File: TraceRayInlineLoweringPass.cpp

package info (click to toggle)
intel-graphics-compiler2 2.16.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 106,644 kB
  • sloc: cpp: 805,640; lisp: 287,672; ansic: 16,414; python: 3,952; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (847 lines) | stat: -rw-r--r-- 31,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*========================== begin_copyright_notice ============================

Copyright (C) 2019-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//===----------------------------------------------------------------------===//
///
///
//===----------------------------------------------------------------------===//

#include "IGC/common/StringMacros.hpp"
#include "RayTracingInterface.h"
#include "RTBuilder.h"
#include "RTStackFormat.h"
#include "common/LLVMUtils.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/DepthFirstIterator.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/Verifier.h>
#include <llvm/Analysis/LoopInfo.h>
#include "common/LLVMWarningsPop.hpp"
#include <vector>
#include <unordered_map>
#include "Probe/Assertion.h"

using namespace IGC;
using namespace llvm;
using namespace std;
using namespace RTStackFormat;

// Lowering pass for Synchronous raytracing intrinsics known as TraceRayInline/RayQuery
class TraceRayInlineLoweringPass : public FunctionPass {
  LoopInfo *LI = nullptr;
public:
  TraceRayInlineLoweringPass() : FunctionPass(ID) {
    initializeTraceRayInlineLoweringPassPass(*PassRegistry::getPassRegistry());
  }
  bool runOnFunction(Function &F) override;
  llvm::StringRef getPassName() const override { return "TraceRayInlineLoweringPass"; }
  virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override {
    AU.addRequired<CodeGenContextWrapper>();
    AU.addRequired<LoopInfoWrapperPass>();
  }
  static char ID;

private:
  // m_ShMemRTStacks is an array of RTStackFormat::RTStack/SMStack in ShadowMemory
  // m_ShMemRTCtrls  is an array of RTStackFormat::RTCtrl in ShadowMemory
  // together, they are RayQueryObjects[n]
  // RTStack2/SMStack2 m_ShMemRTStacks[n]
  AllocaInst *m_ShMemRTStacks = nullptr;
  // RayQueryStateInfo m_ShMemRTCtrls[n]
  AllocaInst *m_ShMemRTCtrls = nullptr;
  CodeGenContext *m_CGCtx = nullptr;
  bool singleRQMemRayStore = false;
  // if there is only one Proceed and it's not in a loop, then, we only need to prepare data for Proceed() once
  // where it's for initialization
  // FIXME: hack code, fix this hack in stage 2.
  bool singleRQProceed = true;

  bool LowerAllocateRayQuery(Function &F, unsigned numProceeds);
  void LowerTraceRayInline(Function &F);
  void LowerTraceRaySyncProceedIntrinsic(Function &F);
  void LowerSyncStackToShadowMemory(Function &F);
  void LowerAbort(Function &F);
  void LowerCommittedStatus(Function &F);
  void LowerCandidateType(Function &F);
  void LowerRayInfo(Function &F);
  void LowerCommitNonOpaqueTriangleHit(Function &F);
  void LowerCommitProceduralPrimitiveHit(Function &F);

  // return m_ShMemRTCtrls[index]
  GetElementPtrInst *getShMemRTCtrl(RTBuilder &builder, unsigned queryIndex) {
    return getShMemRTCtrl(builder, builder.getInt32(queryIndex));
  }

  // return m_ShMemRTCtrls[index]
  GetElementPtrInst *getShMemRTCtrl(RTBuilder &builder, Value *queryIndex) {
    return GetElementPtrInst::Create(m_ShMemRTCtrls->getAllocatedType(), m_ShMemRTCtrls,
                                     {builder.getInt32(0), queryIndex}, VALUE_NAME("&shadowMem.RTCtrl"),
                                     &(*builder.GetInsertPoint()));
  }

  // return rtStacks[index]
  RTBuilder::SyncStackPointerVal *getShMemRayQueryRTStack(RTBuilder &builder, unsigned queryIndex) {
    return getShMemRayQueryRTStack(builder, builder.getInt32(queryIndex));
  }

