAddressRegisterElements elements in an
// address register).
IGC_ASSERT_EXIT(Width > 0 && R.ElementBytes > 0);
auto LogWidth = genx::log2(Width);
if (1U << LogWidth == Width)
LogWidth = genx::log2(R.NumElements); // legal width
unsigned LogElementBytes = genx::log2(R.ElementBytes);
if (LogWidth + LogElementBytes > (LogGRFWidth + 1))
LogWidth = LogGRFWidth + 1 - LogElementBytes;
IGC_ASSERT_EXIT(LogWidth >= 0);
ValidWidth = std::min(1u << LogWidth, ST.getAddressRegisterElements());
}
// Other multi indirect can only do one element.
} else {
// Calculate number of elements up to the boundary imposed by GRF
// crossing rules.
unsigned ElementsPerGRF = GRFByteSize / R.ElementBytes;
unsigned ElementsToBoundary = 1;
unsigned RealIdx =
UseRealIdx ? Idx / R.Width * R.VStride + Idx % R.Width * R.Stride
: Idx;
if (!R.Indirect) {
unsigned OffsetElements = R.getOffsetInElements();
// For a direct operand, just use the constant offset of the
// region and the index so far to calculate how far into a GRF this
// subregion starts, and set the boundary at the next-but-one GRF
// boundary.
// For PVC it's legal to read only from one GFR in byte source
if (!ST.hasMultiIndirectByteRegioning() &&
R.ElementBytes == genx::ByteBytes)
NumGRF = 1;
ElementsToBoundary = (NumGRF * ElementsPerGRF) -
((RealIdx + OffsetElements) % ElementsPerGRF);
} else if (InputNumElements <= ElementsPerGRF) {
// Indirect region but the whole vector is no bigger than a GRF, so
// there is no limit imposed by GRF crossing.
ElementsToBoundary = ElementsPerGRF;
} else {
// For an indirect region, calculate the min and max index (including
// offset) from the region parameters, and add on the current start
// index to both.
// For <= BDW:
// 1. If the min and max then are in the same GRF, then the distance
// from max to the next GRF boundary is the allowed size.
// For >= SKL:
// 1. If the min and max then are in the same GRF, then the distance
// from max to the next-but-one GRF boundary is the allowed size.
// 2. If the max is in the next GRF after min, then the distance
// from max to the next GRF boundary is the allowed size.
// However vISA imposes the restriction that, in a source indirect
// region, a row cannot cross a GRF, unless the region is contiguous.
// Pending a proper fix, we have a temporary fix here that we disallow
// GRF crossing completely unless the original region is a destination
// operand or is a 1D source operand (so GenXCisaBuilder can turn it
// into Nx1 instead of 1xN). We use Allow2D as a proxy for "is source
// operand".
unsigned GRFsPerIndirect =
genx::getNumGRFsPerIndirectForRegion(R, &ST, Allow2D);
unsigned Last = (R.NumElements / R.Width - 1) * R.VStride +
(R.Width - 1) * R.Stride;
unsigned Max = InputNumElements - Last - 1 + RealIdx;
unsigned Min = RealIdx;
unsigned MinMaxGRFDiff =
(Max & -ElementsPerGRF) - (Min & -ElementsPerGRF);
if (!MinMaxGRFDiff) // min and max in same GRF
ElementsToBoundary =
ElementsPerGRF * GRFsPerIndirect - (Max & (ElementsPerGRF - 1));
else if (MinMaxGRFDiff == 1 && GRFsPerIndirect > 1)
ElementsToBoundary = ElementsPerGRF - (Max & (ElementsPerGRF - 1));
// We may be able to refine an indirect region legal width further...
if (exactLog2(R.ParentWidth) >= 0 &&
R.ParentWidth <= GRFsPerIndirect * ElementsPerGRF) {
// ParentWidth tells us that a row of our region cannot cross a
// possible number of elements addressed by indirect region. Say that
// the boundary is at the next multiple of ParentWidth.
ElementsToBoundary = std::max(R.ParentWidth - RealIdx % R.ParentWidth,
ElementsToBoundary);
} else if (!isa<VectorType>(R.Indirect->getType())) {
// Use the alignment+offset of the single indirect index, with
// alignment limited to one GRF.
if (!Align.isUnknown()) {
unsigned LogAlign = Align.getLogAlign();
unsigned ExtraBits = Align.getExtraBits();
ExtraBits += (R.Offset + RealIdx * R.ElementBytes);
ExtraBits &= ((1 << LogAlign) - 1);
if (LogAlign >= LogGRFWidth && !ExtraBits) {
// Start is GRF aligned, so legal width is 1 GRF for <=BDW or
// 2 GRFs for >=SKL.
