File: RTStackFormat.h

package info (click to toggle)
intel-graphics-compiler2 2.16.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 106,644 kB
  • sloc: cpp: 805,640; lisp: 287,672; ansic: 16,414; python: 3,952; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (1439 lines) | stat: -rw-r--r-- 60,277 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
/*========================== begin_copyright_notice ============================

Copyright (C) 2019-2025 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//===----------------------------------------------------------------------===//
///
/// This file contains a definition of the structure of the ray tracing
/// stack as seen by a ray.
///
//===----------------------------------------------------------------------===//
#pragma once

#include "API/RayDispatchGlobalData.h"
#include "ConstantsEnums.h"

#include <stdint.h>
#include <stddef.h>

// This code defines a set of macros, that allows us to intentionally disable certain warnings
// in a way that is both concise and portable across compilers.
// We need to disable the warnings in such way because this C++ file may be compiled with Clang, GCC, and Microsoft
// Visual Studio Compiler This works around (at least) two known problems:
//  - QuickBuild treats compiler warnings as errors
//  - RTStackReflection.exe generates warnings when compiling this file
//
// The only macros that are used by the main code are:
//     DISABLE_WARNING_PUSH
//     DISABLE_WARNING_POP
//     and the macros for the individual warnings
// The others are lower level internal utilities, used only by higher level macros.
//
// Explanation of code in original resource : https://www.fluentcpp.com/2019/08/30/how-to-disable-a-warning-in-cpp/

// clang-format off
#if defined(__clang__)
    #define DO_PRAGMA_DIAG(X) _Pragma(#X)                                                     // internal utility
    #define DISABLE_WARNING_PUSH         DO_PRAGMA_DIAG(GCC diagnostic push)
    #define DISABLE_WARNING_POP          DO_PRAGMA_DIAG(GCC diagnostic pop)
    #define DISABLE_WARNING(warningName) DO_PRAGMA_DIAG(GCC diagnostic ignored #warningName)  // internal utility
    // Add warnings that you want to disable here:
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION   \
        DISABLE_WARNING(-Wgnu-anonymous-struct)  // anonymous structs are a GNU extension
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION \
        DISABLE_WARNING(-Wnested-anon-types)     // anonymous types declared in an anonymous union are an extension
#elif defined(__GNUC__)
    #define DO_PRAGMA_DIAG(X) _Pragma(#X)                                                     // internal utility
    #define DISABLE_WARNING_PUSH         DO_PRAGMA_DIAG(GCC diagnostic push)
    #define DISABLE_WARNING_POP          DO_PRAGMA_DIAG(GCC diagnostic pop)
    // Treats only this header file as a system header, AKA disables all warnings in this header file only.
    // The effect does not extend into any file that includes this header file.
    #pragma GCC system_header
    // define the macros that are used in the code down below to prevent compiler failure
    // NOTE: Apparently GCC compiler doesn't support disabling individual warnings.
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION
#elif defined(_MSC_VER)
    #define DISABLE_WARNING_PUSH           __pragma(warning( push ))
    #define DISABLE_WARNING_POP            __pragma(warning( pop ))
    #define DISABLE_WARNING(warningNumber) __pragma(warning( disable : warningNumber ))  // internal utility
    // Add warnings that you want to disable here:
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION   \
        DISABLE_WARNING(4201)  // nonstandard extension used: nameless struct/union
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT \
        DISABLE_WARNING(4820)  // 'MemTravStack::<unnamed-tag>': '4' bytes padding added after data member 'MemTravStack::<unnamed-tag>::offset'
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION
#else
    // define the macros that are used in the code down below to prevent compiler failure
    // NOTE: internal utility macros should not be defined here
    #define DISABLE_WARNING_PUSH
    #define DISABLE_WARNING_POP
    // Add warnings that you want to disable here:
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION
#endif
// clang-format on

// save the current pragma state, save the current compiler settings select the
// warnings that we want to disable, for this file only
DISABLE_WARNING_PUSH
DISABLE_WARNING_ANONYMOUS_STRUCT_UNION
DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION

namespace IGC {

// will be patched with the global root signature at compile time
struct alignas(8) TypeHoleGlobalRootSig {
  char __Padding[16];
};

// This is currently all of the cross-thread constant data that will be populated
// in the indirect data by the UMD (See D3D12RaytracingDispatch.h for more info).
struct RTGlobalsAndRootSig {
  RayDispatchGlobalData RTGlobals;
  TypeHoleGlobalRootSig GlobalRootSig;
};

} // namespace IGC

namespace RTStackFormat {

uint32_t getRTStackHeaderSize(uint32_t MaxBVHLevels);

constexpr static uint32_t MAX_BVH_LEVELS = 2;
constexpr static uint32_t MEM_STACK_SIZE = 4;

// DXR uses two BVH levels: a top-level acceleration structure and a
// bottom-level acceleration structure.
constexpr static uint32_t TOP_LEVEL_BVH = 0;
constexpr static uint32_t BOTTOM_LEVEL_BVH = 1;

// Auxiliary types to make update of the structs easier.
using uint3 = uint32_t[3];
using uint4 = uint32_t[4];
using Vec3f = float[3];
using float4 = float[4];

static_assert(sizeof(uint3) == 12, "size mismatch");
static_assert(sizeof(uint4) == 16, "size mismatch");
static_assert(sizeof(Vec3f) == 12, "size mismatch");
static_assert(sizeof(float4) == 16, "size mismatch");

// This is taken from the functional model.  It's not clear that we have an
// immediate use to read these fields but it is useful to have here for
// documentation purposes.
struct KSP {
  /* returns the base address of the shader record this KSP is part of */
  void *getShaderRecord() {
    return (char *)this + 8 * _offset - 32; // ShaderIdentifier is 32 bytes large
  }

  /* checks if this KSP is a NULL KSP */
  bool isNull() const { return *(uint64_t *)this == NullValue; }

  static constexpr uint64_t NullValue = 0;

public:
  uint64_t _offset : 3;               // offset in 8-byte blocks to the start of shader parameters
  uint64_t _push_constant_enable : 1; // If this field is enabled,
                                      // 8DWs are pushed from the Local
                                      // Arguments at 32B offset from the
                                      // start of the shader record address.

  uint64_t _dispatch_mode : 1; // 0 = SIMD16, 1 = SIMD8
  uint64_t _reserved0 : 1;
  uint64_t _shader : 26;    // shader function pointer
  uint64_t _reserved1 : 32; // unused padding bytes
};

static_assert(sizeof(KSP) == 8, "changed?");



struct NodeInfo {
  enum class Bits : uint8_t {
    type = 3,
    parent = 1,

    cur_prim = 4,
  };

  using T = uint32_t;

  /* NodeType */
  uint8_t type : (T)Bits::type;
  uint8_t parent : (T)Bits::parent; // Indicates a culled stack entry where a single parent node
                                    // is stored in place of multiple child nodes
  uint8_t cur_prim : (T)Bits::cur_prim;
};

/**
 * MemTravStack originally used to have two different definitions in two different files.
 * Here these two definitions are merged into one for preserving backwards compatibility.
 *
 * Basically these two definitions have different internal layouts, different fields, but they have the same size.
 * So we can put these two definitions inside an anonymous union inside the main structure definition.
 * The anonymous union allows both these definitions to be accessed at once.
 * And the anonymous structs force all the fields in a particular definition to be non-overlapping.
 * Since the NoneInfo nodeInfo[MEM_STACK_SIZE] cannot be defined in both these anonymous structs, it doesn't matter
 * which one we put that field in.
 *
 * Any one of these fields can be used, as long as one is consistent with which "overlapping definition" is being used.
 * Or both can be used at once for type punning, to set the value of the full variable, and then get a particular
 * sub-section of that value as a bit field. We maybe having code which accesses the fields in the first definition, and
 * also code somewhere else in the project which accesses the fields in the second definition.
 */
struct StackEntry {
  enum class Bits : uint8_t {
    offset = 31,
    lastChild = 1,
  };

  using T = uint32_t;

  uint32_t offset : (T)Bits::offset; // in multiples of 64B. max 2^29 prims i.e. max 2^30 nodes. one extra bit
  uint32_t lastChild : (T)Bits::lastChild;
};

struct MemTravStack {
  union {
    ///  The original definition from RTStackFormat.h
    struct {
      uint32_t indexArray0; // Restart information for the stack. Described in the background document.
      uint32_t indexArray1;
      uint32_t indexArray2;
      StackEntry stackEntry[MEM_STACK_SIZE];
      NodeInfo nodeInfo[MEM_STACK_SIZE];
    };