  // return rtStacks[index]
  RTBuilder::SyncStackPointerVal *getShMemRayQueryRTStack(RTBuilder &builder, Value *queryIndex) {
    return static_cast<RTBuilder::SyncStackPointerVal *>(
        builder.CreateGEP(m_ShMemRTStacks->getAllocatedType(), m_ShMemRTStacks, {builder.getInt32(0), queryIndex},
                          VALUE_NAME("&shadowMem.RTStack")));
  }

  std::pair<BasicBlock *, BasicBlock *> branchOnPotentialHitDone(RTBuilder &IRB, RayQueryIntrinsicBase *P);

  void emitSingleRQMemRayWrite(RTBuilder &builder, Value *queryObjIndex);
  bool analyzeSingleRQMemRayWrite(const Function &F) const;
  std::pair<bool, unsigned> analyzeSingleRQProceed(const Function &F) const;
  void HandleAcceptHitAndEndSearch(RTBuilder &builder, RTBuilder::SyncStackPointerVal *ShadowMemStackPointer,
                                   Instruction *IP);

  Value *emitProceedMainBody(RTBuilder &builder, Value *queryObjIndex);

  bool forceShortCurcuitingOR_CommittedGeomIdx(RTBuilder &builder, Instruction *I);
};

char TraceRayInlineLoweringPass::ID = 0;

// Register pass to igc-opt
#define PASS_FLAG "igc-tracerayinline-lowering-pass"
#define PASS_DESCRIPTION "Lower tracerayinline intrinsics"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(TraceRayInlineLoweringPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(TraceRayInlineLoweringPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

bool TraceRayInlineLoweringPass::runOnFunction(Function &F) {
  m_CGCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  if (!m_CGCtx->platform.supportRayTracing())
    return false;

  singleRQMemRayStore = analyzeSingleRQMemRayWrite(F);
  unsigned numProceeds;
  std::tie(singleRQProceed, numProceeds) = analyzeSingleRQProceed(F);

  if (!LowerAllocateRayQuery(F, numProceeds))
    return false;

  LowerTraceRayInline(F);
  LowerTraceRaySyncProceedIntrinsic(F);
  LowerSyncStackToShadowMemory(F);
  LowerAbort(F);
  LowerCommittedStatus(F);
  LowerCandidateType(F);
  LowerRayInfo(F);
  LowerCommitNonOpaqueTriangleHit(F);
  LowerCommitProceduralPrimitiveHit(F);

  auto *modMD = m_CGCtx->getModuleMetaData();
  uint32_t numSyncRTStacks = m_CGCtx->syncRTCallsNeedSplitting() ? 2 : 1;

  modMD->rtInfo.numSyncRTStacks = std::max(modMD->rtInfo.numSyncRTStacks, numSyncRTStacks);

  auto FMD = modMD->FuncMD.find(&F);
  if (FMD != modMD->FuncMD.end()) {
    FMD->second.rtInfo.numSyncRTStacks = numSyncRTStacks;
  }

  DumpLLVMIR(m_CGCtx, "TraceRayInlineLoweringPass");
  return true;
}


bool TraceRayInlineLoweringPass::LowerAllocateRayQuery(Function &F, unsigned numProceeds) {
  SmallVector<ConvertRayQueryHandleToRTStackPointerIntrinsic *> convertRayQueryToRTStackPointers;
  SmallVector<AllocateRayQueryIntrinsic *> AllocateRayQueries;
  for (auto &I : instructions(F)) {
    if (auto *ARQ = dyn_cast<AllocateRayQueryIntrinsic>(&I))
      AllocateRayQueries.push_back(ARQ);
    else if (auto *II = dyn_cast<ConvertRayQueryHandleToRTStackPointerIntrinsic>(&I))
      convertRayQueryToRTStackPointers.push_back(II);
  }

  if (AllocateRayQueries.empty())
    return false;

