1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "AllocationLivenessAnalyzer.h"
#include "Compiler/IGCPassSupport.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "common/igc_regkeys.hpp"
#include "Probe/Assertion.h"
#include "debug/DebugMacros.hpp"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/SetOperations.h>
#include <llvm/ADT/SetVector.h>
#include <llvm/ADT/SmallSet.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/Analysis/LoopInfo.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/DerivedTypes.h>
#include <llvm/IR/Dominators.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/Instructions.h>
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
AllocationLivenessAnalyzer::LivenessData
AllocationLivenessAnalyzer::ProcessInstruction(Instruction *I, DominatorTree &DT, LoopInfo &LI) {
// static allocas are usually going to be in the entry block
// that's a practice, but we only care about the last block that dominates all uses
BasicBlock *commonDominator = nullptr;
SetVector<Instruction *> allUsers;
SetVector<Instruction *> lifetimeLeakingUsers;
SmallVector<Use *> worklist;
for (auto &use : I->uses()) {
auto *UasI = cast<Instruction>(use.getUser());
if (commonDominator) {
commonDominator = DT.findNearestCommonDominator(commonDominator, UasI->getParent());
} else {
commonDominator = UasI->getParent();
}
worklist.push_back(&use);
}
auto addUsesFn = [&worklist](auto uses) {
for (auto &use : uses)
worklist.push_back(&use);
};
// figure out the potential accesses to the memory via GEP and bitcasts
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
auto *II = cast<Instruction>(use->getUser());
if (!allUsers.insert(II))
continue;
// a possible optimization here:
// 1. find all reachable blocks
// 2. cull uses that are not reachable from the allocation
commonDominator = DT.findNearestCommonDominator(commonDominator, II->getParent());
switch (II->getOpcode()) {
case Instruction::PHI:
case Instruction::GetElementPtr:
case Instruction::BitCast:
case Instruction::Select:
addUsesFn(II->uses());
break;
case Instruction::PtrToInt:
lifetimeLeakingUsers.insert(II);
break;
case Instruction::Store: {
auto *storeI = cast<StoreInst>(II);
if (storeI->getValueOperand() == use->get()) {
SmallVector<Instruction *> origins;
if (Provenance::tryFindPointerOrigin(storeI->getPointerOperand(), origins)) {
for (auto *origin : origins)
addUsesFn(origin->uses());
} else {
lifetimeLeakingUsers.insert(II);
}
}
} break;
case Instruction::Call: {
auto *callI = cast<CallInst>(II);
if (!callI->doesNotCapture(use->getOperandNo()))
lifetimeLeakingUsers.insert(II);
if (II->getType()->isPointerTy())
addUsesFn(II->uses());
} break;
case Instruction::Load:
if (II->getType()->isPointerTy())
addUsesFn(II->uses());
break;
default: // failsafe for handling "unapproved" instructions
lifetimeLeakingUsers.insert(II);
break;
}
}
return LivenessData(I, std::move(allUsers), LI, DT, commonDominator, std::move(lifetimeLeakingUsers));
}
void AllocationLivenessAnalyzer::getAnalysisUsage(llvm::AnalysisUsage &AU) const {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
getAdditionalAnalysisUsage(AU);
}
template <typename range>
static inline void doWorkLoop(SmallVector<BasicBlock *> &worklist, DenseSet<BasicBlock *> &bbSet1,
DenseSet<BasicBlock *> &bbSet2, std::function<range(BasicBlock *)> iterate,
std::function<bool(BasicBlock *)> continueCondition) {
// perform data flow analysis
while (!worklist.empty()) {
auto *currbb = worklist.pop_back_val();
if (continueCondition(currbb))
continue;
bool addToSet1 = false;
for (auto *pbb : iterate(currbb)) {
addToSet1 = true;
bool inserted = bbSet2.insert(pbb).second;
if (inserted)
worklist.push_back(pbb);
}
if (addToSet1)
bbSet1.insert(currbb);
}
}
AllocationLivenessAnalyzer::LivenessData::LivenessData(Instruction *allocationInstruction,
SetVector<Instruction *> &&usersOfAllocation, const LoopInfo &LI,
const DominatorTree &DT, BasicBlock *userDominatorBlock,
SetVector<Instruction *> &&lifetimeLeakingUsers) {
if (!userDominatorBlock)
userDominatorBlock = allocationInstruction->getParent();
bbOut.insert(userDominatorBlock);
SmallVector<BasicBlock *> worklist;
for (auto *I : usersOfAllocation) {
worklist.push_back(I->getParent());
}
// Keep track of loop header of blocks that contain allocation instruction
auto *allocationParent = allocationInstruction->getParent();
llvm::SmallPtrSet<llvm::BasicBlock *, 4> containedLoopHeaders;
if (const auto *parentLoop = LI.getLoopFor(allocationParent)) {
containedLoopHeaders.insert(parentLoop->getHeader());
while (parentLoop->getParentLoop()) {
parentLoop = parentLoop->getParentLoop();
containedLoopHeaders.insert(parentLoop->getHeader());
}
}
// perform data flow analysis
doWorkLoop<llvm::pred_range>(
worklist, bbIn, bbOut, [&](auto *currbb) { return llvm::predecessors(currbb); },
[&](auto *currbb) {
return bbIn.contains(currbb) || currbb == userDominatorBlock || containedLoopHeaders.contains(currbb);
});
// handle infinite lifetime
if (!lifetimeLeakingUsers.empty()) {
// traverse all the successors until there are no left.