    ///  The original definition from ocl_raytracing_structures.h
    struct {
      uint64_t curDepth : 5;       // current depth in the restart trail
      uint64_t restartTrail0 : 29; // lower bits of restart trail
      uint64_t restartTrail1 : 29; // higher bits of restart trail
      uint64_t lastChild0 : 1;     // last child bit for node 0
      uint32_t restartTrail2 : 29; // highest bits of restart trail
      uint32_t lastChild123 : 3;   // last child bit for nodes 1/2/3

      int32_t offset[MEM_STACK_SIZE]; // Signed offset relative to BVH root in multiples of 64B.
      NodeInfo pad[MEM_STACK_SIZE];   // padding to make sure two structs of this union are the same size
    };
  };
};

// Define structs Xe, used to specialize other template structs, like MemHit or RTStack, via GenT arg
#define STYLE(X) struct X;
#include "RayTracingMemoryStyle.h"
#undef STYLE

template <typename GenT> struct MemHit;
template <typename GenT> struct MemRay;
template <typename GenT> struct PrimLeafDesc;
template <typename GenT> struct QuadLeaf;
template <typename GenT> struct InstanceLeaf;

template <> struct MemHit<Xe> {
  float t;    // hit distance of current hit (or initial traversal distance)
  float u, v; // barycentric hit coordinates

  enum class Bits : uint8_t {
    primIndexDelta = 16,
    valid = 1,
    leafType = 3,
    primLeafIndex = 4,
    bvhLevel = 3,
    frontFace = 1,
    done = 1,
    pad0 = 3,

    primLeafPtr = 42,
    hitGroupRecPtr0 = 22,

    instLeafPtr = 42,
    hitGroupRecPtr1 = 22,
  };

  // This is the offset within the bitfield
  enum class Offset : uint8_t {
    // Add as needed
    done = 28,
  };

  using T = uint32_t;

  uint32_t primIndexDelta : (T)Bits::primIndexDelta; // prim index delta for compressed meshlets and quads
  uint32_t valid : (T)Bits::valid;                   // set if there is a hit
  uint32_t leafType : (T)Bits::leafType;             // type of node primLeafPtr is pointing to
  uint32_t primLeafIndex : (T)Bits::primLeafIndex;   // index of the hit primitive inside the leaf
  uint32_t bvhLevel : (T)Bits::bvhLevel;             // the instancing level at which the hit occured
  uint32_t frontFace : (T)Bits::frontFace; // whether we hit the front-facing side of a triangle (also used to pass
                                           // opaque flag when calling intersection shaders)
  uint32_t done : (T)Bits::done; // used in sync mode to indicate that traversal is done (HW will only set this to 0)
  uint32_t pad0 : (T)Bits::pad0; // unused bits (explicit padding)

  uint64_t primLeafPtr : (T)Bits::primLeafPtr; // pointer to BVH leaf node (multiple of 64 bytes)
  uint64_t hitGroupRecPtr0
      : (T)Bits::hitGroupRecPtr0; // LSB of hit group record of the hit triangle (multiple of 16 bytes)

  uint64_t instLeafPtr : (T)Bits::instLeafPtr; // pointer to BVH instance leaf node (in multiple of 64 bytes)
  uint64_t hitGroupRecPtr1
      : (T)Bits::hitGroupRecPtr1; // MSB of hit group record of the hit triangle (multiple of 16 bytes)

  static_assert((uint32_t)Bits::primLeafPtr == (uint32_t)Bits::instLeafPtr, "Size changed?");
};
static_assert(sizeof(MemHit<Xe>) == 32, "MemHit has to be 32 bytes large");

template <> struct MemRay<Xe> {
  // 32 B
  Vec3f org;   // the origin of the ray
  Vec3f dir;   // the direction of the ray
  float tnear; // the start of the ray
  float tfar;  // the end of the ray

  using T = uint32_t;
  enum class Bits : uint8_t {
    rootNodePtr = 48,
    rayFlags = 16,

    hitGroupSRBasePtr = 48,
    hitGroupSRStride = 16,

    missSRPtr = 48,
    pad = 1,
    shaderIndexMultiplier = 8,

    instLeafPtr = 48,
    rayMask = 8,

    ComparisonValue = 7,
    pad2 = 8,
  };

  // 32 B

  // RayFlags:
  //
  // There are 3 sets of flags, from the application point of view,
  // available during the ray traversal:
  // 1. RayFlags set in the shader before the TraceRay functions is called.
  // 2. Flags applied to the entire Pipeline.
  // 3. Flags applied per instances and geometry in the BVH
  //
  // All the Ray data is stored in the MemRayStructures which have two instances:
  // 1. TopLevel (Ray0)
  // 2. BottomLevel (Ray1)
  //
  // TopLevel is written by SW when the Ray is cast (before calling TraceRay).
  // When the traversal reaches the instance and enters related BottomLevel BVH,
  // TopLevel MemRay is copied by HW. Flags from entered instance are applied to
  // the RayFlags.
  // The BottomLevel MemRay is written only by HW, when AnyHit or Intersection
  // Shaders are called.
  //
  // As HW can only apply flags from TracRay (1) and the BVH (3), flags from
  // the Pipeline (2) has to applied by SW. It is done by applying them to
  // the flags set before the TraceRay (1). But the application can read
  // both the Pipeline flags (2) and the RayFlags (1) independently.
  // So the original RayFlags (1) are additionally stored in the MemRay memory.
  // As there is no dedicated space for them, the instLeafPtr from TopLevel MemRay
  // is used, as it is irrelevant to the traversal at the TopLevel.
  //
  // When the AnyHit or Intersection shader are called, there are 3 sets of flags
  // available:
  // 1. RayFlags combined with Pipeline Flags - Ray0.rayFlags
  // 2. RayFlags - Ray0.instLeafPtr aka Ray0.flagsFromTraceRay.rayFlags
  // 3. RayFlags + Pipeline Flags + Instance/GeometryFlags - Ray1.rayFlags
  //
  // rayFlags defined here is used to access:
  // 1. Ray0.rayFlags
  // 2. Ray1.rayFlags
  //
  // Additionally an alias for 16-bit access is added.
  // As we must avoid structure members alignment, to properly generate
  // offsets in MemRayStructure, rayFlags has 64bit type. To simplify the
  // access, a 16bit alias is created (rayFlags16BitAccessAlias.rayFlags).
  // It points to same part of MemHit structure as just rayFlags.
  union {
    struct {
      uint16_t uw0;
      uint16_t uw1;
      uint16_t uw2;
      uint16_t rayFlags;
    } rayFlags16BitTypeAlias;

    struct {
      uint64_t rootNodePtr : (T)Bits::rootNodePtr; // root node to start traversal at
      uint64_t rayFlags : (T)Bits::rayFlags;       // ray flags (see RayFlags structure)
    };
  };

  uint64_t hitGroupSRBasePtr : (T)Bits::hitGroupSRBasePtr; // base of hit group shader record array (16-bytes alignment)
  uint64_t hitGroupSRStride : (T)Bits::hitGroupSRStride; // stride of hit group shader record array (16-bytes alignment)

  uint64_t missSRPtr : (T)Bits::missSRPtr; // pointer to miss shader record to invoke on a miss (8-bytes alignment)
  // DG2
  // uint64_t pad                 : 8;                              // explicit padding bits
  uint64_t pad : (T)Bits::pad; // explicit padding bits
  uint64_t ComparisonValue : (T)Bits::ComparisonValue;             // to be compared with Instance.ComparisonValue
  uint64_t shaderIndexMultiplier : (T)Bits::shaderIndexMultiplier; // shader index multiplier

  union {
    // This just an alias for 16-bit type.
    // As we must avoid structure members alignment, to properly generate
    // offsets in MemRayStructure, rayFlags has 64bit type. To simplify the
    // access, a 16bit alias is created (Ray0.flagsFromTraceRay16BitTypeAlias.rayFlags).
    // It points to same part of MemHit structure as just Ray0.flagsFromTraceRay.rayFlags.
    struct {
      uint16_t rayFlags;
      uint16_t uw1;
      uint16_t uw2;
      uint16_t uw3;
    } flagsFromTraceRay16BitTypeAlias;

    struct {
      // This is just an alias for instLeafPtr used to access
      // RayFlags written by the application in the shader, before the TraceRay.
      // This structure is used to access Ray0.flagsFromTraceRay.rayFlags
      // from the above RayFlags description.
      uint64_t rayFlags : (T)Bits::instLeafPtr;
      uint64_t pad : 16;
    } flagsFromTraceRay;

    struct {
      uint64_t instLeafPtr
          : (T)Bits::instLeafPtr; // the pointer to instance leaf in case we traverse an instance (64-bytes alignment)
      uint64_t rayMask : (T)Bits::rayMask; // ray mask used for ray masking

      uint64_t pad2 : (T)Bits::pad2;
    };
  };
};
static_assert(sizeof(MemRay<Xe>) == 64, "MemRay has to be 64 bytes large");

template <> struct PrimLeafDesc<Xe> {
  enum Type : uint32_t {
    TYPE_NONE = 0,