  ModuleMetaData *modMD = m_CGCtx->getModuleMetaData();
  if (modMD->FuncMD.find(&F) == modMD->FuncMD.end()) {
    IGC::FunctionMetaData funcMd;
    funcMd.functionType = FunctionTypeMD::KernelFunction;
    modMD->FuncMD.insert(std::make_pair(&F, funcMd));
  }
  modMD->FuncMD[&F].hasSyncRTCalls = true;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);
  // let's use a very conservative way to shrink SharedMem size for now:
  // if we have more RQO (rayquery object)s than SIMD, we will have to use PTSS to hold them;
  // on the other hand, we DO need to make sure these RQOs won't overlap in which case we cannot shrink SharedMem like
  // the current way later, we might improve this w/ a more general way. this way might cover quite some RQOs cases,
  // though
  bool bShrinkSMStack =
      (AllocateRayQueries.size() > numLanes(m_CGCtx->platform.getMaxRayQuerySIMDSize(m_CGCtx->type)) &&
       numProceeds == 1 && convertRayQueryToRTStackPointers.empty());

  std::tie(m_ShMemRTStacks, m_ShMemRTCtrls) = builder.createAllocaRayQueryObjects(
      AllocateRayQueries.size(), bShrinkSMStack, VALUE_NAME("&ShadowMemory.RayQueryObjects"));

  unsigned int currentQueryIndex = 0;
  for (auto *ARQ : AllocateRayQueries) {
    builder.SetInsertPoint(ARQ);
    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, currentQueryIndex);
    builder.setRayFlags(ShadowMemStackPointer, builder.CreateTrunc(ARQ->getFlags(), builder.getInt16Ty()));
    Value *currentIndex = builder.getInt32(currentQueryIndex++);
    ARQ->replaceAllUsesWith(currentIndex);
  }

  for (auto *ARQ : AllocateRayQueries) {
    ARQ->eraseFromParent();
  }

  for (auto *I : convertRayQueryToRTStackPointers) {
    builder.SetInsertPoint(I);
    auto *rtstack = getShMemRayQueryRTStack(builder, I->getQueryObjIndex());
    I->replaceAllUsesWith(rtstack);
    I->eraseFromParent();
  }

  return true;
}

std::pair<bool, unsigned> TraceRayInlineLoweringPass::analyzeSingleRQProceed(const Function &F) const {
  unsigned cntProceeds = 0;
  bool Result = true;
  for (auto &I : instructions(F)) {
    if (auto *PI = dyn_cast<TraceRaySyncProceedIntrinsic>(&I)) {
      auto *RQO = dyn_cast<AllocateRayQueryIntrinsic>(PI->getQueryObjIndex());
      ++cntProceeds;
      Result &=
          (cntProceeds == 1) && (!LI->getLoopFor(PI->getParent()) || (RQO && RQO->getParent() == PI->getParent()));
    }
  }

  // If STOC is enabled, it is possible to execute Proceed more than
  // once, despite the application does not call it in the loop.
  // In such case switch to multiple Proceeds mode.
  if (m_CGCtx->isSWSubTriangleOpacityCullingEmulationEnabled()) {
    Result = false;
  }

  return {Result, cntProceeds};
}

// FIXME: temp solution, will use alias based general solution to replace this.
// this temp solution is more like a prototype/experiment to confirm if this way will improve performance enough
// which means we DO need a general solution eventually

// if
//   there's only one TraceRayInline() &&
//   zero or more Proceed() &&
//   TRI is not in loop &&
//   both intrinsics are for the same RQO
// then
//   we only need to write MemRay[TOP_LEVEL_BVH] data once.
bool TraceRayInlineLoweringPass::analyzeSingleRQMemRayWrite(const Function &F) const {
  if (IGC_IS_FLAG_DISABLED(EnableSingleRQMemRayStore))
    return false;

  const Value *RQO = nullptr;
  const TraceRayInlineHLIntrinsic *TRI = nullptr;
  for (auto &I : instructions(F)) {
    const Value *curRQO = nullptr;
    if (auto *tri = dyn_cast<TraceRayInlineHLIntrinsic>(&I)) {
      if (TRI) {
        // we only work on single TRI case
        return false;
      } else {
        TRI = tri;
        curRQO = TRI->getQueryObjIndex();
      }
    } else if (auto *P = dyn_cast<TraceRaySyncProceedIntrinsic>(&I)) {
      curRQO = P->getQueryObjIndex();
    }

    // make sure all RQOs are the same one (will replace logic w/ AA later)
    if (RQO && curRQO && (RQO != curRQO))
      return false;
    else if (!RQO && curRQO)
      RQO = curRQO;
  }

