1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "RTBuilder.h"
#include "common/LLVMUtils.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/BreadthFirstIterator.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/Analysis/CFG.h>
#include <llvm/Analysis/InstructionSimplify.h>
#include <llvm/Analysis/LoopInfo.h>
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
#include <llvm/Transforms/Utils/SSAUpdater.h>
#include "common/LLVMWarningsPop.hpp"
#include "llvmWrapper/Analysis/InstructionSimplify.h"
using namespace IGC;
using namespace llvm;
using namespace std;
using namespace RTStackFormat;
// Lowering pass for Synchronous raytracing intrinsics known as TraceRayInline/RayQuery
class DynamicRayManagementPass : public FunctionPass {
public:
DynamicRayManagementPass() : FunctionPass(ID) {
initializeDynamicRayManagementPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
llvm::StringRef getPassName() const override { return "DynamicRayManagementPass"; }
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override {
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<llvm::DominatorTreeWrapperPass>();
AU.addRequired<llvm::PostDominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
}
static char ID;
private:
llvm::AllocaInst *FindAlloca(llvm::Value *);
void FindLoadsFromAlloca(llvm::User *allocaUser, llvm::SmallVector<llvm::LoadInst *, 4> &foundLoads);
bool AddDynamicRayManagement(Function &F);
bool TryProceedBasedApproach(Function &F);
void HandleComplexControlFlow(Function &F);
bool requiresSplittingCheckReleaseRegion(Instruction &I);
void FindProceedsInOperands(Instruction *I, SetVector<TraceRaySyncProceedHLIntrinsic *> &proceeds,
SmallPtrSetImpl<Instruction *> &cache);
void HoistBeforeMostInnerLoop(BasicBlock *&dominatorBasicBlock, BasicBlock *&commonPostDominatorForRayQueryUsers);
void HoistBeforeMostOuterLoop(BasicBlock *&dominatorBasicBlock, BasicBlock *&commonPostDominatorForRayQueryUsers);
Instruction *FindReleaseInsertPoint(BasicBlock *commonPostDominatorForRayQueryUsers,
const vector<AllocateRayQueryIntrinsic *> &allocateRayQueries,
const std::unordered_set<llvm::AllocaInst *> &allocasForRayQueries);
CodeGenContext *m_CGCtx = nullptr;
DominatorTree *m_DT = nullptr;
LoopInfo *m_LI = nullptr;
PostDominatorTree *m_PDT = nullptr;
std::vector<std::tuple<RayQueryCheckIntrinsic *, RayQueryReleaseIntrinsic *>> m_RayQueryCheckReleasePairs;
};
char DynamicRayManagementPass::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG "igc-dynamic-ray-management-pass"
#define PASS_DESCRIPTION "DynamicRayManagementPass"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(DynamicRayManagementPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(DynamicRayManagementPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
bool DynamicRayManagementPass::runOnFunction(Function &F) {
m_CGCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
m_PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
m_LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
m_RayQueryCheckReleasePairs.clear();
bool changed = false;
// Dot not process further if:
// 1. RayTracing is not supported on this platform.
// 2. Shader does not use RayQuery at all.
// 3. There are more than 1 exit block.
// 4. RayQuery needs splitting due to forced SIMD32
if ((m_CGCtx->platform.supportRayTracing() == false) || (!m_CGCtx->hasSyncRTCalls()) ||
(getNumberOfExitBlocks(F) > 1) || m_CGCtx->syncRTCallsNeedSplitting()) {
return false;
}
if (TryProceedBasedApproach(F))
changed = true;
else {
changed = AddDynamicRayManagement(F);
if (changed) {
HandleComplexControlFlow(F);
}
}
DumpLLVMIR(m_CGCtx, "DynamicRayManagementPass");
return changed;
}
// Find an Alloca in the chain of GEPS and Bitcasts.
// If the RayQuery object is written to the Alloca,
// the usages of that Alloca must be used to determine the actual
// last usage of RayQueryObject. This function recursively iterates through
// the chain of GEPS and Bitcasts to find if an Alloca is written to.
// Otherwise null pointer is returned.
llvm::AllocaInst *DynamicRayManagementPass::FindAlloca(llvm::Value *Instruction) {
if (llvm::GetElementPtrInst *gep = dyn_cast<llvm::GetElementPtrInst>(Instruction)) {
if (llvm::AllocaInst *allocaDest = dyn_cast<llvm::AllocaInst>(gep->getPointerOperand())) {
return allocaDest;
} else {
return FindAlloca(gep->getPointerOperand());
}
}
if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Instruction)) {
if (llvm::AllocaInst *allocaDest = dyn_cast<llvm::AllocaInst>(bitcast->getOperand(0))) {
return allocaDest;
} else {
return FindAlloca(bitcast->getOperand(0));
}
}
return nullptr;
}
// Find a Load which is at the end of the chain of GEPS and Bitcasts.
// If the RayQuery object is loaded from the Alloca,
// the usages of that Load must be used to determine the actual
// last usage of RayQueryObject. This function recursively iterates through
// the chain of GEPS and Bitcasts to find all Loads from an Alloca
// RayQuery object was written to.
//
// NOTICE!