    /* For a node type of NODE_TYPE_MESHLET, the referenced leaf may
     * still be a QuadLeaf or a Meshlet. We need this as we produce
     * two quads instead of one meshlet when meshlet compression does
     * not work well. */

    TYPE_QUAD = 0,
    TYPE_MESHLET = 1,

    /* For a node type of NODE_TYPE_PROCEDURAL we support enabling
     * and disabling the opaque/non_opaque culling. */

    TYPE_OPACITY_CULLING_ENABLED = 0,
    TYPE_OPACITY_CULLING_DISABLED = 1
  };

  enum class Bits : uint8_t {
    shaderIndex = 24,
    geomMask = 8,
    geomIndex = 29,
    type = 1,
    geomFlags = 2,
  };

  using T = uint32_t;

  uint32_t shaderIndex : (T)Bits::shaderIndex; // shader index used for shader record calculations
  uint32_t geomMask : (T)Bits::geomMask;       // geometry mask used for ray masking

  uint32_t geomIndex : (T)Bits::geomIndex; // the geometry index specifies the n'th geometry of the scene
  uint32_t type : (T)Bits::type;           // distinguish between QuadLeaves and Meshlets or enable/disable culling for
                                           // procedurals and instances
  uint32_t geomFlags : (T)Bits::geomFlags; // geometry flags of this geometry
};
static_assert(sizeof(PrimLeafDesc<Xe>) == 8, "PrimLeafDesc must be 8 bytes large");

template <> struct QuadLeaf<Xe> {
  PrimLeafDesc<Xe> leafDesc; // the leaf header

  uint32_t primIndex0; // primitive index of first triangle (has to be at same offset as for CompressedMeshlet!)

  enum class Bits : uint8_t {
    primIndex1Delta = 16,
    j0 = 2,
    j1 = 2,
    j2 = 2,
    last = 1,
    pad = 9,
  };

  using T = uint32_t;

  uint32_t primIndex1Delta : (T)Bits::primIndex1Delta; // delta encoded primitive index of second triangle
  uint32_t j0 : (T)Bits::j0;                           // specifies first vertex of second triangle
  uint32_t j1 : (T)Bits::j1;                           // specified second vertex of second triangle
  uint32_t j2 : (T)Bits::j2;                           // specified third vertex of second triangle
  uint32_t last : (T)Bits::last; // true if the second triangle is the last triangle in a leaf list
  uint32_t pad : (T)Bits::pad;   // unused bits

  Vec3f v0; // first vertex of first triangle
  Vec3f v1; // second vertex of first triangle
  Vec3f v2; // third vertex of first triangle
  Vec3f v3; // additional vertex only used for second triangle
};
static_assert(sizeof(QuadLeaf<Xe>) == 64, "QuadLeaf must be 64 bytes large");

template <> struct InstanceLeaf<Xe> {
  /* first 64 bytes accessed during traversal by hardware */
  struct Part0 {
    using T = uint32_t;
    enum class Bits : uint8_t {
      shaderIndex = 24,
      geomMask = 8,
      instContToHitGrpIndex = 24,
      pad0 = 5,
      type = 1,
      geomFlags = 2,
      startNodePtr = 48,
      instFlags = 8,
      ComparisonMode = 1,
      ComparisonValue = 7,
    };

    uint32_t shaderIndex
        : (T)Bits::shaderIndex; // shader index used to calculate instancing shader in case of software instancing
    uint32_t geomMask : (T)Bits::geomMask; // geometry mask used for ray masking

    uint32_t instanceContributionToHitGroupIndex : (T)Bits::instContToHitGrpIndex; // TODO: add description
    uint32_t pad0 : (T)Bits::pad0;                                                 // explicit padding bits
    /* PrimLeafDesc */
    uint32_t type : (T)Bits::type;           // enables/disables opaque culling
    uint32_t geomFlags : (T)Bits::geomFlags; // geometry flags are not used for instances

    uint64_t startNodePtr : (T)Bits::startNodePtr; // start node where to continue traversal of the instanced object
    uint64_t instFlags : (T)Bits::instFlags;       // flags for the instance (see InstanceFlags)

    // Xe2+
    uint64_t ComparisonMode : (T)Bits::ComparisonMode;   // 0 for less than or equal, 1 for greater
    uint64_t ComparisonValue : (T)Bits::ComparisonValue; // to be compared with ray.ComparisonValue


    // Note that the hardware swaps the translation components of the
    // world2obj and obj2world matrices, and uses column-major instead of row-major.

    // DXR and Vulkan specify transform matrices in row-major order.
    // A 3x4 row-major matrix from the API maps to HWInstanceLeaf layout as shown:
    //     | vx[0] vy[0] vz[0] p[0] |
    // M = | vx[1] vy[1] vz[1] p[1] |
    //     | vx[2] vy[2] vz[2] p[2] |

    Vec3f world2obj_vx; // 1st col of Worl2Obj transform
    Vec3f world2obj_vy; // 2nd col of Worl2Obj transform
    Vec3f world2obj_vz; // 3rd col of Worl2Obj transform
    Vec3f obj2world_p;  // translation of Obj2World transform (on purpose in first 64 bytes)
  } part0;

  /* second 64 bytes accessed during shading */
  struct Part1 {
    uint64_t bvhPtr : 48; // pointer to BVH where start node belongs too
    uint64_t pad : 16;    // unused bits (explicit padding)

    uint32_t instanceID;    // user defined value per DXR spec
    uint32_t instanceIndex; // geometry index of the instance (n'th geometry in scene)

    Vec3f obj2world_vx; // 1st col of Obj2World transform
    Vec3f obj2world_vy; // 2nd col of Obj2World transform
    Vec3f obj2world_vz; // 3rd col of Obj2World transform
    Vec3f world2obj_p;  // translation of World2Obj transform
  } part1;
};

template <> struct MemHit<Xe3> {
  enum class Bits : uint8_t {
    u = 24,
    v = 24,
    hitGroupIndex0 = 8,
    hitGroupIndex1 = 8,
    hitGroupIndex2 = 6,
    hitGroupIndex3 = 6,
    primIndexDelta = 5,
    pad1 = 7,
    leafNodeSubType = 4,
    valid = 1,
    leafType = 3,
    primLeafIndex = 4,
    bvhLevel = 3,
    frontFace = 1,
    done = 1,
    needSWSTOC = 1,
    reserved = 2,

    primLeafPtr = 58,
    instLeafPtr = 58,
  };

  enum class Offset : uint8_t {
    done = 28,
  };

  using T = uint32_t;

  float t; // hit distance of current hit (or initial traversal distance)

  uint32_t u : (T)Bits::u;                           // barycentric u hit coordinate stored as 24 bit unorm
  uint32_t hitGroupIndex0 : (T)Bits::hitGroupIndex0; // 1st bits of hitGroupIndex

  uint32_t v : (T)Bits::v;                           // barycentric v hit coordinate stored as 24 bit unorm
  uint32_t hitGroupIndex1 : (T)Bits::hitGroupIndex1; // 2nd bits of hitGroupIndex

  uint32_t primIndexDelta : (T)Bits::primIndexDelta;   // prim index delta for compressed meshlets and quads
  uint32_t pad1 : (T)Bits::pad1;                       // MBZ
  uint32_t leafNodeSubType : (T)Bits::leafNodeSubType; // sub-type of leaf node
  uint32_t valid : (T)Bits::valid;                     // set if there is a hit
  uint32_t leafType : (T)Bits::leafType;               // type of node primLeafPtr is pointing to
  uint32_t primLeafIndex : (T)Bits::primLeafIndex;     // index of the hit primitive inside the leaf
  uint32_t bvhLevel : (T)Bits::bvhLevel;               // the instancing level at which the hit occured
  uint32_t frontFace : (T)Bits::frontFace;   // whether we hit the front-facing side of a triangle (also used to pass
                                             // opaque flag when calling intersection shaders)
  uint32_t done : (T)Bits::done;             // used in sync mode to indicate that traversal is done
  uint32_t needSWSTOC : (T)Bits::needSWSTOC; // If set, any-hit shader must perform a SW fallback STOC test
  uint32_t reserved : (T)Bits::reserved;     // unused bit