  // exclude case where TRI is in loop
  return RQO && TRI && !LI->getLoopFor(TRI->getParent());
}

void TraceRayInlineLoweringPass::LowerTraceRayInline(Function &F) {
  vector<TraceRayInlineHLIntrinsic *> traceCalls;
  for (auto &I : instructions(F)) {
    if (auto *TRI = dyn_cast<TraceRayInlineHLIntrinsic>(&I))
      traceCalls.push_back(TRI);
  }

  for (auto *trace : traceCalls) {
    RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);
    builder.SetInsertPoint(trace);
    Value *QueryObjIndex = trace->getQueryObjIndex();

    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, QueryObjIndex);
    {
      Value *Vec = UndefValue::get(IGCLLVM::FixedVectorType::get(builder.getFloatTy(), trace->getNumRayInfoFields()));
      for (unsigned int i = 0; i < trace->getNumRayInfoFields(); i++)
        Vec = builder.CreateInsertElement(Vec, trace->getRayInfo(i), i);

      builder.createTraceRayInlinePrologue(ShadowMemStackPointer, Vec, builder.getRootNodePtr(trace->getBVH()),
                                           trace->getFlag(), trace->getMask(), trace->getComparisonValue(),
                                           trace->getTMax());
    }

    // Set TraceRayControl to Initial
    // RayQueryObject->stateInfo.traceRayCtrl = TRACE_RAY_INITIAL
    builder.setSyncTraceRayControl(getShMemRTCtrl(builder, QueryObjIndex), TraceRayCtrl::TRACE_RAY_INITIAL);

    if (singleRQMemRayStore) {
      emitSingleRQMemRayWrite(builder, QueryObjIndex);
    }
  }

  for (auto *trace : traceCalls) {
    trace->eraseFromParent();
  }
}

std::pair<BasicBlock *, BasicBlock *> TraceRayInlineLoweringPass::branchOnPotentialHitDone(RTBuilder &IRB,
                                                                                           RayQueryIntrinsicBase *P) {
  auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(IRB, P->getQueryObjIndex());
  Value *NotDone = IRB.isDoneBitNotSet(ShadowMemStackPointer, false);

  return IRB.createTriangleFlow(NotDone, P, VALUE_NAME("ProceedBB"), VALUE_NAME("ProceedEndBlock"));
}

void TraceRayInlineLoweringPass::emitSingleRQMemRayWrite(RTBuilder &builder, Value *queryObjIndex) {
  auto *const HWStackPointer = builder.getSyncStackPointer();
  auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, queryObjIndex);

  builder.emitSingleRQMemRayWrite(HWStackPointer, ShadowMemStackPointer, singleRQProceed);
}

Value *TraceRayInlineLoweringPass::emitProceedMainBody(RTBuilder &builder, Value *queryObjIndex) {
  if (!singleRQMemRayStore) {
    emitSingleRQMemRayWrite(builder, queryObjIndex);
  }

  DenseMap<uint32_t, Value *> vals;

  auto *const HWStackPointer = builder.getSyncStackPointer();
  auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, queryObjIndex);

  builder.copyMemHitInProceed(HWStackPointer, ShadowMemStackPointer, singleRQProceed);

  // get ray Current ray control for object
  GetElementPtrInst *ShdowMemRTCtrlPtr = getShMemRTCtrl(builder, queryObjIndex);
  LoadInst *traceRayCtrl = builder.getSyncTraceRayControl(ShdowMemRTCtrlPtr);

  if (IGC_IS_FLAG_ENABLED(DisableLoadAsFenceOpInRaytracing)) {
    builder.CreateLSCFence(LSC_UGM, LSC_SCOPE_LOCAL, LSC_FENCE_OP_NONE);
  } else {
    // this is an optimization
    // it's based on the idea that stores and loads are queued, so if a load completes, all stores before it are also
    // completed the requirement is that the load and the store should use the same address, so we use the potential hit
    // (last write in copyMemHitInProceed)
    auto *potentialHit = builder.getHitAddress(HWStackPointer, false);

    auto *M = builder.GetInsertPoint()->getModule();
    auto *fn = GenISAIntrinsic::getDeclaration(M, GenISAIntrinsic::GenISA_LSCLoadWithSideEffects,
                                               {builder.getInt32Ty(), potentialHit->getType()});

    builder.CreateCall(fn,
                       {potentialHit, builder.getInt32(0), builder.getInt32(LSC_DATA_SIZE_32b),
                        builder.getInt32(LSC_DATA_ELEMS_1), builder.getInt32(LSC_L1C_WT_L3C_WB)},
                       VALUE_NAME("LSCLoadAsFence"));
  }