ElementsToBoundary = ElementsPerGRF * GRFsPerIndirect;
} else if (LogAlign > (unsigned)genx::log2(R.ElementBytes) ||
(LogAlign == (unsigned)genx::log2(R.ElementBytes) &&
ExtraBits == 0)) {
LogAlign =
std::min(LogGRFWidth, LogAlign) - genx::log2(R.ElementBytes);
ExtraBits =
(ExtraBits & (GRFByteSize - 1)) >> genx::log2(R.ElementBytes);
// We have some alignment, so we can say that the next GRF
// boundary is (at least) that many elements away, minus the
// offset from that alignment. For SKL+, we can cross one GRF
// boundary, so add on one GRF's worth.
unsigned ElementsToBoundaryFromAlign =
(1U << LogAlign) - ExtraBits;
ElementsToBoundaryFromAlign +=
(GRFsPerIndirect - 1) * ElementsPerGRF;
ElementsToBoundary =
std::max(ElementsToBoundaryFromAlign, ElementsToBoundary);
}
}
}
}
// Now calculate what subregion we can fit in before the boundary
// calculated above.
if (Allow2D && StrideValid) {
if ((!R.VStride || exactLog2(R.VStride) >= 0) &&
exactLog2(R.Width) >= 0 && R.Width <= 16 && !(Idx % R.Width) &&
ElementsToBoundary >= (R.Width - 1) * R.Stride + 1) {
// The vstride and width are legal, and we're at the start of a
// row, and ElementsToBoundary is big enough for at least one
// whole row, so we can potentially do more than one whole row at a
// time. See how many we can fit, without including the "slack"
// at the end of the last row.
unsigned NumRows = 0;
if (R.VStride == 0) // Avoid divide by 0
NumRows = (R.NumElements - Idx) / R.Width;
else {
unsigned LastElementOfRow = (R.Width - 1) * R.Stride;
unsigned Slack = R.VStride - (LastElementOfRow + 1);
NumRows = (ElementsToBoundary + Slack) / R.VStride;
if (NumRows) {
if (NumRows * R.Width + Idx > R.NumElements)
NumRows = (R.NumElements - Idx) / R.Width;
}
}
IGC_ASSERT_EXIT(NumRows > 0);
ValidWidth = (1 << genx::log2(NumRows)) * R.Width;
}
if (ValidWidth == 1 && Idx % R.Width) {
// That failed. See if we can legally get to the end of the row then
// the same number of elements again at the start of the next row.
unsigned ToEndOfRow = R.Width - Idx % R.Width;
if (exactLog2(ToEndOfRow) >= 0 && ToEndOfRow <= 16) {
unsigned NewVStride = R.VStride + (ToEndOfRow - R.Width) * R.Stride;
if (exactLog2(NewVStride) >= 0 &&
NewVStride + (ToEndOfRow - 1) * R.Stride < ElementsToBoundary) {
// Yes, we can do the end of one row and the same size start of
// the next row.
ValidWidth = 2 * ToEndOfRow;
}
}
}
}
if (ValidWidth == 1) {
// That failed. See how many elements we can get, no further than the
// next end of row.
ValidWidth = R.Width - Idx % R.Width;
if (ValidWidth * R.Stride - (R.Stride - 1) > ElementsToBoundary) {
IGC_ASSERT_EXIT(R.Stride != 0);
ValidWidth = (ElementsToBoundary + R.Stride - 1) / R.Stride;
}
IGC_ASSERT_EXIT(ValidWidth > 0);
ValidWidth = 1 << genx::log2(ValidWidth);
}
// If the RStride is 0 (which is seen in splat operations) then the
// above logic tends to determine that all of the elements can fit,
// irrespective of vector size and type. This is usually incorrect
// in the wider context, so clamp it here to whatever fits in NumGRF if
// necessary
ValidWidth = std::min(ValidWidth, NumGRF * ElementsPerGRF);
}
}
if (AdjustValidWidthForTarget && !ST.hasMultiIndirectByteRegioning() &&
R.is2D()) {
while ((ValidWidth * R.ElementBytes) >= ST.getGRFByteSize())
ValidWidth /= 2;
}
// Some targets do not have multi indirect byte regioning and in general case
// transformation from multi indirect region to indirect is possible for
// regions with width = 1.
