1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
///
/// This pass adds custom AddrSpace AA for RT.
///
//===----------------------------------------------------------------------===//
#include "RayTracingAddressSpaceAliasAnalysis.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Probe/Assertion.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/Config/llvm-config.h"
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
namespace IGC {
bool RayTracingAddressSpaceAAResult::checkStateful(const CodeGenContext &Ctx) {
// Determine if all RT memory regions are enabled stateful. This will
// determine what we can say about aliasing in some cases.
auto &rtInfo = Ctx.getModuleMetaData()->rtInfo;
return rtInfo.RTAsyncStackAddrspace != UINT_MAX && rtInfo.SWHotZoneAddrspace != UINT_MAX &&
rtInfo.SWStackAddrspace != UINT_MAX && (!Ctx.hasSyncRTCalls() || rtInfo.RTSyncStackAddrspace != UINT_MAX);
}
bool RayTracingAddressSpaceAAResult::isRTAS(unsigned AS, const CodeGenContext &Ctx) {
auto &rtInfo = Ctx.getModuleMetaData()->rtInfo;
return isStatefulAddrSpace(AS) && (AS == rtInfo.RTAsyncStackAddrspace || AS == rtInfo.SWHotZoneAddrspace ||
AS == rtInfo.SWStackAddrspace || AS == rtInfo.RTSyncStackAddrspace);
}
bool RayTracingAddressSpaceAAResult::isRTAS(unsigned AS) const { return isRTAS(AS, CGC); }
bool RayTracingAddressSpaceAAResult::noRTASAlias(unsigned AS1, unsigned AS2) const {
return ((isRTAS(AS1) || isRTAS(AS2)) && AS1 != AS2);
}
IGCLLVM::AliasResultEnum RayTracingAddressSpaceAAResult::alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
AAQueryInfo &AAQI, const llvm::Instruction *CtxI) {
PointerType *PtrTy1 = dyn_cast<PointerType>(LocA.Ptr->getType());
PointerType *PtrTy2 = dyn_cast<PointerType>(LocB.Ptr->getType());
if (!PtrTy1 || !PtrTy2)
return IGCLLVM::AliasResultEnum::NoAlias;
unsigned AS1 = PtrTy1->getAddressSpace();
unsigned AS2 = PtrTy2->getAddressSpace();
if (noRTASAlias(AS1, AS2)) {
return IGCLLVM::AliasResultEnum::NoAlias;
}
// Forward the query to the next analysis.
return BaseT::alias(LocA, LocB, AAQI, CtxI);
}
ModRefInfo RayTracingAddressSpaceAAResult::getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
AAQueryInfo &AAQI) {
auto *PtrTy = dyn_cast<PointerType>(Loc.Ptr->getType());
if (!PtrTy)
return ModRefInfo::NoModRef;
if (auto *SRI = dyn_cast<StackIDReleaseIntrinsic>(Call)) {
if (allStateful) {
uint32_t Addrspace = PtrTy->getPointerAddressSpace();
return isRTAS(Addrspace) ? ModRefInfo::Mod : ModRefInfo::NoModRef;
}
}
return AAResultBase::getModRefInfo(Call, Loc, AAQI);
}
ModRefInfo RayTracingAddressSpaceAAResult::getModRefInfo(const CallBase *Call1, const CallBase *Call2,
AAQueryInfo &AAQI) {
return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
}
void RayTracingAddressSpaceAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<CodeGenContextWrapper>();
}
bool RayTracingAddressSpaceAAWrapperPass::doInitialization(Module &M) {
if (M.size() > 0) {
auto &F = *M.begin(); // see llvmWrapper/Analysis/TargetLibraryInfo.h
Result.reset(new RayTracingAddressSpaceAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
*getAnalysis<CodeGenContextWrapper>().getCodeGenContext()));
}
return false;
}
bool RayTracingAddressSpaceAAWrapperPass::doFinalization(Module &M) {
Result.reset();
return false;
}
RayTracingAddressSpaceAAResult &RayTracingAddressSpaceAAWrapperPass::getResult() { return *Result; }
const RayTracingAddressSpaceAAResult &RayTracingAddressSpaceAAWrapperPass::getResult() const { return *Result; }
} // namespace IGC
#define PASS_FLAG "igc-raytracing-address-space-alias-analysis"
#define PASS_DESC "RayTracing Address space alias analysis"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS true
IGC_INITIALIZE_PASS_BEGIN(RayTracingAddressSpaceAAWrapperPass, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(RayTracingAddressSpaceAAWrapperPass, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
char IGC::RayTracingAddressSpaceAAWrapperPass::ID = 0;
IGC::RayTracingAddressSpaceAAWrapperPass::RayTracingAddressSpaceAAWrapperPass() : ImmutablePass(ID) {
initializeRayTracingAddressSpaceAAWrapperPassPass(*PassRegistry::getPassRegistry());
Result = nullptr;
}
ImmutablePass *IGC::createRayTracingAddressSpaceAAWrapperPass() { return new RayTracingAddressSpaceAAWrapperPass(); }
void IGC::addRayTracingAddressSpaceAAResult(Pass &P, Function &, AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<RayTracingAddressSpaceAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}
|