  // TraceRay
  Value *retSyncRT = builder.createSyncTraceRay(builder.getBvhLevel(ShadowMemStackPointer, false), traceRayCtrl,
                                                nullptr, VALUE_NAME("trace_ray_query"));

  return retSyncRT;
}

// Proceed Flow below is falling into 2 different intrinsics:
// LowerTraceRaySyncProceedIntrinsic(...){
//     //Abort if potentialHit.done is set
//     retSyncTR = false;
//     if (potentialHit.done)
//       return retSyncTR;

//    //we set potentialHit.done, which will get cleared by hardware for intersection and anyhit traversal
//    potentialHit.done = true;
//    //To continue tracing we have to spill/fill the HWMemory's sync rtStack back and forth from/to ShadowMemory's one
//    HWMemory.RTStack = ShadowMemory.RayQueryObject.RTStack;
//    createSyncTraceRay(); //Sync bit set to 1
//    return retSyncTR;
//}
//........
// LowerSyncStackToShadowMemory(int retSyncTR){
//    //Abort if potentialHit.done is set
//    if (potentialHit.done)
//      return false;
//    ReadSyncTraceRay(retSyncTR);
//    ShadowMemory.RayQueryObject.RTStack = HWMemory.RTStack
//    // Initially we use TRACE_RAY_INITIAL, but from now on we have to use TRACE_RAY_CONTINUE
//    obj.ctrl = TRACE_RAY_CONTINUE;
//    return !potentialHit.done;

void TraceRayInlineLoweringPass::LowerTraceRaySyncProceedIntrinsic(Function &F) {
  vector<TraceRaySyncProceedIntrinsic *> proceeds;

  for (auto &I : instructions(F)) {
    if (auto *P = dyn_cast<TraceRaySyncProceedIntrinsic>(&I))
      proceeds.push_back(P);
  }

  if (proceeds.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto *P : proceeds) {
    auto *StartBB = P->getParent();

    builder.SetInsertPoint(P);
    auto [ProceedBB, _] = branchOnPotentialHitDone(builder, P);

    auto *InsertPt = ProceedBB->getTerminator();
    builder.SetInsertPoint(InsertPt);
    Value *retProceed = emitProceedMainBody(builder, P->getQueryObjIndex());

    builder.SetInsertPoint(P);
    auto *phi = builder.CreatePHI(P->getType(), 2);
    phi->addIncoming(builder.CreateZExtOrTrunc(retProceed, phi->getType()), InsertPt->getParent());
    phi->addIncoming(builder.CreateZExtOrTrunc(builder.getFalse(), phi->getType()), StartBB);
    P->replaceAllUsesWith(phi);
  }

  for (auto P : proceeds) {
    P->eraseFromParent();
  }
}

void TraceRayInlineLoweringPass::LowerSyncStackToShadowMemory(Function &F) {
  vector<RayQuerySyncStackToShadowMemory *> SS2SMs;

  for (auto &I : instructions(F)) {
    if (auto *SS2SM = dyn_cast<RayQuerySyncStackToShadowMemory>(&I))
      SS2SMs.push_back(SS2SM);
  }

  if (SS2SMs.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto *SS2SM : SS2SMs) {
    builder.SetInsertPoint(SS2SM);

    Value *queryObjIndex = SS2SM->getQueryObjIndex();
    auto *const HWStackPointer = builder.getSyncStackPointer();
    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, queryObjIndex);
    Value *ShadowMemRTCtrlPtr = getShMemRTCtrl(builder, queryObjIndex);

    auto *Proceed = builder.syncStackToShadowMemory(HWStackPointer, ShadowMemStackPointer, SS2SM->getProceedReturnVal(),
                                                    ShadowMemRTCtrlPtr);