  uint64_t hitGroupIndex2 : (T)Bits::hitGroupIndex2; // 3rd bits of hitGroupIndex
  uint64_t primLeafPtr : (T)Bits::primLeafPtr;       // pointer to BVH leaf node (MSBs of 64b pointer aligned to 64B)

  uint64_t hitGroupIndex3 : (T)Bits::hitGroupIndex3; // 4th bits of hit group index
  uint64_t instLeafPtr : (T)Bits::instLeafPtr; // pointer to BVH instance leaf node (MSBs of 64b pointer aligned to 64B)
};
static_assert(sizeof(MemHit<Xe3>) == 32, "MemHit has to be 32 bytes large");

template <> struct MemRay<Xe3> {
  // 32 B
  Vec3f org;   // the origin of the ray
  Vec3f dir;   // the direction of the ray
  float tnear; // the start of the ray
  float tfar;  // the end of the ray

  using T = uint32_t;
  enum class Bits : uint8_t {
    rootNodePtr = 64,
    instLeafPtr = 64,
    rayFlags = 16,
    rayMask = 8,
    ComparisonValue = 7,
    pad1 = 1,
    missShaderIndex = 16,
    shaderIndexMultiplier = 4,
    pad2 = 4,
    internalRayFlags = 8,
  };

  uint64_t rootNodePtr : (T)Bits::rootNodePtr; // root node to start traversal at (64-byte alignment)
  union {
    // This just an alias for 16-bit type.
    // As we must avoid structure members alignment, to properly generate
    // offsets in MemRayStructure, rayFlags has 64bit type. To simplify the
    // access, a 16bit alias is created (Ray0.flagsFromTraceRay16BitTypeAlias.rayFlags).
    // It points to same part of MemHit structure as just Ray0.flagsFromTraceRay.rayFlags.
    struct {
      uint16_t rayFlags;
      uint16_t uw1;
      uint16_t uw2;
      uint16_t uw3;
    } flagsFromTraceRay16BitTypeAlias;

    struct {
      // This is just an alias for instLeafPtr used to access
      // RayFlags written by the application in the shader, before the TraceRay.
      // This structure is used to access Ray0.flagsFromTraceRay.rayFlags
      // from the below RayFlags description.
      uint64_t rayFlags;
    } flagsFromTraceRay;

    uint64_t instLeafPtr
        : (T)Bits::instLeafPtr; // the pointer to instance leaf in case we traverse an instance (64-bytes alignment)
  };

  // RayFlags:
  //
  // There are 3 sets of flags, from the application point of view,
  // available during the ray traversal:
  // 1. RayFlags set in the shader before the TraceRay functions is called.
  // 2. Flags applied to the entire Pipeline.
  // 3. Flags applied per instances and geometry in the BVH
  //
  // All the Ray data is stored in the MemRayStructures which have two instances:
  // 1. TopLevel (Ray0)
  // 2. BottomLevel (Ray1)
  //
  // TopLevel is written by SW when the Ray is cast (before calling TraceRay).
  // When the traversal reaches the instance and enters related BottomLevel BVH,
  // TopLevel MemRay is copied by HW. Flags from entered instance are applied to
  // the RayFlags.
  // The BottomLevel MemRay is written only by HW, when AnyHit or Intersection
  // Shaders are called.
  //
  // As HW can only apply flags from TracRay (1) and the BVH (3), flags from
  // the Pipeline (2) has to applied by SW. It is done by applying them to
  // the flags set before the TraceRay (1). But the application can read
  // both the Pipeline flags (2) and the RayFlags (1) independently.
  // So the original RayFlags (1) are additionally stored in the MemRay memory.
  // As there is no dedicated space for them, the instLeafPtr from TopLevel MemRay
  // is used, as it is irrelevant to the traversal at the TopLevel.
  //
  // When the AnyHit or Intersection shader are called, there are 3 sets of flags
  // available:
  // 1. RayFlags combined with Pipeline Flags - Ray0.rayFlags
  // 2. RayFlags - Ray0.instLeafPtr aka Ray0.flagsFromTraceRay.rayFlags
  // 3. RayFlags + Pipeline Flags + Instance/GeometryFlags - Ray1.rayFlags
  //
  // rayFlags defined here is used to access:
  // 1. Ray0.rayFlags
  // 2. Ray1.rayFlags
  //
  // Additionally an alias for 16-bit access is added.
  // As we must avoid structure members alignment, to properly generate
  // offsets in MemRayStructure, rayFlags has 64bit type. To simplify the
  // access, a 16bit alias is created (rayFlags16BitAccessAlias.rayFlags).
  // It points to same part of MemHit structure as just rayFlags.
  union {
    struct {
      uint16_t rayFlags;
      uint16_t uw1;
    } rayFlags16BitTypeAlias;

    struct {
      uint32_t rayFlags : (T)Bits::rayFlags;               // ray flags (see RayFlag structure)
      uint32_t rayMask : (T)Bits::rayMask;                 // ray mask used for ray masking
      uint32_t ComparisonValue : (T)Bits::ComparisonValue; // to be compared with Instance.ComparisonMask
      uint32_t pad1 : (T)Bits::pad1;
    };
  };

  uint32_t hitGroupIndex; // hit group shader index

  uint32_t missShaderIndex : (T)Bits::missShaderIndex;             // index of miss shader to invoke on a miss
  uint32_t shaderIndexMultiplier : (T)Bits::shaderIndexMultiplier; // shader index multiplier
  uint32_t pad2 : (T)Bits::pad2;
  uint32_t internalRayFlags : (T)Bits::internalRayFlags; // Xe3: internal ray flags (see InternalRayFlags enum)

  float time; // ray time in range [0,1] (force to 0 for now)
};
static_assert(sizeof(MemRay<Xe3>) == 64, "MemRay has to be 64 bytes large");

enum class InternalRayFlags : uint16_t {
  NONE = 0x0,
  TRIANGLE_FRONT_COUNTERCLOCKWISE = 0x1, // Xe3: switch front and back-facing triangles
  LEVEL_ASCEND_DISABLED = 0x2,           // Xe3: disables the automatic level ascend for this level
  SKIP_MISS_SHADER = 0x4,                // Xe3: skip execution of miss shader
  DISABLE_STOC = 0x8,                    // Xe3: disables sub triangle opacity culling
};

template <> struct PrimLeafDesc<Xe3> {
  enum Type : uint32_t {
    TYPE_NONE = 0,

    /* For a node type of NODE_TYPE_MESHLET, the referenced leaf may
     * still be a QuadLeaf or a Meshlet. We need this as we produce
     * two quads instead of one meshlet when meshlet compression does
     * not work well. */

    TYPE_QUAD = 0,
    TYPE_MESHLET = 1,

    /* For a node type of NODE_TYPE_PROCEDURAL we support enabling
     * and disabling the opaque/non_opaque culling. */

    TYPE_OPACITY_CULLING_ENABLED = 0,
    TYPE_OPACITY_CULLING_DISABLED = 1
  };

  enum class Bits : uint8_t {
    shaderIndex = 24,
    geomMask = 8,

    geomIndex = 24,
    subType = 4,
    reserved0 = 1,
    DisableOpacityCull = 1,
    OpaqueGeometry = 1,
    IgnoreRayMultiplier = 1,
  };

  using T = uint32_t;

  uint32_t shaderIndex : (T)Bits::shaderIndex; // shader index used for shader record calculations
  uint32_t geomMask : (T)Bits::geomMask;       // geometry mask used for ray masking

  uint32_t geomIndex : (T)Bits::geomIndex; // Xe1+: the geometry index specifies the n'th geometry of the scene
  uint32_t subType : (T)Bits::subType;     // Xe3: geometry sub-type
  uint32_t reserved0 : (T)Bits::reserved0; // Xe1+: reserved bit (MBZ)
  uint32_t DisableOpacityCull : (T)Bits::DisableOpacityCull;   // Xe1+: disables opacity culling
  uint32_t OpaqueGeometry : (T)Bits::OpaqueGeometry;           // Xe1+: determines if geometry is opaque
  uint32_t IgnoreRayMultiplier : (T)Bits::IgnoreRayMultiplier; // Xe3: ignores ray geometry multiplier
};
static_assert(sizeof(PrimLeafDesc<Xe3>) == 8, "PrimLeafDesc must be 8 bytes large");

template <> struct QuadLeaf<Xe3> {
  PrimLeafDesc<Xe3> leafDesc; // the leaf header

  uint32_t primIndex0; // primitive index of first triangle (has to be at same offset as for CompressedMeshlet!)