decltype(bbIn) leakingbbIn;
decltype(bbOut) leakingbbOut;
for (auto *I : lifetimeLeakingUsers)
worklist.push_back(I->getParent());
doWorkLoop<llvm::succ_range>(
worklist, leakingbbOut, leakingbbIn, [&](auto *currbb) { return llvm::successors(currbb); },
[&](auto *currbb) { return false; });
// add terminators to users, so we can later add them to our lifetimeEnd vector
auto leakingbbOnlyIn = leakingbbIn;
set_subtract(leakingbbOnlyIn, leakingbbOut);
for (auto *bb : leakingbbOnlyIn)
usersOfAllocation.insert(bb->getTerminator());
set_union(bbIn, leakingbbIn);
set_union(bbOut, leakingbbOut);
}
// if the lifetime escapes any loop, we should make sure all the loops blocks are included
for (const auto &loop : LI) {
SmallVector<std::pair<BasicBlock *, BasicBlock *>> exitEdges;
loop->getExitEdges(exitEdges);
if (llvm::any_of(exitEdges, [&](auto edge) { return bbOut.contains(edge.first) && bbIn.contains(edge.second); })) {
llvm::for_each(loop->blocks(), [&](auto *block) {
bbOut.insert(block);
bbIn.insert(block);
});
if (loop->getLoopPreheader()) {
bbOut.insert(loop->getLoopPreheader());
} else {
// if the header has multiple predecessors, we need to find the common dominator of all of these
auto *commonDominator = loop->getHeader();
for (auto *bb : llvm::predecessors(loop->getHeader())) {
if (loop->contains(bb))
continue;
commonDominator = DT.findNearestCommonDominator(commonDominator, bb);
worklist.push_back(bb);
}
// acknowledge lifetime flow out of the common dominator block
bbOut.insert(commonDominator);
// add all blocks inbetween
doWorkLoop<llvm::pred_range>(
worklist, bbIn, bbOut, [&](auto *currbb) { return llvm::predecessors(currbb); },
[&](auto *currbb) { return bbOut.contains(currbb) || currbb == commonDominator; });
}
}
}
// at this point we have all the blocks we need, so fill out the start/end data
// substract the inflow blocks from the outflow blocks to find the block which starts the lifetime - there should be
// only one!
auto bbOutOnly = bbOut;
set_subtract(bbOutOnly, bbIn);
IGC_ASSERT_MESSAGE(bbOutOnly.size() == 1, "Multiple lifetime start blocks?");
auto *lifetimeStartBB = *bbOutOnly.begin();
// fill out the lifetime start/ends instruction
for (auto &I : *lifetimeStartBB) {
lifetimeStart = &I;
if (usersOfAllocation.contains(&I))
break;
}
// if bbIn is empty, the entire lifetime is contained within userDominatorBlock
if (bbIn.empty()) {
for (auto &I : llvm::reverse(*userDominatorBlock)) {
if (usersOfAllocation.contains(&I)) {
lifetimeEndInstructions.push_back(&I);
break;
}
}
// clear the bbOut to indicate lifetime does not leave any block;
bbOut.clear();
} else {
// find all blocks where lifetime flows in, but doesnt flow out
auto bbOnlyIn = bbIn;
set_subtract(bbOnlyIn, bbOut);
for (auto *bb : bbOnlyIn) {
for (auto &I : llvm::reverse(*bb)) {
if (usersOfAllocation.contains(&I)) {
lifetimeEndInstructions.push_back(&I);
break;
}
}
}
}
// collect lifetime end edges (where outflow block has successors that aren't inflow blocks)
for (auto *bb : bbOut) {
// however, we can't just add successors
// because then we can accidentally execute lifetime end instruction twice
// which can end up causing issues similar to double-free
// we need to make sure every successor has a single predecessor
SmallVector<BasicBlock *> successors(llvm::successors(bb));
for (auto *succ : successors) {
if (bbIn.contains(succ))
continue;
lifetimeEndEdges.push_back({bb, succ});
}
}
}