    SS2SM->replaceAllUsesWith(Proceed);

    if (IGC_IS_FLAG_DISABLED(DisableInvalidateRTStackAfterLastRead)) {
      auto *fn = GenISAIntrinsic::getDeclaration(F.getParent(), GenISAIntrinsic::GenISA_LSCLoadWithSideEffects,
                                                 {builder.getInt32Ty(), HWStackPointer->getType()});

      auto [InvalidateAfterProceedBB, _] =
          builder.createTriangleFlow(builder.CreateNot(Proceed), SS2SM, VALUE_NAME("InvalidateAfterProceed"));
      builder.SetInsertPoint(InvalidateAfterProceedBB->getTerminator());

      LSC_L1_L3_CC CacheCtrl = m_CGCtx->platform.isSupportedLSCCacheControlsEnum(LSC_L1IAR_L3IAR, true)
                                   ? LSC_L1IAR_L3IAR
                                   : LSC_L1IAR_WB_L3C_WB;

      for (uint i = 0; i < getSyncStackSize() / m_CGCtx->platform.LSCCachelineSize(); i++) {
        builder.CreateCall(
            fn, {HWStackPointer, builder.getInt32(i * m_CGCtx->platform.LSCCachelineSize()),
                 builder.getInt32(
                     LSC_DATA_SIZE_32b), // doesn't matter what we put here because the entire cacheline is invalidated
                 builder.getInt32(LSC_DATA_ELEMS_1), builder.getInt32(CacheCtrl)});
      }
    }
  }

  for (auto SS2SM : SS2SMs) {
    SS2SM->eraseFromParent();
  }
}

void TraceRayInlineLoweringPass::LowerAbort(Function &F) {
  vector<RayQueryAbortIntrinsic *> aborts;

  for (auto &I : instructions(F)) {
    if (auto *intrin = dyn_cast<RayQueryAbortIntrinsic>(&I))
      aborts.push_back(intrin);
  }

  if (aborts.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto abort : aborts) {
    builder.SetInsertPoint(abort);
    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, abort->getQueryObjIndex());
    builder.setDoneBit(ShadowMemStackPointer, false);
  }

  for (auto abort : aborts) {
    abort->eraseFromParent();
  }
}

void TraceRayInlineLoweringPass::LowerCommittedStatus(Function &F) {
  vector<RayQueryCommittedStatusIntrinsic *> CSes;

  for (auto &I : instructions(F)) {
    if (auto *intrin = dyn_cast<RayQueryCommittedStatusIntrinsic>(&I))
      CSes.push_back(intrin);
  }

  if (CSes.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto CS : CSes) {
    builder.SetInsertPoint(CS);

    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, CS->getQueryObjIndex());
    auto *Status = builder.getCommittedStatus(ShadowMemStackPointer);
    CS->replaceAllUsesWith(Status);
  }

  for (auto CS : CSes) {
    CS->eraseFromParent();
  }
}

void TraceRayInlineLoweringPass::LowerCandidateType(Function &F) {
  vector<RayQueryCandidateTypeIntrinsic *> CTs;

  for (auto &I : instructions(F)) {
    if (auto *intrin = dyn_cast<RayQueryCandidateTypeIntrinsic>(&I))
      CTs.push_back(intrin);
  }

  if (CTs.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto CT : CTs) {
    builder.SetInsertPoint(CT);
    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, CT->getQueryObjIndex());
    auto *CandidateType = builder.getCandidateType(ShadowMemStackPointer);

    CT->replaceAllUsesWith(CandidateType);
  }

  for (auto CT : CTs) {
    CT->eraseFromParent();
  }
}

void TraceRayInlineLoweringPass::LowerRayInfo(Function &F) {
  vector<RayQueryInfoIntrinsic *> info;

  for (auto &I : instructions(F)) {
    if (auto *intrin = dyn_cast<RayQueryInfoIntrinsic>(&I))
      info.push_back(intrin);
  }

  if (info.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto I : info) {
    builder.SetInsertPoint(I);

    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, I->getQueryObjIndex());

    switch (I->getInfoKind()) {
    default:
      I->replaceAllUsesWith(builder.lowerRayInfo(
          ShadowMemStackPointer, I, builder.getInt32(I->isCommitted() ? ClosestHit : AnyHit), std::nullopt));
      I->eraseFromParent();
      break;
      // leave this in for now, until we prove we don't need the hack anymore
    case GEOMETRY_INDEX: {
      bool specialPattern = false;
      if (I->isCommitted() && IGC_GET_FLAG_VALUE(ForceRTShortCircuitingOR)) {
        specialPattern = forceShortCurcuitingOR_CommittedGeomIdx(builder, I);
      }