//
// This may return false positives if the same alloca is used for
// other data than RayQuery objects. As RayQueryRelease is always inserted
// after the very last usage of RayQuery Object, in the worst case scenario this could
// result in postponing the Release. It not handled currently as it
// is not sure if this is a real case scenario and it might be impossible to
// verify whether the access to the alloca (either by GEP or by Bitcast),
// is actually an access to the RayQuery object. GEP parameters may be
// a runtime values, untrackable in compile time.
void DynamicRayManagementPass::FindLoadsFromAlloca(llvm::User *allocaUser,
llvm::SmallVector<llvm::LoadInst *, 4> &foundLoads) {
if (llvm::GetElementPtrInst *gep = dyn_cast<llvm::GetElementPtrInst>(allocaUser)) {
for (llvm::User *gepUser : gep->users()) {
if (llvm::LoadInst *gepDest = dyn_cast<llvm::LoadInst>(gepUser)) {
foundLoads.push_back(gepDest);
} else {
FindLoadsFromAlloca(gepUser, foundLoads);
}
}
}
if (llvm::BitCastInst *bitCast = dyn_cast<llvm::BitCastInst>(allocaUser)) {
for (llvm::User *bitCastUser : bitCast->users()) {
if (llvm::LoadInst *bitCastDest = dyn_cast<llvm::LoadInst>(bitCastUser)) {
foundLoads.push_back(bitCastDest);
} else {
FindLoadsFromAlloca(bitCastUser, foundLoads);
}
}
}
}
bool DynamicRayManagementPass::requiresSplittingCheckReleaseRegion(Instruction &I) {
return isBarrierIntrinsic(&I) || isUserFunctionCall(&I) || isHidingComplexControlFlow(&I);
}
void DynamicRayManagementPass::FindProceedsInOperands(Instruction *I,
SetVector<TraceRaySyncProceedHLIntrinsic *> &proceeds,
SmallPtrSetImpl<Instruction *> &cache) {
if (!I)
return;
if (!cache.insert(I).second)
return;
if (auto *proceedI = dyn_cast<TraceRaySyncProceedHLIntrinsic>(I)) {
proceeds.insert(proceedI);
return;
}
for (auto &op : I->operands()) {
if (auto *opI = dyn_cast<Instruction>(op)) {
FindProceedsInOperands(opI, proceeds, cache);
}
}
}
// extracted from internal instcombine
/// Return true if this phi node is always equal to NonPhiInVal.
/// This happens with mutually cyclic phi nodes like:
/// z = some value; x = phi (y, z); y = phi (x, z)
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
// See if we already saw this PHI node.
if (!ValueEqualPHIs.insert(PN).second)
return true;
// Scan the operands to see if they are either phi nodes or are equal to
// the value.
for (Value *Op : PN->incoming_values()) {
if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
return false;
} else if (Op != NonPhiInVal)
return false;
}
return true;
}
bool DynamicRayManagementPass::TryProceedBasedApproach(Function &F) {
// this approach assumes all traffic between private memory and RTStack happens on Proceed calls
// will be removed once RayQuery will be overhauled to minimize shadowstack usage
if (!m_CGCtx->platform.allowProceedBasedApproachForRayQueryDynamicRayManagementMechanism())
return false;
SmallVector<TraceRaySyncProceedHLIntrinsic *> allProceeds;
SetVector<BasicBlock *> checkBBs;
SetVector<BasicBlock *> releaseBBs;
for (auto &I : instructions(F)) {
// we don't want to use this approach in complex control flow situations
if (requiresSplittingCheckReleaseRegion(I))
return false;
// collect all Proceed calls, because some of them might be not in any loop
if (auto *proceed = dyn_cast<TraceRaySyncProceedHLIntrinsic>(&I))
allProceeds.push_back(proceed);
// insert "safety" releases at the end of the shader. They should be culled later, but if not, it's an additional
// protection for us
else if (auto *ret = dyn_cast<ReturnInst>(&I))
releaseBBs.insert(ret->getParent());
}
if (allProceeds.empty())
return false;
if (m_LI->empty())
return false;
// we iterate over all loops from outermost to innermost
// if we find a loop, we skip all loops that are nested in it
SmallPtrSet<Loop *, 4> loopsToIgnore;
for (auto &loop : m_LI->getLoopsInPreorder()) {
if (loopsToIgnore.contains(loop))
continue;
if (!loop->isLoopSimplifyForm())
return false;
SetVector<TraceRaySyncProceedHLIntrinsic *> proceeds;
SmallPtrSet<Instruction *, 4> cache;
FindProceedsInOperands(loop->getLoopGuardBranch(), proceeds, cache);
SmallVector<BasicBlock *> exitingBlocks;
loop->getExitingBlocks(exitingBlocks);
for (auto *exitingBB : exitingBlocks)
FindProceedsInOperands(exitingBB->getTerminator(), proceeds, cache);
if (proceeds.empty())
continue;
loopsToIgnore.insert(loop->getSubLoops().begin(), loop->getSubLoops().end());
bool allProceedsInLoop =
llvm::all_of(proceeds, [&](auto *proceed) { return loop->contains(proceed->getParent()); });
SmallVector<BasicBlock *> exitBlocks;
loop->getExitBlocks(exitBlocks);
if (allProceedsInLoop) {
// if all proceed calls are inside the loop, we just check/release the loop itself
checkBBs.insert(loop->getLoopPreheader());
for (auto *exitBB : exitBlocks)
releaseBBs.insert(exitBB);
} else {
// in other cases, we need to expand to make sure all proceed calls are inside the check/release scope