if (R.isMultiIndirect() && R.ElementBytes == genx::ByteBytes &&
!ST.hasMultiIndirectByteRegioning())
ValidWidth = 1;
// Each source region with indirect addressing can potentially cross GRF
// boundary with a row. 1D regions are handled in CISABuilder but 2Ds have to
// be splitted into 1Ds. To force the splits reported valid width is reduced
// to the biggest power of 2 less than region width. Multi indirect
// regions which could cross GRF boundary are already reported with valid
// width of 1 so they don't have to be handled here
if (R.Indirect && !R.isMultiIndirect() && R.is2D()) {
ValidWidth =
std::min(ValidWidth, 1U << genx::log2(R.Width - Idx % R.Width));
}
return ValidWidth;
}
/***********************************************************************
* RdWrRegionSequence::buildFromStartWr: detect a split (legalized)
* sequence rdregion-wrregion from the start, and populate the
* RdWrRegionSequence object with its details
*
* This fails if there is any predication. It succeeds with a sequence length
* of one (i.e. a single rdregion-wrregion pair).
*
* On success, if the WaitingFor field matches one of the wrregions in the
* sequence, then WaitingFor is reset to 0. This is used by buildFromWr to
* check that the sequence includes the wrregion originally passed to it.
*
* On failure, EndWr is left as is, which means that isNull() continues to
* be true.
*/
bool RdWrRegionSequence::buildFromStartWr(Instruction *ArgStartWr,
GenXBaling *Baling) {
StartWr = ArgStartWr;
auto Wr = StartWr;
IGC_ASSERT(GenXIntrinsic::isWrRegion(Wr));
IGC_ASSERT(Baling);
Region TotalWrR = genx::makeRegionFromBaleInfo(Wr, Baling->getBaleInfo(Wr));
WrR = TotalWrR;
if (TotalWrR.Mask)
return false;
OldVal = Wr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
auto RdVal = Wr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
if (auto Rd = dyn_cast<Instruction>(RdVal)) {
// Handle the case that the start wrregion has a rdregion, so we look for
// a sequence of rd-wr pairs.
if (!GenXIntrinsic::isRdRegion(Rd))
return false;
Region TotalRdR = makeRegionFromBaleInfo(Rd, Baling->getBaleInfo(Rd));
RdR = TotalRdR;
Input = Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
EndWr = Wr;
if (Wr == WaitingFor)
WaitingFor = nullptr;
bool SeenWaitingFor = false;
for (;;) {
if (!Wr->hasOneUse() || Wr->use_begin()->getOperandNo() !=
GenXIntrinsic::GenXRegion::OldValueOperandNum)
break;
Wr = cast<Instruction>(Wr->use_begin()->getUser());
if (!GenXIntrinsic::isWrRegion(Wr))
break;
Value *In = Wr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
if (!GenXIntrinsic::isRdRegion(In))
break;
auto Rd = cast<Instruction>(In);
if (Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum) !=
Input)
break;
// Append to the regions. Give up if either fails.
if (!TotalRdR.append(
makeRegionFromBaleInfo(Rd, Baling->getBaleInfo(Rd))) ||
!TotalWrR.append(makeRegionFromBaleInfo(Wr, Baling->getBaleInfo(Wr))))
break;
SeenWaitingFor |= Wr == WaitingFor;
// If both regions are now legal (have a whole number of rows), then
// save the current position.
if (TotalRdR.isWholeNumRows() && TotalWrR.isWholeNumRows()) {
RdR = TotalRdR;
WrR = TotalWrR;
EndWr = Wr;
if (SeenWaitingFor)
WaitingFor = nullptr;
}
}
return true;
}
if (!isa<UndefValue>(
Wr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum)))
return false;
auto TotalC = dyn_cast<Constant>(RdVal);
if (!TotalC)
return false;
// Handle the case that the start wrregion has a constant "new value" operand
// and an undef "old value" operand.
// We look for a sequence of wrregions where the "new value" operands are all
// constant and we derive the overall constant.
Region TotalRdR(TotalC);
RdR = TotalRdR;
Input = TotalC;
EndWr = Wr;
if (Wr == WaitingFor)
WaitingFor = nullptr;
bool SeenWaitingFor = false;
for (;;) {
if (!Wr->hasOneUse() || Wr->use_begin()->getOperandNo() !=
GenXIntrinsic::GenXRegion::OldValueOperandNum)
break;
Wr = cast<Instruction>(Wr->use_begin()->getUser());
if (!GenXIntrinsic::isWrRegion(Wr))
break;
auto In = dyn_cast<Constant>(
Wr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
if (!In)
break;
// Append to the regions. Give up if either fails.