  enum class Bits : uint8_t {
    primIndex1Delta = 5,
    stoc1_tri0_swstoc = 1,
    stoc1_tri1_swstoc = 1,
    pad = 1,
    stoc1_tri0_opaque = 4,
    stoc1_tri0_transp = 4,
    j0 = 2,
    j1 = 2,
    j2 = 2,
    last = 1,
    lastInMeshlet = 1,
    stoc1_tri1_opaque = 4,
    stoc1_tri1_transp = 4,
  };

  using T = uint32_t;

  uint32_t primIndex1Delta : (T)Bits::primIndex1Delta; // offset of primID of second triangle
  uint32_t stoc1_tri0_swstoc
      : (T)Bits::stoc1_tri0_swstoc; // indicates that software STOC emulation for triangle 0 is required in AHS
  uint32_t stoc1_tri1_swstoc
      : (T)Bits::stoc1_tri1_swstoc; // indicates that software STOC emulation for triangle 1 is required in AHS
  uint32_t pad : (T)Bits::pad;      // reserved (MBZ)
  uint32_t stoc1_tri0_opaque : (T)Bits::stoc1_tri0_opaque; // STOC level 1 sub-triangle opaque      bits for triangle 0
  uint32_t stoc1_tri0_transp : (T)Bits::stoc1_tri0_transp; // STOC level 1 sub-triangle transparent bits for triangle 0
  uint32_t j0 : (T)Bits::j0;
  uint32_t j1 : (T)Bits::j1;
  uint32_t j2 : (T)Bits::j2;
  uint32_t last : (T)Bits::last;                           // last quad in BVH leaf
  uint32_t lastInMeshlet : (T)Bits::lastInMeshlet;         // last quad in meshlet
  uint32_t stoc1_tri1_opaque : (T)Bits::stoc1_tri1_opaque; // STOC level 1 sub-triangle opaque      bit for triangle 1
  uint32_t stoc1_tri1_transp : (T)Bits::stoc1_tri1_transp; // STOC level 1 sub-triangle transparent bit for triangle 1

  Vec3f v0; // first vertex of first triangle
  Vec3f v1; // second vertex of first triangle
  Vec3f v2; // third vertex of first triangle
  Vec3f v3; // additional vertex only used for second triangle
};
static_assert(sizeof(QuadLeaf<Xe3>) == 64, "QuadLeaf must be 64 bytes large");

struct QuadLeaf_STOC3 {
  QuadLeaf<Xe3> quad;
  uint64_t fullyOpaqueBits0;      // fully opaque sub-triangle bits for triangle 0
  uint64_t fullyTransparentBits0; // fully transparent sub-triangle bits for triangle 0
  uint64_t fullyOpaqueBits1;      // fully opaque sub-triangle bits for triangle 1
  uint64_t fullyTransparentBits1; // fully transparent sub-triangle bits for triangle 1

  uint64_t stoc3_tri0_addr; // Xe3: address of full STOC bits for triangle 0
  uint8_t stoc3_tri0_level; // Xe3: the recursion level for STOC bits for triangle 0 (4-12)

  uint8_t stoc3_tri0_swstoc : 1; // Xe3: indicates that software STOC emulation for triangle 0 is required in AHS
  uint8_t _reserved0 : 7;

  uint8_t reserved0[6];

  uint64_t stoc3_tri1_addr; // Xe3: address of full STOC bits for triangle 1
  uint8_t stoc3_tri1_level; // Xe3: the recursion level for STOC bits for triangle 1 (4-12)

  uint8_t stoc3_tri1_swstoc : 1; // Xe3: indicates that software STOC emulation for triangle 1 is required in AHS
  uint8_t _reserved1 : 7;

  uint8_t reserved1[6];
};
static_assert(sizeof(QuadLeaf_STOC3) == 128, "QuadLeaf_STOC3 must be 128 bytes large");

template <> struct InstanceLeaf<Xe3> {
  /* first 64 bytes accessed during traversal by hardware */
  struct Part0 {
    using T = uint32_t;
    enum class Bits : uint8_t {
      instContToHitGrpIndex = 24,
      geomMask = 8,
      instFlags = 8,
      ComparisonMode = 1,
      ComparisonValue = 7,
      pad0 = 8,
      subType = 3,
      pad1 = 2,
      DisableOpacityCull = 1,
      OpaqueGeometry = 1,
      IgnoreRayMultiplier = 1,
    };

    uint32_t instanceContributionToHitGroupIndex
        : (T)Bits::instContToHitGrpIndex;  // Xe3: instance contribution to hit group index
    uint32_t geomMask : (T)Bits::geomMask; // Xe1+: geometry mask used for ray masking

    uint32_t instFlags : (T)Bits::instFlags;                     // Xe3: flags for the instance (see InstanceFlags)
    uint32_t ComparisonMode : (T)Bits::ComparisonMode;           // Xe3: 0 for <=, 1 for > comparison
    uint32_t ComparisonValue : (T)Bits::ComparisonValue;         // Xe3: to be compared with ray.ComparionMask
    uint32_t pad0 : (T)Bits::pad0;                               // reserved (MBZ)
    uint32_t subType : (T)Bits::subType;                         // Xe3: geometry sub-type
    uint32_t pad1 : (T)Bits::pad1;                               // reserved (MBZ)
    uint32_t DisableOpacityCull : (T)Bits::DisableOpacityCull;   // Xe1+: disables opacity culling
    uint32_t OpaqueGeometry : (T)Bits::OpaqueGeometry;           // Xe1+: determines if geometry is opaque
    uint32_t IgnoreRayMultiplier : (T)Bits::IgnoreRayMultiplier; // Xe3: ignores ray geometry multiplier

    uint64_t startNodePtr; // Xe3: 64 bit start node of instanced object


    // Note that the hardware swaps the translation components of the
    // world2obj and obj2world matrices, and uses column-major instead of row-major.

    // DXR and Vulkan specify transform matrices in row-major order.
    // A 3x4 row-major matrix from the API maps to HWInstanceLeaf layout as shown:
    //     | vx[0] vy[0] vz[0] p[0] |
    // M = | vx[1] vy[1] vz[1] p[1] |
    //     | vx[2] vy[2] vz[2] p[2] |

    Vec3f world2obj_vx; // 1st col of Worl2Obj transform
    Vec3f world2obj_vy; // 2nd col of Worl2Obj transform
    Vec3f world2obj_vz; // 3rd col of Worl2Obj transform
    Vec3f obj2world_p;  // translation of Obj2World transform (on purpose in first 64 bytes)
  } part0;

  /* second 64 bytes accessed during shading */
  struct Part1 {
    uint64_t bvhPtr : 48; // pointer to BVH where start node belongs too
    uint64_t pad : 16;    // unused bits (explicit padding)

    uint32_t instanceID;    // user defined value per DXR spec
    uint32_t instanceIndex; // geometry index of the instance (n'th geometry in scene)

    Vec3f obj2world_vx; // 1st col of Obj2World transform
    Vec3f obj2world_vy; // 2nd col of Obj2World transform
    Vec3f obj2world_vz; // 3rd col of Obj2World transform
    Vec3f world2obj_p;  // translation of World2Obj transform
  } part1;
};
static_assert(sizeof(InstanceLeaf<Xe3>) == 128, "InstanceLeaf must be 128 bytes large");


// HW stack
template <typename GenT, uint32_t MaxBVHLevels> struct RTStack {
  MemHit<GenT> committedHit; // stores committed hit
  MemHit<GenT> potentialHit; // stores potential hit that is passed to any hit shader

  MemRay<GenT> ray0;
  MemRay<GenT> ray1;
  MemRay<GenT> ray[MaxBVHLevels - 2];   // stores a ray for each instancing level
  MemTravStack travStack[MaxBVHLevels]; // spill location for the internal stack state per instancing level

  static_assert(MaxBVHLevels > 2);
};

template <typename GenT> struct RTStack<GenT, MAX_BVH_LEVELS> {
  MemHit<GenT> committedHit; // stores committed hit
  MemHit<GenT> potentialHit; // stores potential hit that is passed to any hit shader