auto *start = loop->getLoopPreheader();
auto *end = loop->getLoopPreheader();
for (auto *proceed : proceeds) {
start = m_DT->findNearestCommonDominator(start, proceed->getParent());
end = m_PDT->findNearestCommonDominator(end, proceed->getParent());
}
// following single entry multiple exits loop model, we insert one check and multiple releases
checkBBs.insert(start);
if (m_CGCtx->platform.allowDivergentControlFlowRayQueryCheckRelease()) {
for (auto *exitBB : exitBlocks)
releaseBBs.insert(m_PDT->findNearestCommonDominator(end, exitBB));
} else {
for (auto *exitBB : exitBlocks)
end = m_PDT->findNearestCommonDominator(end, exitBB);
releaseBBs.insert(end);
}
}
llvm::erase_if(allProceeds, [&](auto *proceed) { return loop->contains(proceed) || proceeds.contains(proceed); });
}
// abort if we have any proceeds that don't contribute to loop exit conditions
if (!allProceeds.empty())
return false;
// at this point we commit to the approach
RTBuilder IRB(&*F.getEntryBlock().begin(), *m_CGCtx);
SmallVector<Instruction *> guardStoresAndLoads;
// create a guard boolean to prevent double checking/double releasing
// later, we will try to optimize it out with LoadAndStorePromoter
auto *guard = IRB.CreateAlloca(IRB.getInt1Ty(), nullptr, VALUE_NAME("RayQueryCheckReleaseGuard"));
auto *init_guard = IRB.CreateStore(IRB.getFalse(), guard);
guardStoresAndLoads.push_back(init_guard);
SmallVector<CallInst *> CheckReleaseIntrinsics;
for (auto *checkBB : checkBBs) {
auto *IP = checkBB->getFirstNonPHI();
// insert the check as far forward as possible into the BB
for (auto &I : *checkBB) {
IP = &I;
if (isa<TraceRaySyncProceedHLIntrinsic>(&I) || isa<TraceRayInlineHLIntrinsic>(&I))
break;
}
IRB.SetInsertPoint(IP);
auto *load = IRB.CreateLoad(IRB.getInt1Ty(), guard, VALUE_NAME("RQGuardValue"));
guardStoresAndLoads.push_back(load);
auto *cond = IRB.CreateNot(load, VALUE_NAME("NegatedRQGuardValue"));
CheckReleaseIntrinsics.push_back(IRB.CreateRayQueryCheckIntrinsic(cond));
guardStoresAndLoads.push_back(IRB.CreateStore(IRB.getTrue(), guard));
};
for (auto *releaseBB : releaseBBs) {
auto *IP = releaseBB->getTerminator();
// insert the release as far back as possible into the BB
for (auto &I : llvm::reverse(*releaseBB)) {
if (isa<TraceRaySyncProceedHLIntrinsic>(&I) || isa<PHINode>(&I))
break;
IP = &I;
}
IRB.SetInsertPoint(IP);
auto *cond = IRB.CreateLoad(IRB.getInt1Ty(), guard, VALUE_NAME("RQGuardValue"));
guardStoresAndLoads.push_back(cond);
CheckReleaseIntrinsics.push_back(IRB.CreateRayQueryReleaseIntrinsic(cond));
guardStoresAndLoads.push_back(IRB.CreateStore(IRB.getFalse(), guard));
};
// make sure guard dominates all uses
init_guard->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
guard->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
SmallVector<PHINode *> phis;
SSAUpdater Updater(&phis);
LoadAndStorePromoter LSP(guardStoresAndLoads, Updater, "RayQueryCheckReleaseGuardPromotion");
LSP.run(guardStoresAndLoads);
for (auto *phi : phis) {
if (auto *V = phi->hasConstantValue()) {
phi->replaceAllUsesWith(V);
} else {
// naive way to check if we have a phi cycle
// %x = phi [ false, ... ], [ %y, ...]
// %y = phi [ false, ... ], [ %x, ...]
// will never evaluate to true
for (auto *V : {IRB.getTrue(), IRB.getFalse()}) {
SmallPtrSet<PHINode *, 4> cache;
if (PHIsEqualValue(phi, V, cache)) {
phi->replaceAllUsesWith(V);
break;
}
}
}
if (phi->use_empty())
phi->eraseFromParent();
}
SimplifyQuery SQ(F.getParent()->getDataLayout());
SmallVector<Instruction *> toErase;
for (auto *I : CheckReleaseIntrinsics) {
Value *flag = I->getOperand(0);
if (auto *flagAsBinOp = dyn_cast<BinaryOperator>(flag))
flag =
IGCLLVM::simplifyBinOp(flagAsBinOp->getOpcode(), flagAsBinOp->getOperand(0), flagAsBinOp->getOperand(1), SQ);
if (auto *CI = dyn_cast_or_null<ConstantInt>(flag)) {
if (CI->isZero())
toErase.push_back(I);
if (CI->isOne())
I->setOperand(0, IRB.getTrue());
} else {
// if we encounter a nonconstant predicate and the platform can't handle divergent rayquery check/release
// we undo as much as we can and bail from approach entirely
if (!m_CGCtx->platform.allowDivergentControlFlowRayQueryCheckRelease()) {
llvm::for_each(CheckReleaseIntrinsics, [&](auto *I) { I->eraseFromParent(); });
return false;
}
}
// prevent LLVM from merging the calls
if (!m_CGCtx->platform.allowDivergentControlFlowRayQueryCheckRelease()) {
I->addFnAttr(llvm::Attribute::NoMerge);
}
}
llvm::for_each(toErase, [&](auto *I) { I->eraseFromParent(); });
return true;
}
bool DynamicRayManagementPass::AddDynamicRayManagement(Function &F) {
vector<AllocateRayQueryIntrinsic *> allocateRayQueries;
std::unordered_set<llvm::AllocaInst *> allocasForRayQueries;
RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);
BasicBlock *commonPostDominatorForRayQueryUsers = nullptr;
// Find all AllocateRayQueryIntrinsic in the function.