Region InR(In);
InR.Offset = TotalRdR.NumElements * TotalRdR.ElementBytes;
if (!TotalRdR.append(InR) ||
!TotalWrR.append(makeRegionFromBaleInfo(Wr, Baling->getBaleInfo(Wr))))
break;
SeenWaitingFor |= Wr == WaitingFor;
// Append the constant.
TotalC = concatConstants(TotalC, In);
// If both regions are now legal (have a whole number of rows), then save
// the current position.
if (TotalRdR.isWholeNumRows() && TotalWrR.isWholeNumRows()) {
RdR = TotalRdR;
WrR = TotalWrR;
EndWr = Wr;
Input = TotalC;
if (SeenWaitingFor)
WaitingFor = nullptr;
}
}
return true;
}
/***********************************************************************
* RdWrRegionSequence::buildFromWr: detect a split (legalized)
* rdregion-wrregion sequence starting from any wrregion within it, and populate
* the RdWrRegionSequence object with its details
*
* This fails if there is any predication. It succeeds with a sequence length
* of one (i.e. a single rdregion-wrregion pair).
*
* On failure, EndWr is left as is, which means that isNull() continues to
* be true.
*/
bool RdWrRegionSequence::buildFromWr(Instruction *Wr, GenXBaling *Baling) {
// Remember that our sequence needs to contain Wr.
WaitingFor = Wr;
// Scan back to what looks like the start of the sequence.
IGC_ASSERT(GenXIntrinsic::isWrRegion(Wr));
StartWr = Wr;
auto RdVal = Wr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
auto Rd = dyn_cast<Instruction>(RdVal);
bool ConstSequence = false;
if (!Rd) {
if (!isa<Constant>(RdVal))
return 0;
ConstSequence = true;
} else
Input = Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
for (;;) {
Wr = dyn_cast<Instruction>(
Wr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
if (!GenXIntrinsic::isWrRegion(Wr))
break;
IGC_ASSERT(Wr);
if (!Wr->hasOneUse())
break;
RdVal = Wr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
if (ConstSequence) {
if (!isa<Constant>(RdVal))
break;
} else {
Rd = dyn_cast<Instruction>(
Wr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
if (!Rd)
break;
if (Input !=
Rd->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum))
break;
}
StartWr = Wr;
}
// Try detecting a split rdregion-wrregion starting at StartWr.
for (;;) {
if (!buildFromStartWr(StartWr, Baling)) {
EndWr = nullptr;
return false;
}
if (!WaitingFor)
return true; // success
// The detected sequence did not include the wrregion this function
// started with. Retry with the following sequence.
StartWr = cast<Instruction>(EndWr->use_begin()->getUser());
if (GenXIntrinsic::isWrRegion(StartWr))
return false;
}
}
/***********************************************************************
* RdWrRegionSequence::buildFromRd: detect a split (legalized)
* rdregion-wrregion sequence starting from any rdregion within it, and populate
* the RdWrRegionSequence object with its details
*
* This fails if there is any predication. It succeeds with a sequence length
* of one (i.e. a single rdregion-wrregion pair).
*/
bool RdWrRegionSequence::buildFromRd(Instruction *Rd, GenXBaling *Baling) {
IGC_ASSERT(GenXIntrinsic::isRdRegion(Rd));
if (!Rd->hasOneUse())
return false;
if (Rd->use_begin()->getOperandNo() !=
GenXIntrinsic::GenXRegion::NewValueOperandNum)
return false;
auto Wr = cast<Instruction>(Rd->use_begin()->getUser());
if (!GenXIntrinsic::isWrRegion(Wr))
return false;
return buildFromWr(Wr, Baling);
}
/***********************************************************************
* RdWrRegionSequence::size : get number of rdregion-wrregion pairs in the
* sequence
*/
unsigned RdWrRegionSequence::size() const {
unsigned Size = 1;
Instruction *Wr = EndWr;
for (; Wr != StartWr; ++Size)
Wr = cast<Instruction>(
Wr->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum));
return Size;
}
/***********************************************************************
* RdWrRegionSequence::isOnlyUseOfInput : check whether the sequence is the
* only use of its input
*/
bool RdWrRegionSequence::isOnlyUseOfInput() const {
unsigned Count = 0;
for (auto ui = Input->use_begin(), ue = Input->use_end(); ui != ue; ++ui)
++Count;
return Count == size();
}
/***********************************************************************
* RdWrRegionSequence::getRdIndex : get the index of the legalized rdregion
*/
Value *RdWrRegionSequence::getRdIndex() const {
if (isa<Constant>(Input))
return ConstantInt::get(Type::getInt16Ty(StartWr->getContext()), 0);
auto Rd = cast<Instruction>(
StartWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
IGC_ASSERT(GenXIntrinsic::isRdRegion(Rd));
return Rd->getOperand(GenXIntrinsic::GenXRegion::RdIndexOperandNum);
}
/***********************************************************************
* RdWrRegionSequence::getWrIndex : get the index of the legalized wrregion
*/
Value *RdWrRegionSequence::getWrIndex() const {
return StartWr->getOperand(GenXIntrinsic::GenXRegion::WrIndexOperandNum);
}
/***********************************************************************
* RdWrRegionSequence::getInputUse : get some use of Input in the sequence
*
* This only works if the RdWrRegionSequence is a sequence of rd-wr pairs,
* rather than a sequence of wrregions with constant input. In the latter
* case, this returns 0.