bool AllocationLivenessAnalyzer::LivenessData::OverlapsWith(const LivenessData &LD) const {
auto overlapIn = bbIn;
set_intersect(overlapIn, LD.bbIn);
auto overlapOut = bbOut;
set_intersect(overlapOut, LD.bbOut);
// check if both lifetimes flow out or in the same block, this means overlap
if (!overlapIn.empty() || !overlapOut.empty())
return true;
// check lifetime boundaries
for (auto &[LD1, LD2] : {std::make_pair(this, &LD), std::make_pair(&LD, this)}) {
// TODO: replace the whole logic with ContainsInstruction checks
for (auto *I : LD1->lifetimeEndInstructions) {
// what if LD1 is contained in a single block
if (I->getParent() == LD1->lifetimeStart->getParent()) {
auto *bb = I->getParent();
bool inflow = LD2->bbIn.contains(bb);
bool outflow = LD2->bbOut.contains(bb);
bool lifetimeStart = LD2->lifetimeStart->getParent() == bb && LD2->lifetimeStart->comesBefore(I);
auto *LD1_lifetimeStart = LD1->lifetimeStart; // we have to copy LD1.lifetimeStart to avoid clang complaining
// about LD1 being captured by the lambda
bool lifetimeEnd = any_of(LD2->lifetimeEndInstructions, [&](auto *lifetimeEnd) {
return lifetimeEnd->getParent() == bb && LD1_lifetimeStart->comesBefore(lifetimeEnd);
});
if (inflow && outflow)
return true;
if (inflow && lifetimeEnd)
return true;
if (outflow && lifetimeStart)
return true;
if (lifetimeEnd && lifetimeStart)
return true;
} else if (I->getParent() == LD2->lifetimeStart->getParent()) {
if (LD2->lifetimeStart->comesBefore(I))
return true;
}
}
}
return false;
}
bool AllocationLivenessAnalyzer::LivenessData::ContainsInstruction(const llvm::Instruction &I) const {
auto *bb = I.getParent();
// if the LD is contained in a single block, bbIn and bbOut are going to be empty.
// TODO: maybe LivenessData deserves a flag to mark livenesses contained in a single block?
if (bbIn.empty() && bbOut.empty()) {
if (bb != lifetimeStart->getParent())
return false;
if (I.comesBefore(lifetimeStart))
return false;
if (lifetimeEndInstructions[0]->comesBefore(&I))
return false;
return true;
}
if (!bbIn.contains(bb) && !bbOut.contains(bb))
return false;
if (bbIn.contains(bb) && bbOut.contains(bb))
return true;
if (lifetimeStart->getParent() == bb && !I.comesBefore(lifetimeStart))
return true;
bool overlapsWithEnd = any_of(lifetimeEndInstructions, [&](auto *lifetimeEnd) {
return lifetimeEnd->getParent() == bb && !lifetimeEnd->comesBefore(&I);
});
return overlapsWithEnd;
}
namespace IGC {
namespace Provenance {
static bool tryFindPointerOriginImpl(Value *ptr, SmallVectorImpl<Instruction *> &origins, DenseSet<Value *> &cache);
bool tryFindPointerOrigin(Value *ptr, SmallVectorImpl<Instruction *> &origins) {
origins.clear();
DenseSet<Value *> cache;
bool found = tryFindPointerOriginImpl(ptr, origins, cache);
IGC_ASSERT_MESSAGE(found && !origins.empty(), "Origin reported as found but no origins were added!");
return found;
}
static bool tryFindPointerOrigin(GetElementPtrInst *Ptr, SmallVectorImpl<Instruction *> &origins,
DenseSet<Value *> &cache) {
return tryFindPointerOriginImpl(Ptr->getPointerOperand(), origins, cache);
}
static bool tryFindPointerOriginImpl(Value *ptr, SmallVectorImpl<Instruction *> &origins, DenseSet<Value *> &cache) {
if (!cache.insert(ptr).second)
return true;
if (auto *GEP = dyn_cast<GetElementPtrInst>(ptr)) {
return tryFindPointerOrigin(GEP, origins, cache);
}
if (auto *allocaI = dyn_cast<AllocaInst>(ptr)) {
origins.push_back(allocaI);
return true;
}
return false;
}
} // namespace Provenance
} // namespace IGC
|