for (Instruction &I : instructions(F)) {
if (AllocateRayQueryIntrinsic *allocateRayQueryIntrinsic = dyn_cast<AllocateRayQueryIntrinsic>(&I)) {
if (allocateRayQueryIntrinsic->use_empty())
continue;
allocateRayQueries.push_back(allocateRayQueryIntrinsic);
if (commonPostDominatorForRayQueryUsers == nullptr) {
commonPostDominatorForRayQueryUsers = allocateRayQueryIntrinsic->getParent();
}
// If the result of AllocateRayQueryIntrinsic is written to the
// Alloca, e.g. if and array of RayQueries is used, the last found
// usage will be much sooner than actual end of RayQuery object lifespan.
// To handle this, it is checked whether the AllocateRayQueryIntrinsic
// user is a Store to Alloca.
// commonPostDominatorForRayQueryUsers is updated to the last
// usage of all these Allocas.
//
// NOTICE!
//
// This may return false positives if the same alloca is used for
// other data than RayQuery objects. As RayQueryRelease is always inserted
// after the very last usage of RayQuery Object, in the worst case scenario this could
// result in postponing the Release. It not handled currently as it
// is not sure if this is a real case scenario and it might be impossible to
// verify whether the access to the alloca (either by GEP or by Bitcast),
// is actually an access to the RayQuery object. GEP parameters may be
// a runtime values, untrackable in compile time.
for (User *rayQueryUser : allocateRayQueryIntrinsic->users()) {
commonPostDominatorForRayQueryUsers = m_PDT->findNearestCommonDominator(
commonPostDominatorForRayQueryUsers, cast<Instruction>(rayQueryUser)->getParent());
if (llvm::StoreInst *storeRayQuery = dyn_cast<llvm::StoreInst>(rayQueryUser)) {
llvm::AllocaInst *allocaForRayQuery = FindAlloca(storeRayQuery->getPointerOperand());
if (allocaForRayQuery != nullptr) {
// If the same Alloca is used for many RayQuery objects, check
// if it was already processed to avoid multiple looking for new
// commonPostDominatorForRayQueryUsers from the same Alloca.
// It it was not processed, was not in the allocasForRayQueries set,
// insert it there and try find new commonPostDominatorForRayQueryUsers.
if (allocasForRayQueries.find(allocaForRayQuery) == allocasForRayQueries.end()) {
allocasForRayQueries.insert(allocaForRayQuery);
for (User *allocaUser : allocaForRayQuery->users()) {
commonPostDominatorForRayQueryUsers = m_PDT->findNearestCommonDominator(
commonPostDominatorForRayQueryUsers, cast<Instruction>(allocaUser)->getParent());
}
}
}
}
}
}
}
if (allocateRayQueries.size() == 0) {
return false;
}
// If we reached this point, the commonPostDominatorForRayQueryUsers
// must be found.
IGC_ASSERT(commonPostDominatorForRayQueryUsers != nullptr);
// Find the Block which dominates all AllocateRayQueryIntrinsics
// This will be the place to put RayQueryCheck().
BasicBlock *dominatorBasicBlock = commonPostDominatorForRayQueryUsers;
for (AllocateRayQueryIntrinsic *allocateRayQueryIntrinsic : allocateRayQueries) {
dominatorBasicBlock = m_DT->findNearestCommonDominator(dominatorBasicBlock, allocateRayQueryIntrinsic->getParent());
}
if (IGC_IS_FLAG_DISABLED(EnableOuterLoopHoistingForRayQueryDynamicRayManagementMechanism)) {
// If the dominatorBasicBlock or commonPostDominatorForRayQueryUsers are
// inside a loop or nested loops, move them outside.
HoistBeforeMostOuterLoop(dominatorBasicBlock, commonPostDominatorForRayQueryUsers);
} else {
// If the dominatorBasicBlock is outside the loop commonPostDominatorForRayQueryUsers
// is in, move up the commonPostDominatorForRayQueryUsers.
HoistBeforeMostInnerLoop(dominatorBasicBlock, commonPostDominatorForRayQueryUsers);
}
// Find the first AllocateRayQueryIntrinsic in the block which
// dominates all AllocateRayQueryIntrinsics. Insert Check instruction
// immediately before this first AllocateRayQueryIntrinsic.