*/
Use *RdWrRegionSequence::getInputUse() const {
auto Rd = dyn_cast<Instruction>(
StartWr->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
if (!GenXIntrinsic::isRdRegion(Rd))
return nullptr;
const unsigned OpIdx = GenXIntrinsic::GenXRegion::OldValueOperandNum;
IGC_ASSERT(Rd);
IGC_ASSERT(Rd->getOperand(OpIdx) == Input);
return &Rd->getOperandUse(OpIdx);
}
/***********************************************************************
* RdWrRegionSequence::print : debug dump/print
*/
void RdWrRegionSequence::print(raw_ostream &OS) const {
if (isNull())
OS << "null";
else {
OS << "sequence";
if (OldVal)
dbgs() << " OldVal=" << OldVal->getName();
dbgs() << " Input=" << Input->getName() << " StartWr=" << StartWr->getName()
<< " EndWr=" << EndWr->getName() << " RdR=" << RdR << " WrR=" << WrR;
}
}
static Instruction *simplifyConstIndirectRegion(Instruction *Inst) {
// if a region has a constant-vector as its indirect offsets,
// try to recognize the pattern, and replace it with
// a direct region with v-stride, h-stride, h-width
Region R = makeRegionFromBaleInfo(Inst, BaleInfo());
if (R.Indirect == nullptr)
return nullptr;
auto cv = dyn_cast<ConstantDataVector>(R.Indirect);
if (!cv)
return nullptr;
// Flatten the vector out into the elements array
llvm::SmallVector<llvm::Constant *, 16> elements;
auto vectorLength =
cast<IGCLLVM::FixedVectorType>(cv->getType())->getNumElements();
for (unsigned i = 0; i < vectorLength; ++i)
elements.push_back(cv->getElementAsConstant(i));
llvm::ConstantInt *ci = llvm::dyn_cast<llvm::ConstantInt>(elements[0]);
if (ci == NULL)
return nullptr; // Not a vector of integers
int VStride = 1;
unsigned Width = 1;
int Stride = 1;
int Offset = (-1);
int64_t val0 = ci->getSExtValue();
if (vectorLength == 1) {
R.Indirect = nullptr;
R.Offset = val0 + R.Offset;
R.Stride = 0;
R.Width = 1;
R.VStride = 0;
if (GenXIntrinsic::isRdRegion(Inst))
return R.createRdRegion(Inst->getOperand(0), Inst->getName(), Inst,
Inst->getDebugLoc());
else if (GenXIntrinsic::isWrRegion(Inst))
return R.createWrRegion(Inst->getOperand(0), Inst->getOperand(1),
Inst->getName(), Inst, Inst->getDebugLoc());
return nullptr;
}
ci = llvm::dyn_cast<llvm::ConstantInt>(elements[1]);
if (ci == NULL)
return nullptr; // Not a vector of integers
int64_t prevVal = ci->getSExtValue();
int64_t diff = prevVal - val0;
if (diff < 0)
return nullptr; // cannot have negative stride
int i0 = 0;
Offset = val0 + R.Offset;
// check if this is a 1d simple-stride region
for (int i = 2; i < (int)vectorLength; ++i) {
ci = llvm::dyn_cast<llvm::ConstantInt>(elements[i]);
if (ci == NULL)
return nullptr;
int64_t nextVal = ci->getSExtValue();
if (Width != 1 && (i % Width == 0)) {
if (nextVal != val0 + VStride || i != i0 + Width)
return nullptr; // different strides
val0 = nextVal;
i0 = i;
}
if (prevVal + diff != nextVal) {
if (Width == 1) {
Width = i - i0;
if (i - vectorLength / 2 > 0)
return nullptr; // different strides
VStride = nextVal - val0;
val0 = nextVal;
i0 = i;
} else if (nextVal != val0 + VStride || i != i0 + Width)
return nullptr;
else {
val0 = nextVal;
i0 = i;
}
if (VStride < 0)
return nullptr; // cannot have negative stride
}
prevVal = nextVal;
}
Stride = diff * 8 / R.ElementTy->getPrimitiveSizeInBits();
VStride = VStride * 8 / R.ElementTy->getPrimitiveSizeInBits();
// rewrite the region inst
R.Indirect = nullptr;