  MemRay<GenT> ray0;
  MemRay<GenT> ray1;
  MemTravStack travStack[MAX_BVH_LEVELS]; // spill location for the internal stack state per instancing level
};


// This is the ShadowMemory that we maintain if we DONOT need spill/fill it to/from HW RTStack.
// We keep this data structure as small as possible to reduce the size.
template <typename GenT, uint32_t MaxBVHLevels> struct SMStack {
  MemHit<GenT> committedHit; // stores committed hit
  MemHit<GenT> potentialHit; // stores potential hit that is passed to any hit shader

  MemRay<GenT> ray0;
  MemRay<GenT> ray1;
  MemRay<GenT> ray[MaxBVHLevels - 2]; // stores a ray for each instancing level
  // MemTravStack travStack[MaxBVHLevels]; // spill location for the internal stack state per instancing level

  static_assert(MaxBVHLevels > 2);
};

template <typename GenT> struct SMStack<GenT, MAX_BVH_LEVELS> {
  MemHit<GenT> committedHit; // stores committed hit
  MemHit<GenT> potentialHit; // stores potential hit that is passed to any hit shader

  MemRay<GenT> ray0;
  MemRay<GenT> ray1;
  // MemTravStack travStack[MaxBVHLevels]; // spill location for the internal stack state per instancing level
};

// For now, we're just defaulting to using an RTStack assuming
// MAX_BVH_LEVELS == 2.
template <typename GenT> using RTStack2 = RTStack<GenT, MAX_BVH_LEVELS>;
template <typename GenT> using SMStack2 = SMStack<GenT, MAX_BVH_LEVELS>;

template <typename RTStack2T> constexpr size_t sizeofRTStack2() { return sizeof(RTStack2T); }

#ifdef HAS_INCLUDE_TYPE_TRAITS
static_assert(std::is_standard_layout_v<RTStack2<Xe>>);
static_assert(std::is_standard_layout_v<SMStack2<Xe>>);
#endif // HAS_INCLUDE_TYPE_TRAITS

// Makes sure that important fields are at their proper offset from the start
// of the structure. Update this if the structure changes.  This is just for
// documentation purposes.
static_assert(offsetof(RTStack2<Xe>, committedHit) == 0, "unexpected offset!");
static_assert(offsetof(RTStack2<Xe>, potentialHit) == 32, "unexpected offset!");
static_assert(offsetof(RTStack2<Xe>, ray0) == 64, "unexpected offset!");
static_assert(offsetof(RTStack2<Xe>, ray1) == 64 + 64, "unexpected offset!");
static_assert(offsetof(RTStack2<Xe>, travStack) == 192, "unexpected offset!");


/////////////// BVH structures ///////////////

enum NodeType : uint8_t {
  NODE_TYPE_MIXED = 0x0,      // identifies a mixed internal node where each child can have a different type
  NODE_TYPE_INTERNAL = 0x0,   // internal BVH node with 6 children
  NODE_TYPE_INSTANCE = 0x1,   // instance leaf
  NODE_TYPE_PROCEDURAL = 0x3, // procedural leaf
  NODE_TYPE_QUAD = 0x4,       // quad leaf
  NODE_TYPE_MESHLET = 0x6,    // meshlet leaf
  NODE_TYPE_INVALID = 0x7     // indicates invalid node
};

struct InternalNode {
  static constexpr const uint32_t NUM_CHILDREN = 6;

  Vec3f lower;         // world space origin of quantization grid
  int32_t childOffset; // offset to all children in 64B multiples

  NodeType nodeType; // the type of the node
  uint8_t pad;       // unused byte

  int8_t exp_x;     // 2^exp_x is the size of the grid in x dimension
  int8_t exp_y;     // 2^exp_y is the size of the grid in y dimension
  int8_t exp_z;     // 2^exp_z is the size of the grid in z dimension
  uint8_t nodeMask; // mask used for ray filtering

  struct ChildData {
    uint8_t blockIncr : 2; // size of child in 64 byte blocks
    uint8_t startPrim : 4; // start primitive in fat leaf mode or child type in mixed mode
    uint8_t pad : 2;       // unused bits
  } childData[NUM_CHILDREN];

  uint8_t lower_x[NUM_CHILDREN]; // the quantized lower bounds in x-dimension
  uint8_t upper_x[NUM_CHILDREN]; // the quantized upper bounds in x-dimension
  uint8_t lower_y[NUM_CHILDREN]; // the quantized lower bounds in y-dimension
  uint8_t upper_y[NUM_CHILDREN]; // the quantized upper bounds in y-dimension
  uint8_t lower_z[NUM_CHILDREN]; // the quantized lower bounds in z-dimension
  uint8_t upper_z[NUM_CHILDREN]; // the quantized upper bounds in z-dimension
};

enum class GeometryFlags : uint32_t { NONE = 0x0, RTX_OPAQUE = 0x1 };

template <typename GenT> struct ProceduralLeaf {
  static const uint32_t N = 13;

  enum class Bits : uint8_t {
    numPrimitives = 4,
    pad = 32 - numPrimitives - N,
    last = N,
  };

  using T = uint32_t;

  PrimLeafDesc<GenT> leafDesc;                     // leaf header identifying the geometry
  uint32_t numPrimitives : (T)Bits::numPrimitives; // number of stored primitives
  uint32_t pad : (T)Bits::pad;                     // explicit padding bits
  uint32_t last : (T)Bits::last;                   // bit vector with a last bit per primitive
  uint32_t _primIndex[N];                          // primitive indices of all primitives stored inside the leaf
};

static_assert(sizeof(ProceduralLeaf<Xe>) == 64, "ProceduralLeaf must be 64 bytes large");

static_assert(sizeof(QuadLeaf<Xe>) == sizeof(ProceduralLeaf<Xe>), "Leaves must be same size");
static_assert(sizeof(QuadLeaf<Xe3>) == sizeof(ProceduralLeaf<Xe3>), "Leaves must be same size");
static_assert(sizeof(QuadLeaf<Xe>) == sizeof(QuadLeaf<Xe3>));

constexpr uint32_t LeafSize = sizeof(QuadLeaf<Xe>);

/*
  The CompressedMeshlet structure stores triangles compressed
  losslessly. Between 1 to 16 triangles can get stored that index
  into a vertex array with up to 16 vertices.

  The structure contains a header, a list of delta compressed
  indices (allocated front to back), and a list of compressed
  vertices (allocated back to front).

 */
template <typename GenT> struct CompressedMeshlet {
  PrimLeafDesc<GenT> leafDesc;
  uint32_t first_triangle_primID; // has to be at same offset as for QuadLeaf!

  uint32_t num_triangles : 4;         // number of stored triangles (0 -> 1 triangle, 1 -> 2 triangles, etc..)
  uint32_t num_position_bits_x : 4;   // number of bit pairs for x coordinate (0 -> 2 bits, 1 -> 4 bits, etc.)
  uint32_t num_position_bits_y : 4;   // number of bit pairs for y coordinate (0 -> 2 bits, 1 -> 4 bits, etc.)
  uint32_t num_position_bits_z : 4;   // number of bit pairs for z coordinate (0 -> 2 bits, 1 -> 4 bits, etc.)
  uint32_t num_primID_delta_bits : 4; // number of bits for primIndex delta encoding (0 -> 1 bit, 1 -> 2 bits, etc.)
  uint32_t first_triangle_islast : 1; // last bit for first triangle
  uint32_t pad : 8;                   // explicit padding bits

  /* in this array triangles are stored front to back and vertex
   * positions back to front. */
  char data[100];

  Vec3f first_position;
};

static_assert(sizeof(CompressedMeshlet<Xe>) == 128, "CompressedMeshlet has to be 128 bytes large");

enum class InstanceFlags : uint8_t {
  NONE = 0x0,
  TRIANGLE_CULL_DISABLE = 0x1,
  TRIANGLE_FRONT_COUNTERCLOCKWISE = 0x2,
  FORCE_OPAQUE = 0x4,
  FORCE_NON_OPAQUE = 0x8,
  FORCE_2STATE_STOC = 0x10,
  DISABLE_STOC = 0x20,
};

template <typename GenT> struct alignas(256) BVH {
  uint64_t rootNodeOffset; // root node offset

  Vec3f bounds_min; // bounds of the BVH
  Vec3f bounds_max;

  uint32_t nodeDataStart;        // first 64 byte block of node data
  uint32_t nodeDataCur;          // next free 64 byte block for node allocations
  uint32_t leafDataStart;        // first 64 byte block of leaf data
  uint32_t leafDataCur;          // next free 64 byte block for leaf allocations
  uint32_t proceduralDataStart;  // first 64 byte block for procedural leaf data
  uint32_t proceduralDataCur;    // next free 64 byte block for procedural leaf allocations
  uint32_t backPointerDataStart; // first 64 byte block for back pointers
  uint32_t backPointerDataEnd;   // end of back pointer array

  // miscellaneous header information
  // ...