Instruction *rayQueryCheckInsertPoint = nullptr;
for (Instruction &I : *dominatorBasicBlock) {
if (AllocateRayQueryIntrinsic *allocateRayQueryIntrinsic = dyn_cast<AllocateRayQueryIntrinsic>(&I)) {
rayQueryCheckInsertPoint = allocateRayQueryIntrinsic;
break;
}
}
if (rayQueryCheckInsertPoint != nullptr) {
builder.SetInsertPoint(rayQueryCheckInsertPoint);
} else {
builder.SetInsertPoint(dominatorBasicBlock->getTerminator());
}
// RayQueryCheck intrinsic returns a value only to be passed to the corresponding
// RayQueryRelease.
RayQueryCheckIntrinsic *rayQueryCheck = builder.CreateRayQueryCheckIntrinsic();
// Find the last usage of AllocateRayQueryIntrinsic to put Release
// instruction immediately after it.
Instruction *rayQueryReleaseInsertPoint =
FindReleaseInsertPoint(commonPostDominatorForRayQueryUsers, allocateRayQueries, allocasForRayQueries);
// Set the insert point for Release instruction.
// It might be:
// 1. The last usage of AllocateRayQueryIntrinsic. Release instruction is
// put after it.
// 2. The Block which post dominates all the AllocateRayQueryIntrinsic uses.
// This happens if no user if found in this Block.
// Release is put at its beginning.
if (rayQueryReleaseInsertPoint != nullptr) {
IGC_ASSERT(rayQueryReleaseInsertPoint->getNextNode() != nullptr);
builder.SetInsertPoint(rayQueryReleaseInsertPoint->getNextNode());
} else if (commonPostDominatorForRayQueryUsers->hasNPredecessors(1)) {
// Single-exit loop case, common post-dominator has only one
// predecessor that is a loop exiting block.
builder.SetInsertPoint(commonPostDominatorForRayQueryUsers->getFirstNonPHI());
} else {
// If Release is put in the block which does not contain the last
// AllocateRayQueryIntrinsic user, it might be reached from
// blocks which are outside RayQuery path.
//
// bb2 (RayQuery) -> (some other blocks) ->
// bb1 -> commonPostDominator
// bb3 (non RayQuery) -> (some other blocks) ->
//
// In this case a new block is inserted between commonPostDominator
// and its rayQuery related predecessors:
//
// bb2 (RayQuery) -> (some other blocks) -> newBlock ->
// bb1 -> commonPostDominator
// bb3 (non RayQuery) -> (some other blocks) ->
//
// This way there will be a block which will postDomiante only
// RayQuery related blocks.
// Find predecessors of commonPostDominatorForRayQueryUsers which can
// be reached from blocks which contains AllocateRayQueryIntrinsics.
llvm::SmallVector<BasicBlock *, 4> blocksToBranchToNewPostDominator;
for (BasicBlock *predecessor : predecessors(commonPostDominatorForRayQueryUsers)) {
for (AllocateRayQueryIntrinsic *allocateRayQueryIntrinsic : allocateRayQueries) {
BasicBlock *allocateRayQueryBlock = allocateRayQueryIntrinsic->getParent();
// Check if predecessor is the same as allocateRayQueryBlock. In that
// case the Block is immediately, without reachability check, included
// into the list of Blocks which will branch to the NewPostDominator.
if (predecessor == allocateRayQueryBlock) {
blocksToBranchToNewPostDominator.push_back(predecessor);
// Stop searching through other allocateRayQueries, as
// currently processed block is already on the list.
break;
}
// Due to isPotentiallyReachable limitations, a precheck is done
// to exclude the Blocks which Dominates the Blocks with
// AllocateRayQuery intrinsics. Without it it may happen, if there are
// a lot of Blocks, that the Block which dominates another one will
// be marked as reachable from the one it dominates.
//
// This does not handles all the cases when isPotentiallyReachable enters conservative
// mode. It may happen when the search hits the limit of 32 Blocks.
//
// if
// {
// AllocateRayQuery_1
// TraceRayInlineHL_1
// TraceRayInlineCandidateType_1
//
// if
// {
// AllocateRayQuery_2
// TraceRayInlineHL_2
// TraceRayInlineCandidateType_2
//
// if
// {
// {} - >= 29 x Nested Blocks
// }
// }
// }
// else {}
//
// In that case 'else' Block will be marked as reachable from
// the second 'if' Block because the search for the path from
// 'if' to 'else' will exceed the isPotentiallyReachable internal
// threshold. There is a LIT test which is expected to fail:
// \tests\DynamicRayManagement\negative_isReachableLimits.ll
// until this case is handled.
if (m_DT->dominates(predecessor, allocateRayQueryBlock)) {
continue;
}
// For each commonPostDominatorForRayQueryUsers's predecessor find if
// there is a path through it to any of Blocks with AllocateRayQuery.
// This vector will keep all the predecessors to be checked.
// SetVector is used to keep only unique Blocks in order they
// are added.
llvm::SetVector<llvm::BasicBlock *> predecessorsList;
// Start with current predecessor of commonPostDominatorForRayQueryUsers.
// Adds its predecessors to the vector.
for (BasicBlock *pred : predecessors(predecessor)) {
predecessorsList.insert(pred);
}
// Iterate through the list of predecessors. Use direct indexing, as
// the list will expand inside the loop. Every Block in the list is
// checked if it's a Block with AllocateRayQuery. If it is, the path is
// found, the predecessor of commonPostDominatorForRayQueryUsers is added
// to the blocksToBranchToNewPostDominator and the search is over.