R.Offset = Offset;
R.Stride = Stride;
R.Width = (Width == 1) ? R.NumElements : Width;
R.VStride = VStride;
if (GenXIntrinsic::isRdRegion(Inst))
return R.createRdRegion(Inst->getOperand(0), Inst->getName(), Inst,
Inst->getDebugLoc());
else if (GenXIntrinsic::isWrRegion(Inst))
return R.createWrRegion(Inst->getOperand(0), Inst->getOperand(1),
Inst->getName(), Inst, Inst->getDebugLoc());
return nullptr;
}
static Optional<std::pair<IGCLLVM::FixedVectorType *, Region>>
convertRegionInstType(Instruction *Inst, Type *NewScalarTy,
const DataLayout &DL, const GenXSubtarget &ST) {
using namespace GenXIntrinsic::GenXRegion;
IGC_ASSERT(GenXIntrinsic::isRdRegion(Inst) ||
GenXIntrinsic::isWrRegion(Inst));
auto *OldVal = Inst->getOperand(OldValueOperandNum);
// Do not change register category to predicate.
if (NewScalarTy->isIntegerTy(1))
return None;
auto *NewVecTy = genx::changeVectorType(OldVal->getType(), NewScalarTy, &DL);
if (!NewVecTy)
return None;
Region R = makeRegionFromBaleInfo(Inst, BaleInfo());
if (!R.changeElementType(NewScalarTy, &DL))
return None;
// Transformation is not profitable for 2D regions or if it will require
// legalization.
if (R.is2D() || R.NumElements > llvm::PowerOf2Floor(
genx::getExecSizeAllowedBits(Inst, &ST)))
return None;
return std::make_pair(NewVecTy, R);
}
// fold bitcast with wrregion:
// ==> %oldval.cast = bitcast(%oldval)
// %2 = bitcast(%1) %3 = wrregion(%oldval.cast, %1, ...)
// %3 = wrregion(%oldval, %2, ...) %2 = bitcast(%3)
// so it can be baled later.
static Value *simplifyBitCastWithRegionWrite(Instruction *WrR,
const DataLayout &DL,
const GenXSubtarget &ST) {
using namespace GenXIntrinsic::GenXRegion;
IGC_ASSERT(GenXIntrinsic::isWrRegion(WrR));
auto *OldVal = WrR->getOperand(OldValueOperandNum);
if (GenXIntrinsic::isReadWritePredefReg(OldVal))
return nullptr;
Value *NewVal = WrR->getOperand(NewValueOperandNum);
auto *BCI = dyn_cast<BitCastInst>(NewVal);
if (!BCI)
return nullptr;
if (WrR->hasOneUse() && GenXIntrinsic::isWritePredefReg(WrR->user_back()))
return nullptr;
auto *NewScalarTy = BCI->getSrcTy()->getScalarType();
auto ConvertRes = convertRegionInstType(WrR, NewScalarTy, DL, ST);
if (!ConvertRes)
return nullptr;
auto [NewVecTy, R] = *ConvertRes;
IRBuilder<TargetFolder> IRB(WrR->getParent(), BasicBlock::iterator(WrR),
TargetFolder(DL));
IGC_ASSERT(vc::isBitCastAllowed(*OldVal, *NewVecTy));
auto *OldValCast =
IRB.CreateBitCast(OldVal, NewVecTy, OldVal->getName() + ".cast");
auto *NewWrR = R.createWrRegion(OldValCast, BCI->getOperand(0),
WrR->getName(), WrR, WrR->getDebugLoc());
auto *NewBCI = IRB.CreateBitCast(NewWrR, WrR->getType(), BCI->getName());
return NewBCI;
}
static Value *simplifyRegionWrite(Instruction *WrR, const DataLayout *DL) {
using namespace GenXIntrinsic::GenXRegion;
IGC_ASSERT(GenXIntrinsic::isWrRegion(WrR));
Value *NewVal = WrR->getOperand(NewValueOperandNum);
// Replace C with B if R - whole region
// C = wrregion(A, B, R)
if (auto R = makeRegionFromBaleInfo(WrR, BaleInfo());
R.isWhole(WrR->getType(), DL) && !R.Mask &&
vc::isBitCastAllowed(*NewVal, *WrR->getType()) &&
!isPredefRegDestination(WrR) && !isPredefRegSource(NewVal))
return IRBuilder<>(WrR).CreateBitCast(NewVal, WrR->getType(),
WrR->getName());
// Replace C with A
// C = wrregion(A, undef, R)
if (isa<UndefValue>(NewVal))