  // node data

  // These are really variable length arrays in memory but are here for
  // documentation purposes.
  InternalNode innerNode[1];
  QuadLeaf<GenT> geomLeaf[1];
  ProceduralLeaf<GenT> proceduralLeaf[1];
  InstanceLeaf<GenT> instLeaf[1];
  uint32_t backPointers[1];

  // array size = 256 - (sizeOfStructMembers % 256)
  // sizeOfStructMembers = 8          //uint64_t rootNodeOffset
  //                     + 2*12       // Vec3f   bounds_min; Vec3f   bounds_max;
  //                     + 9 * 4      // 9 * uint32_t
  //                     + 64         // InternalNode
  //                     + 64         // QuadLeaf
  //                     + 64         // ProceduralLeaf
  //                     + 128        // InstanceLeaf
  char __Padding[124];
};

constexpr uint32_t getRayFlagMask(uint32_t Val) { return (Val << 1) - 1; }

enum class RAYTRACING_PIPELINE_FLAGS : uint16_t {
  NONE = 0x0,
  SKIP_TRIANGLES = 0x100,
  SKIP_PROCEDURAL_PRIMITIVES = 0x200,
};

enum class RayFlags : uint16_t {
  NONE = 0x00,
  FORCE_OPAQUE = 0x01,                    // forces geometry to be opaque (no anyhit shader invokation)
  FORCE_NON_OPAQUE = 0x02,                // forces geometry to be non-opqaue (invoke anyhit shader)
  ACCEPT_FIRST_HIT_AND_END_SEARCH = 0x04, // terminates traversal on the first hit found (shadow rays)
  SKIP_CLOSEST_HIT_SHADER = 0x08,         // skip execution of the closest hit shader
  CULL_BACK_FACING_TRIANGLES = 0x10,      // back facing triangles to not produce a hit
  CULL_FRONT_FACING_TRIANGLES = 0x20,     // front facing triangles do not produce a hit
  CULL_OPAQUE = 0x40,                     // opaque geometry does not produce a hit
  CULL_NON_OPAQUE = 0x80,                 // non-opaque geometry does not produce a hit

  SKIP_TRIANGLES = 0x100,             // Skip all triangle intersections and consider them as misses
  SKIP_PROCEDURAL_PRIMITIVES = 0x200, // Skip execution of intersection shaders for procedural primitives

  // Anything below this point should not be propagated to RayFlags()

  // TRIANGLE_FRONT_COUNTERCLOCKWISE = 0x4000, // This value MUST not be programmed by SW but used internally by HW
  // only.

  LEVEL_ASCEND_DISABLED = 0x8000, // disables the automatic level ascend for this level,
                                  // thus traversal will terminate when BVH at this level is done
};

// DXR spec:
// "Only defined ray flags are propagated by the system, e.g. visible to the RayFlags() shader intrinsic."
constexpr uint32_t RayFlagsMask = getRayFlagMask((uint32_t)RayFlags::SKIP_PROCEDURAL_PRIMITIVES);

enum class RayFlags_Xe3 : uint16_t {
  NONE = 0x00,
  FORCE_OPAQUE = 0x01,                    // forces geometry to be opaque (no anyhit shader invokation)
  FORCE_NON_OPAQUE = 0x02,                // forces geometry to be non-opqaue (invoke anyhit shader)
  ACCEPT_FIRST_HIT_AND_END_SEARCH = 0x04, // terminates traversal on the first hit found (shadow rays)
  SKIP_CLOSEST_HIT_SHADER = 0x08,         // skip execution of the closest hit shader
  CULL_BACK_FACING_TRIANGLES = 0x10,      // back facing triangles to not produce a hit
  CULL_FRONT_FACING_TRIANGLES = 0x20,     // front facing triangles do not produce a hit
  CULL_OPAQUE = 0x40,                     // opaque geometry does not produce a hit
  CULL_NON_OPAQUE = 0x80,                 // non-opaque geometry does not produce a hit

  SKIP_TRIANGLES = 0x100,             // Skip all triangle intersections and consider them as misses
  SKIP_PROCEDURAL_PRIMITIVES = 0x200, // Skip execution of intersection shaders for procedural primitives

  FORCE_2STATE_STOC = 0x400, // Force 2 state sub triangle opacity mode.
};

// DXR spec:
// "Only defined ray flags are propagated by the system, e.g. visible to the RayFlags() shader intrinsic."
constexpr uint32_t RayFlagsMask_Xe3 = getRayFlagMask((uint32_t)RayFlags_Xe3::FORCE_2STATE_STOC);
static_assert(sizeof(MemTravStack) == 32, "MemTravStack has to be 32 bytes large");

enum class RayQueryFlags : uint16_t {
  NONE = 0x00,
};


// On DG2, writes will not go to the L1$ unless they are 16-byte aligned
// and at least 16 bytes in size.
constexpr uint32_t LSC_WRITE_GRANULARITY = 16;

struct StackPtrAndBudges {
  enum class Bits : uint8_t {
    DimBits = 5,
  };

  using T = uint32_t;

  // This tracks the offset from the base of the HW portion of the stack
  // to wherever we currently point in the SW portion of the stack.
  uint16_t StackOffset;

  union {
    uint16_t BudgeBits;

    struct {
      uint16_t XSize : (T)Bits::DimBits; // TODO: add description
      uint16_t YSize : (T)Bits::DimBits; // TODO: add description
      uint16_t ZSize : (T)Bits::DimBits; // TODO: add description
      uint16_t Pad : 1;                  // explicit padding bit to get 16 bits in the union
    };
  };
};

static_assert(sizeof(StackPtrAndBudges) == 4, "wrong size?");

// The goal is to minimize the amount of data we put into the L1$.  Rather than
// storing a full a64 pointer and 3 dwords for the x,y,z DispatchRayIndex()
// values (2 + 3 = 5 dwords per ray), we note that the DXR spec says:
//
// "There are 3 dimensions passed in to set the grid size: width/height/depth.
//  These dimensions are constrained such that width*height*depth <= 2^30.
//  Exceeding this produces undefined behavior."
//
// This means we can compress the three dims into 30 bits and use the upper
// bits of the stack pointer dword to track how many bits are needed by
// each dimension
struct StackPtrDRIEncoding {
  StackPtrAndBudges PtrAndBudges;
  uint32_t CompressedDispatchRayIndices;
};

static_assert(sizeof(StackPtrDRIEncoding) == 8, "wrong size?");

struct alignas(LSC_WRITE_GRANULARITY) SWHotZone_v1 {
  StackPtrDRIEncoding Encoding;

  // Compiler may elect to enlarge the hot-zone.
  // uint8_t additional_bytes[];

  // pad to LSC write granularity (16B on Gen12)
  char __Padding[LSC_WRITE_GRANULARITY - sizeof(StackPtrDRIEncoding)];
};

// We currently default to this encoding.  Set the 'EnableCompressedRayIndices'
// regkey to switch to the "v1" encoding above.
struct alignas(LSC_WRITE_GRANULARITY) SWHotZone_v2 {
  uint32_t StackOffset;
  uint32_t DispatchRaysIndex[3];

  // Compiler may elect to enlarge the hot-zone.
  // uint8_t additional_bytes[];

  // pad to LSC write granularity (16B on Gen12)
};

struct alignas(LSC_WRITE_GRANULARITY) SWHotZone_v3 {
  uint32_t StackOffset;
  uint32_t DispatchRaysIndex[3];

  uint32_t Complete;

  // pad to LSC write granularity (16B on Gen12)
  uint32_t Pad[3];
};

constexpr uint32_t StackFrameAlign = 16;
static_assert(IGC::RTStackAlign % LSC_WRITE_GRANULARITY == 0, "not aligned to write granularity?");