// In other case, the predecessors of currently processed Block
// are added to the list to be checked.
for (size_t predecessorIndex = 0; predecessorIndex < predecessorsList.size(); ++predecessorIndex) {
if (predecessorsList[predecessorIndex] == allocateRayQueryBlock) {
blocksToBranchToNewPostDominator.push_back(predecessor);
// Stop searching through other allocateRayQueries, as
// currently processed block is already on the list.
break;
}
for (BasicBlock *pred : predecessors(predecessorsList[predecessorIndex])) {
predecessorsList.insert(pred);
}
}
}
}
// Create new BasicBlock, which will post dominate only
// Blocks related to RayQuery.
BasicBlock *blockWhichPostDominatesOnlyRayQueryUsers =
llvm::SplitBlockPredecessors(commonPostDominatorForRayQueryUsers, blocksToBranchToNewPostDominator,
"blockWhichPostDominatesOnlyRayQueryUsers", m_DT, m_LI);
// Insert an unconditional Branch from new blockWhichPostDominatesOnlyRayQueryUsers to
// commonPostDominatorForRayQueryUsers, and set insert point before the Branch,
// to put Release there.
// builder.SetInsertPoint(builder.CreateBr(commonPostDominatorForRayQueryUsers));
builder.SetInsertPoint(&*blockWhichPostDominatesOnlyRayQueryUsers->getFirstInsertionPt());
// Update Dominator and PostDominator analyses after inserting a new block.
m_PDT->recalculate(F);
}
// The third argument is a value returned by RayQueryCheck, it is used only
// RayQueryCheck-Release pair identification.
RayQueryReleaseIntrinsic *rayQueryRelease = builder.CreateRayQueryReleaseIntrinsic();
// There is a possibility that the check is no longer post-dominated by the
// release now (because release insertion logic changes the control flow).
// If that's the case, iterate over descendants of the check and find a
// block that's both dominated by the current check and postdominated by the
// current release.
if (!m_PDT->dominates(rayQueryRelease->getParent(), rayQueryCheck->getParent())) {
for (auto *node : llvm::breadth_first(m_DT->getNode(rayQueryCheck->getParent()))) {
auto *bb = node->getBlock();
if (m_PDT->dominates(rayQueryRelease->getParent(), bb)) {
for (auto &I : *bb) {
if (isa<AllocateRayQueryIntrinsic>(&I) || &I == bb->getTerminator() || &I == rayQueryRelease) {
rayQueryCheck->moveBefore(&I);
break;
}
}
break;
}
}
}
// The above check attempts to sink the check such that the release still
// post-dominates it. However, this may cause the check to no longer
// dominate the release. If that's the case, we do a final fixup where
// we iteratively hoist the check and sink the release until they are
// guaranteed to to maintain the dom/post-dom relation.
auto getIDom = [&](auto *DomTree, const BasicBlock *BB) -> BasicBlock * {
auto *Node = DomTree->getNode(BB);
IGC_ASSERT(Node);
auto *IDom = Node->getIDom();
IGC_ASSERT(IDom);
return IDom->getBlock();
};
auto isBalanced = [&](BasicBlock *CheckBB, BasicBlock *ReleaseBB) {
return m_DT->dominates(CheckBB, ReleaseBB) && m_PDT->dominates(ReleaseBB, CheckBB) &&
m_LI->getLoopFor(CheckBB) == m_LI->getLoopFor(ReleaseBB);
};
auto *CheckBB = rayQueryCheck->getParent();
auto *ReleaseBB = rayQueryRelease->getParent();
// Check that check and release are connected to the CFG. If not, domination
// checks can be surprising because everything dominates unreachable blocks.
if (!m_DT->isReachableFromEntry(CheckBB) || !m_DT->isReachableFromEntry(ReleaseBB)) {
rayQueryCheck->eraseFromParent();
rayQueryRelease->eraseFromParent();
return true;
}
while (!isBalanced(CheckBB, ReleaseBB)) {
while (!m_DT->dominates(CheckBB, ReleaseBB))
CheckBB = getIDom(m_DT, CheckBB);
while (!m_PDT->dominates(ReleaseBB, CheckBB))
ReleaseBB = getIDom(m_PDT, ReleaseBB);
}
if (CheckBB != rayQueryCheck->getParent())
rayQueryCheck->moveBefore(CheckBB->getTerminator());
if (ReleaseBB != rayQueryRelease->getParent())
rayQueryRelease->moveBefore(&*ReleaseBB->getFirstInsertionPt());
// Add created RayQueryCheck-Release to the list, which
// will be used during complex control flow handling.
m_RayQueryCheckReleasePairs.push_back(std::make_tuple(rayQueryCheck, rayQueryRelease));
return true;
}
void DynamicRayManagementPass::HandleComplexControlFlow(Function &F) {
RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);
// If the function contains barriers or asynch TraceRays or Callable shaders calls
// or is a user defined function call RayQueryRelease must be called before them,
// and GenISA_RayQueryCheck after to avoid deadlocks.
for (Instruction &I : instructions(F)) {
if (!requiresSplittingCheckReleaseRegion(I))
continue;
// Look through all RaytQueryCheck-Release pairs, and check if the barrier/call
// instruction is within any of pairs.