return WrR->getOperand(OldValueOperandNum);
// When A and undef have the same type, replace C with A
// B = rdregion(A, R)
// C = wrregion(undef, B, R)
//
// or replace C by A
//
// B = rdregion(A, R)
// C = wrregion(A, B, R)
//
if (GenXIntrinsic::isRdRegion(NewVal)) {
Instruction *RdR = cast<Instruction>(NewVal);
Region InnerR = makeRegionFromBaleInfo(RdR, BaleInfo());
Region OuterR = makeRegionFromBaleInfo(WrR, BaleInfo());
if (OuterR != InnerR)
return nullptr;
auto OldValRdR = RdR->getOperand(OldValueOperandNum);
if (GenXIntrinsic::isReadPredefReg(OldValRdR))
return nullptr;
auto OldValWrR = WrR->getOperand(OldValueOperandNum);
if ((isa<UndefValue>(OldValWrR) &&
OldValRdR->getType() == OldValWrR->getType()) ||
OldValRdR == OldValWrR)
return OldValRdR;
}
return nullptr;
}
// fold bitcast with rdregion:
// %2 = rdregion(%1, ...) ==> %3 = bitcast(%1)
// %3 = bitcast(%2) %2 = rdregion(%3, ...)
// so it can be baled later.
static Value *simplifyBitCastFromRegionRead(BitCastInst *BCI,
const DataLayout &DL,
const GenXSubtarget &ST) {
using namespace GenXIntrinsic::GenXRegion;
// TODO: fix this, as rdregion can return scalar
// for cases
//%2 = <1 x i32> rdregion
//%3 = bitcast <1 x i32> %2 to i32
if (!BCI->getType()->isVectorTy())
return nullptr;
Instruction *RdR = dyn_cast<Instruction>(BCI->getOperand(0));
if (!RdR || !GenXIntrinsic::isRdRegion(RdR) || !RdR->hasOneUse())
return nullptr;
auto *OldVal = RdR->getOperand(OldValueOperandNum);
if (GenXIntrinsic::isReadPredefReg(OldVal))
return nullptr;
auto *NewScalarTy = BCI->getDestTy()->getScalarType();
auto ConvertRes = convertRegionInstType(RdR, NewScalarTy, DL, ST);
if (!ConvertRes)
return nullptr;
auto [NewVecTy, R] = *ConvertRes;
IGC_ASSERT(vc::isBitCastAllowed(*OldVal, *NewVecTy));
IRBuilder<TargetFolder>(BCI->getParent(), BasicBlock::iterator(BCI),
TargetFolder(DL));
auto *NewBCI =
IRBuilder<TargetFolder>(BCI->getParent(), BasicBlock::iterator(BCI),
TargetFolder(DL))
.CreateBitCast(OldVal, NewVecTy, BCI->getName());
auto *NewRdR =
R.createRdRegion(NewBCI, RdR->getName(), BCI, RdR->getDebugLoc());
return NewRdR;
}
static Value *simplifyRegionRead(Instruction *Inst, const DataLayout *DL) {
IGC_ASSERT(GenXIntrinsic::isRdRegion(Inst));
Value *Input =
Inst->getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
if (makeRegionFromBaleInfo(Inst, BaleInfo()).isWhole(Input->getType(), DL) &&
vc::isBitCastAllowed(*Input, *Inst->getType()) &&
!genx::isPredefRegSource(Inst))
return IRBuilder<>(Inst).CreateBitCast(Input, Inst->getType(),
Inst->getName());
if (isa<UndefValue>(Input))
return UndefValue::get(Inst->getType());
else if (auto C = dyn_cast<Constant>(Input)) {
if (auto Splat = C->getSplatValue()) {
if (auto *Ty = dyn_cast<IGCLLVM::FixedVectorType>(Inst->getType()))
Splat = ConstantVector::getSplat(
IGCLLVM::getElementCount(Ty->getNumElements()), Splat);
return Splat;
}
} else if (GenXIntrinsic::isWrRegion(Input) && Input->hasOneUse()) {
// W = wrr(A, B, R)
// C = rdr(W, R)
// =>
// replace C by B
Instruction *WI = cast<Instruction>(Input);
Region R1 = makeRegionFromBaleInfo(WI, BaleInfo());
Region R2 = makeRegionFromBaleInfo(Inst, BaleInfo());
if (R1 == R2) {
Value *B = WI->getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum);
if (B->getType() == Inst->getType())
return B;
}
}
return nullptr;
}
// Simplify a region read or write.