// This is the structure of memory that will be allocated by the UMD:
template <typename HotZoneTy, typename SyncStackTy, typename AsyncStackTy, typename SWStackTy, uint32_t RTStackAlign,
          uint64_t DSS_COUNT, uint64_t NumDSSRTStacks, uint64_t SIMD_LANES_PER_DSS>
struct RTMemory {
  // Packed SW hot-zones
  alignas(IGC::RTStackAlign) HotZoneTy HotZones[DSS_COUNT * NumDSSRTStacks];

  // sync stacks for synchronous ray tracing
  alignas(RTStackAlign) SyncStackTy SyncStacks[DSS_COUNT * SIMD_LANES_PER_DSS];

  // RTMemBasePointer points here <----
  alignas(RTStackAlign) AsyncStackTy AsyncStacks[DSS_COUNT * NumDSSRTStacks];

  // Align to L3 sector size, or LSC sector size if stack is LSC-cached
  alignas(IGC::RTStackAlign) SWStackTy SWStacks[DSS_COUNT * NumDSSRTStacks];
};

// This will be invoked by the UMD to allocate stack space.
constexpr uint64_t calcRTMemoryAllocSize(uint64_t SWHotZoneSize, uint64_t SyncStackSize, uint64_t AsyncStackSize,
                                         uint64_t SWStackSize, uint64_t DSS_COUNT, uint64_t NumDSSRTStacks,
                                         uint64_t SIMD_LANES_PER_DSS) {
  // SIMD_LANES_PER_DSS = EUCount * ThreadCount * SIMD16
  return IGC::Align(SWHotZoneSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign) +
         IGC::Align(SyncStackSize * DSS_COUNT * SIMD_LANES_PER_DSS, IGC::RTStackAlign) +
         IGC::Align(AsyncStackSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign) +
         IGC::Align(SWStackSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign);
}


constexpr uint32_t getSyncStackSize() {
#define STYLE(X) static_assert(sizeofRTStack2<RTStack2<Xe>>() == sizeofRTStack2<RTStack2<X>>());
#include "RayTracingMemoryStyle.h"
#undef STYLE
  return sizeof(RTStack2<Xe>);
}

// As per this:
// The rtMemBasePtr points to the top of the async stacks.  After having computed
// the full allocation with 'calcRTMemoryAllocSize()', this returns the offset
// of the async stacks, hot zone, and sw stack from the base of the allocation.
constexpr uint64_t calcRTMemoryOffsets(uint64_t SWHotZoneSize, uint64_t SyncStackSize, uint64_t AsyncStackSize,
                                       uint64_t &SWHotZoneOffset, uint64_t &SWStackOffset, uint64_t DSS_COUNT,
                                       uint64_t NumDSSRTStacks, uint64_t SIMD_LANES_PER_DSS) {
  uint64_t AsyncOffset = IGC::Align(SWHotZoneSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign) +
                         IGC::Align(SyncStackSize * DSS_COUNT * SIMD_LANES_PER_DSS, IGC::RTStackAlign);

  // The hot zone is the base of the allocation
  SWHotZoneOffset = 0;
  SWStackOffset = AsyncOffset + IGC::Align(AsyncStackSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign);

  return AsyncOffset;
}


// unit tests:
static_assert(calcRTMemoryAllocSize(sizeof(SWHotZone_v1), sizeof(RTStack2<Xe>), sizeof(RTStack2<Xe>), 128, 32, 2048,
                                    16 * 8 * 16) ==
                  sizeof(RTMemory<SWHotZone_v1, RTStack2<Xe>, RTStack2<Xe>, uint8_t[128], IGC::RTStackAlign, 32, 2048,
                                  16 * 8 * 16>),
              "mismatch?");

static_assert(calcRTMemoryAllocSize(8, sizeof(RTStack2<Xe>), sizeof(RTStack2<Xe>), 136, 32, 2048, 16 * 8 * 16) ==
                  sizeof(RTMemory<uint8_t[8], RTStack2<Xe>, RTStack2<Xe>, uint8_t[136], IGC::RTStackAlign, 32, 2048,
                                  16 * 8 * 16>),
              "mismatch?");


/* a list of commands for the ray tracing hardware */
enum class TraceRayCtrl : uint8_t {
  TRACE_RAY_INITIAL = 0,  // Initializes hit and initializes traversal state
  TRACE_RAY_INSTANCE = 1, // Loads committed hit and initializes traversal state
  TRACE_RAY_COMMIT = 2,   // Loads potential hit and loads traversal state
  TRACE_RAY_CONTINUE = 3, // Loads committed hit and loads traversal state
  TRACE_RAY_NONE = 5      // Illegal!
};

struct TraceRayPayload {
  enum class PayloadBits : uint8_t {
    bvhLevel = 3,
    reserved = 5,
    traceRayCtrl = 3,
    reserved_1 = 5,
    stackID = 12,
    reserved_2 = 4,
  };

  // This is the offset within the bitfield
  enum class PayloadOffsets : uint8_t {
    bvhLevel = 0,
    reserved = (uint8_t)PayloadBits::bvhLevel,
    traceRayCtrl = PayloadOffsets::reserved + (uint8_t)PayloadBits::reserved,
    reserved_1 = PayloadOffsets::traceRayCtrl + (uint8_t)PayloadBits::traceRayCtrl,
    stackID = PayloadOffsets::reserved_1 + (uint8_t)PayloadBits::reserved_1,
  };
  // Trace Ray Payload (per SIMD lane)
  struct TraceRayPayloadData {
    uint32_t bvhLevel : (uint32_t)PayloadBits::bvhLevel;         // bits[  2:0]: tells the hardware which ray to process
    uint32_t reserved : (uint32_t)PayloadBits::reserved;         // bits[  7:3]: reserved MBZ
    uint32_t traceRayCtrl : (uint32_t)PayloadBits::traceRayCtrl; // bits[ 10:8]: trace ray operation to perform
    uint32_t reserved_1 : (uint32_t)PayloadBits::reserved_1;     // bits[15:11]: reserved MBZ
    uint32_t stackID : (uint32_t)PayloadBits::stackID;           // bits[27:16]: the ID of the stack of this thread
    uint32_t reserved_2 : (uint32_t)PayloadBits::reserved_2;     // bits[31:28]: reserved MBZ
  } payload;
};

struct TraceRayMessage {
  // This data is sent per message and is uniform across all rays in a dispatch.
  struct Header {
    // bits [63:0]
    uint64_t rtDispatchGlobalsPtr : 48; // pointer to dispatch globals
    uint64_t padding;
    union {
      uint64_t rayQueryLocation;
      // bit 128
      uint64_t rayQuery : 1;        // indicates a ray query message
      uint64_t rayQueryCheck : 1;   // indicates a ray query check message
      uint64_t rayQueryRelease : 1; // indicates a ray query release message
    };
  } header;

  TraceRayPayload payload;

  static_assert(sizeof(TraceRayPayload::payload) == 4, "Payload must be 4 bytes");
};

// RayQuery enums

enum COMMITTED_STATUS : uint32_t { COMMITTED_NOTHING, COMMITTED_TRIANGLE_HIT, COMMITTED_PROCEDURAL_PRIMITIVE_HIT };

enum CANDIDATE_TYPE : uint32_t { CANDIDATE_NON_OPAQUE_TRIANGLE, CANDIDATE_PROCEDURAL_PRIMITIVE };

struct RayQueryReturnData {
  enum class Bits : uint8_t {
    proceed_further = 1,
    committedStatus = 2,
    candidateType = 1,
    reserved = 28,
  };

  // This union is defined for futures use.
  // It will replace writing the RayQuery Return Value
  // to the MemHit in ShadowMemory.
  union {
    uint32_t rayQueryReturnDWord;

    struct {
      uint32_t PROCEED_FURTHER
          : (uint32_t)Bits::proceed_further; // This bit when set indicates that traversal is not complete i.e. all
                                             // candidates have not been searched yet.
      COMMITTED_STATUS committedStatus
          : (uint32_t)Bits::committedStatus; // This bit field provides the Committed Hit's Status / Type.
      CANDIDATE_TYPE candidateType
          : (uint32_t)Bits::candidateType;          // This bit indicates the candidate type for a potential hit.
      uint32_t reserved : (uint32_t)Bits::reserved; // Reserved
    };
  };
};

} // namespace RTStackFormat

DISABLE_WARNING_POP // restore the previously saved pragma state, restore former compiler settings