for (uint32_t rayQueryCheckReleasePairIndex = 0; rayQueryCheckReleasePairIndex < m_RayQueryCheckReleasePairs.size();
++rayQueryCheckReleasePairIndex) {
auto [rayQueryCheckIntrinsic, rayQueryReleaseIntrinsic] =
m_RayQueryCheckReleasePairs[rayQueryCheckReleasePairIndex];
if (m_DT->dominates(rayQueryCheckIntrinsic, &I) && m_PDT->dominates(rayQueryReleaseIntrinsic, &I)) {
// If the DisableRayQueryDynamicRayManagementMechanismForBarriers flag
// is enabled, remove Check/Release pairs which encapsulates any Barrier.
if (IGC_IS_FLAG_ENABLED(DisableRayQueryDynamicRayManagementMechanismForBarriers) && isBarrierIntrinsic(&I)) {
rayQueryReleaseIntrinsic->eraseFromParent();
rayQueryCheckIntrinsic->eraseFromParent();
// Remove the pair from the vector in case more Barriers or External
// calls are between them.
m_RayQueryCheckReleasePairs.erase(m_RayQueryCheckReleasePairs.begin() + rayQueryCheckReleasePairIndex);
break;
}
if (isHidingComplexControlFlow(&I) && !m_CGCtx->platform.allowDivergentControlFlowRayQueryCheckRelease()) {
rayQueryReleaseIntrinsic->eraseFromParent();
rayQueryCheckIntrinsic->eraseFromParent();
// Remove the pair from the vector in case more Barriers or External
// calls are between them.
m_RayQueryCheckReleasePairs.erase(m_RayQueryCheckReleasePairs.begin() + rayQueryCheckReleasePairIndex);
break;
}
// The barrier/call instruction is within the RayQueryCheck-Release pair.
// Insert RayQueryRelease before it, and RaytQueryCheck after, to re-enable
// Dynamic Ray Management.
builder.SetInsertPoint(&I);
RayQueryReleaseIntrinsic *rayQueryRelease = builder.CreateRayQueryReleaseIntrinsic();
builder.SetInsertPoint(I.getNextNode());
RayQueryCheckIntrinsic *rayQueryCheck = builder.CreateRayQueryCheckIntrinsic();
// Add new pair to the list.
m_RayQueryCheckReleasePairs.push_back(std::make_tuple(rayQueryCheck, rayQueryRelease));
// TODO: Make sure this is correct for the case:
//
// RayQueryCheck()
//
// if(non_uniform)
// {
// TraceRay()
// }
//
// barrier()
//
// RayQueryRelease()
break;
}
}
}
}
// This function will move Release call outside the loop
// if the Check is also outside it.
//
// Before:
//
// RayQuery<> q;
// Check()
// q.TraceRayInline(...);
//
// do {
// bool p = q.Proceed();
// Release()
// if (!p)
// break;
// ...
// } while (true);
//
// After:
//
// RayQuery<> q;
// Check()
// q.TraceRayInline(...);
//
// do {
// bool p = q.Proceed();
// if (!p)
// break;
// ...
// } while (true);
// Release()
//
void DynamicRayManagementPass::HoistBeforeMostInnerLoop(BasicBlock *&dominatorBasicBlock,
BasicBlock *&commonPostDominatorForRayQueryUsers) {
Loop *loopForDominator = m_LI->getLoopFor(dominatorBasicBlock);
Loop *loopForPostDominator = m_LI->getLoopFor(commonPostDominatorForRayQueryUsers);
Loop *currentLoop = nullptr;
// If the PostDominator is not in the loop, there is nothing to be hoisted.
if (loopForPostDominator != nullptr) {
// Iterate through the loops the PostDominator is in and
// find the first loop the Dominator is NOT in.
// That would be the loop Release must be hoisted to.
while (loopForPostDominator != nullptr) {
// Stop searching if found the loop
// where the Dominator is.
if (loopForPostDominator == loopForDominator) {
break;
}
// Remember current loop, and check whether it is
// in another loop.
currentLoop = loopForPostDominator;
loopForPostDominator = loopForPostDominator->getParentLoop();
}
// If currentLoop is null at this point, it means
// both Dominator and PostDominator are already in the same loop.
// Nothing more left to do.
if (currentLoop != nullptr) {
// Get all exit blocks for the found loop.
SmallVector<BasicBlock *, 4> exitBlocks;
currentLoop->getExitBlocks(exitBlocks);
commonPostDominatorForRayQueryUsers = nullptr;
// Iterate through the exit blocks, and found their common post
// dominator block.
for (BasicBlock *exitBlock : exitBlocks) {
if (commonPostDominatorForRayQueryUsers == nullptr) {
commonPostDominatorForRayQueryUsers = exitBlock;
continue;
}
commonPostDominatorForRayQueryUsers =
m_PDT->findNearestCommonDominator(commonPostDominatorForRayQueryUsers, exitBlock);
}
}
}
// Finally find a block which post dominates new Dominator and PostDominator,
// and update PostDominator.
// Use as final PostDominator.
commonPostDominatorForRayQueryUsers =
m_PDT->findNearestCommonDominator(commonPostDominatorForRayQueryUsers, dominatorBasicBlock);
}
// If the Rayquery is executed or created in the loop, make sure
// Check and Release are put outside the most outer loop.