Value *llvm::genx::simplifyRegionInst(Instruction *Inst, const DataLayout *DL,
const GenXSubtarget *ST,
const DominatorTree *DT) {
if (Inst->use_empty())
return nullptr;
Value *NewVal = nullptr;
unsigned ID = GenXIntrinsic::getGenXIntrinsicID(Inst);
switch (ID) {
case GenXIntrinsic::genx_wrregionf:
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_rdregionf:
case GenXIntrinsic::genx_rdregioni:
NewVal = simplifyConstIndirectRegion(Inst);
if (NewVal) {
IGC_ASSERT(
isa<Instruction>(NewVal)); // the above returns only Instruction*.
if (!genx::isSafeToReplace_CheckAVLoadKillOrForbiddenUser(
Inst, cast<Instruction>(NewVal), DT))
break;
Inst->replaceAllUsesWith(NewVal);
Inst = cast<Instruction>(NewVal);
}
break;
default:
break;
}
if (Constant *C = ConstantFoldGenX(Inst, *DL))
return C;
if (auto *BCI = dyn_cast<BitCastInst>(Inst); BCI && DL && ST) {
NewVal = simplifyBitCastFromRegionRead(BCI, *DL, *ST);
} else {
switch (GenXIntrinsic::getGenXIntrinsicID(Inst)) {
case GenXIntrinsic::genx_wrregionf:
case GenXIntrinsic::genx_wrregioni:
NewVal = simplifyRegionWrite(Inst, DL);
if (NewVal)
break;
if (DL && ST)
NewVal = simplifyBitCastWithRegionWrite(Inst, *DL, *ST);
break;
case GenXIntrinsic::genx_rdregionf:
case GenXIntrinsic::genx_rdregioni:
NewVal = simplifyRegionRead(Inst, DL);
break;
default:
break;
}
}
if (NewVal && isa<Instruction>(NewVal) &&
!genx::isSafeToReplace_CheckAVLoadKillOrForbiddenUser(
Inst, cast<Instruction>(NewVal), DT))
return nullptr;
return NewVal;
}
bool llvm::genx::simplifyRegionInsts(Function *F, const DataLayout *DL,
const GenXSubtarget *ST,
const DominatorTree *DT) {
bool Changed = false;
for (auto &BB : *F) {
for (auto I = BB.begin(); I != BB.end();) {
Instruction *Inst = &*I++;
if (auto V = simplifyRegionInst(Inst, DL, ST, DT)) {
if (isa<Instruction>(V) &&
!genx::isSafeToReplace_CheckAVLoadKillOrForbiddenUser(
Inst, cast<Instruction>(V), DT))
continue;
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
}
}
}
return Changed;
}
bool llvm::genx::IsLinearVectorConstantInts(Value *v, int64_t &start,
int64_t &stride) {
auto cv = dyn_cast<ConstantDataVector>(v);
if (!cv)
return false;
// Flatten the vector out into the elements array
llvm::SmallVector<llvm::Constant *, 16> elements;
auto vectorLength =
cast<IGCLLVM::FixedVectorType>(cv->getType())->getNumElements();
for (unsigned i = 0; i < vectorLength; ++i)
elements.push_back(cv->getElementAsConstant(i));
llvm::ConstantInt *ci = llvm::dyn_cast<llvm::ConstantInt>(elements[0]);
if (ci == NULL)
return false; // Not a vector of integers
int64_t val0 = ci->getSExtValue();
if (vectorLength == 1) {
start = val0;
stride = 0;
return true;
}
ci = llvm::dyn_cast<llvm::ConstantInt>(elements[1]);
if (ci == NULL)
return false; // Not a vector of integers
int64_t prevVal = ci->getSExtValue();
int64_t diff = prevVal - val0;
// For each element in the array, see if it is both a ConstantInt and
// if the difference between it and the value of the previous element
// is stride. If not, fail.
for (int i = 2; i < (int)vectorLength; ++i) {
ci = llvm::dyn_cast<llvm::ConstantInt>(elements[i]);
if (ci == NULL)
return false;
int64_t nextVal = ci->getSExtValue();
if (prevVal + diff != nextVal)
return false;
prevVal = nextVal;
}
start = val0;
stride = diff;
return true;
}
|