// This functions updates Dominator and PostDominator blocks.
void DynamicRayManagementPass::HoistBeforeMostOuterLoop(BasicBlock *&dominatorBasicBlock,
BasicBlock *&commonPostDominatorForRayQueryUsers) {
Loop *loopForDominator = m_LI->getLoopFor(dominatorBasicBlock);
Loop *loopForPostDominator = m_LI->getLoopFor(commonPostDominatorForRayQueryUsers);
// Move Dominator outside the nested loops
// to keep the LSC locked for all the RayQuery objects lifetime.
if (loopForDominator != nullptr) {
Loop *parentLoop = loopForDominator->getParentLoop();
// Find the outer most loop.
while (parentLoop != nullptr) {
loopForDominator = parentLoop;
parentLoop = loopForDominator->getParentLoop();
}
// Reset the Dominator, as it will be set to a new
// value in the code below.
dominatorBasicBlock = nullptr;
// Find the block which dominates all entering blocks
// for the most outer loop.
for (BasicBlock *loopPredessesor : predecessors(loopForDominator->getHeader())) {
// Initially use the first entering as the dominator.
if (dominatorBasicBlock == nullptr) {
dominatorBasicBlock = loopPredessesor;
continue;
}
// This will find the block which dominates all entries of the loop.
// TODO: But it could be optimized:
// Create a BasicBlock which branches to the header and redirect all
// entries to branch to this new BasicBlock and place Check in it.
dominatorBasicBlock = m_DT->findNearestCommonDominator(dominatorBasicBlock, loopPredessesor);
}
}
// Move PostDominator after all nested loops.
if (loopForPostDominator != nullptr) {
Loop *parentLoop = loopForPostDominator->getParentLoop();
while (parentLoop != nullptr) {
loopForPostDominator = parentLoop;
parentLoop = loopForPostDominator->getParentLoop();
}
IGC_ASSERT(loopForPostDominator != nullptr);
SmallVector<BasicBlock *, 4> exitBlocks;
loopForPostDominator->getExitBlocks(exitBlocks);
for (BasicBlock *exitBlock : exitBlocks) {
commonPostDominatorForRayQueryUsers =
m_PDT->findNearestCommonDominator(commonPostDominatorForRayQueryUsers, exitBlock);
}
}
// Finally find a block which post dominates new Dominator and PostDominator,
// and update PostDominator.
// Use as final PostDominator.
commonPostDominatorForRayQueryUsers =
m_PDT->findNearestCommonDominator(commonPostDominatorForRayQueryUsers, dominatorBasicBlock);
}
// Find the last usage of AllocateRayQueryIntrinsic to put Release
// instruction immediately after it.
Instruction *
DynamicRayManagementPass::FindReleaseInsertPoint(BasicBlock *commonPostDominatorForRayQueryUsers,
const vector<AllocateRayQueryIntrinsic *> &allocateRayQueries,
const std::unordered_set<llvm::AllocaInst *> &allocasForRayQueries) {
// Start from the last instruction in the Block that post dominates all
// uses.
for (auto I = commonPostDominatorForRayQueryUsers->rbegin(); I != commonPostDominatorForRayQueryUsers->rend(); I++) {
Instruction &instruction = *I;
// For each instruction the Block check if it is a user of any
// AllocateRayQueryIntrinsic. Stop at first match.
for (AllocateRayQueryIntrinsic *allocateRayQueryIntrinsic : allocateRayQueries) {
for (User *rayQueryUser : allocateRayQueryIntrinsic->users()) {
if ((&instruction) == rayQueryUser) {
return &instruction;
}
}
}
// If the result of AllocateRayQueryIntrinsic was written to the
// Alloca, e.g. if and array of RayQueries is used, the last found
// usage will be much sooner than actual end of RayQuery object lifespan.
// To handle this, it is checked whether the Alloca to which
// RayQuery Objects was written to is a source for a Load instruction.
// If currently processed instruction is a user of such Load,
// it is the last user of RayQuery Object in this Block.
//
// NOTICE!
//
// This may return false positives if the same alloca is used for
// other data than RayQuery objects. As RayQueryRelease is always inserted
// after the very last usage of RayQuery Object, in the worst case scenario this could
// result in postponing the Release. It not handled currently as it
// is not sure if this is a real case scenario and it might be impossible to
// verify whether the access to the alloca (either by GEP or by Bitcast),
// is actually an access to the RayQuery object. GEP parameters may be
// a runtime values, untrackable in compile time.
for (AllocaInst *allocaForRayQueryIntrinsic : allocasForRayQueries) {
for (User *allocaUser : allocaForRayQueryIntrinsic->users()) {
llvm::SmallVector<llvm::LoadInst *, 4> loadsFromAlloca;
FindLoadsFromAlloca(allocaUser, loadsFromAlloca);
for (llvm::LoadInst *loadFromAlloca : loadsFromAlloca) {
for (User *loadFromAllocaUser : loadFromAlloca->users()) {
if ((&instruction) == loadFromAllocaUser) {
return &instruction;
}
}
}
}
}
}
return nullptr;
}
namespace IGC {
Pass *CreateDynamicRayManagementPass() { return new DynamicRayManagementPass(); }
} // namespace IGC
|