      Value *leafType = builder.getLeafType(ShadowMemStackPointer, builder.getInt1(I->isCommitted()));
      Value *geoIndex = builder.getGeometryIndex(
          ShadowMemStackPointer, I, leafType,
          builder.getInt32(I->isCommitted() ? CallableShaderTypeMD::ClosestHit : CallableShaderTypeMD::AnyHit),
          !specialPattern);
      IGC_ASSERT_MESSAGE(I->getType()->isIntegerTy(), "Invalid geometryIndex type!");
      I->replaceAllUsesWith(geoIndex);
      I->eraseFromParent();
      break;
    }
    }
  }
}

void TraceRayInlineLoweringPass::LowerCommitNonOpaqueTriangleHit(Function &F) {
  vector<RayQueryCommitNonOpaqueTriangleHit *> CommitHits;

  for (auto &I : instructions(F)) {
    if (auto *intrin = dyn_cast<RayQueryCommitNonOpaqueTriangleHit>(&I))
      CommitHits.push_back(intrin);
  }

  if (CommitHits.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto CH : CommitHits) {
    builder.SetInsertPoint(CH);
    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, CH->getQueryObjIndex());

    builder.createPotentialHit2CommittedHit(ShadowMemStackPointer);
    builder.setSyncTraceRayControl(getShMemRTCtrl(builder, CH->getQueryObjIndex()), TraceRayCtrl::TRACE_RAY_COMMIT);

    HandleAcceptHitAndEndSearch(builder, ShadowMemStackPointer, CH);
  }

  for (auto CH : CommitHits) {
    CH->eraseFromParent();
  }
}

// NOTE: workload specific logic, don't use it for common case!
// only keep this logic here to make the HLK test pass before we get correct test
//  change:
//  if (a || (q.CommittedGeometryIndex() < q.CandidateGeometryIndex())
//   do_sth;
//  to:
//  if (a)
//      do_sth;
//  else if (q.CommittedGeometryIndex() < q.CandidateGeometryIndex())
//      do_sth;
//------------IR----------------------
// old:==============================
//   %lhs = ...
//   % 47 = call i32 @llvm.genx.GenISA.TraceRayInlineRayInfo.i32(i32 % 13, i32 14, i32 0) //CommittedGeometryIndex()
//   % 48 = ...
//   % rhs = icmp ult i32 % 47, % 48
//   % orRes = or i1 % lhs, % rhs
//   br i1 % orRes, label % orBB, label % endBB
//
//   orBB:
//   call void ...
//
//   endBB:
//   call void ...
//
// new:==============================
//   %lhs = ...
//   br i1 % lhs, label % orBB, label % rhsBB
//
//   rhsBB:
//   % 47 = call i32 @llvm.genx.GenISA.TraceRayInlineRayInfo.i32(i32 % 13, i32 14, i32 0) //CommittedGeometryIndex()
//   % 48 = ...
//   % rhs = icmp ult i32 % 47, % 48
//   % orRes = or i1 % lhs, % rhs
//   br i1 % orRes, label % orBB, label % endBB
//   Note, above br still uses orRes to simplify the change. lhs == 0 here anyway
//
//   orBB:
//   call void ...
//
//   endBB:
//   call void ...
bool TraceRayInlineLoweringPass::forceShortCurcuitingOR_CommittedGeomIdx(RTBuilder &builder, Instruction *I) {
  bool found = false;
  Instruction *lhs = nullptr;
  Instruction *rhs = nullptr;
  Instruction *orI = nullptr;
  BranchInst *brI = nullptr;
  for (auto U1 : I->users()) {
    if (isa<ICmpInst>(U1)) { // found 2nd condition
      for (auto U2 : U1->users()) {
        if ((orI = dyn_cast<Instruction>(U2))) {
          if (orI->getOpcode() == Instruction::Or) {
            brI = dyn_cast<llvm::BranchInst>(*orI->user_begin());
            lhs = dyn_cast<Instruction>(orI->getOperand(0));
            rhs = dyn_cast<Instruction>(orI->getOperand(1));
            found = (orI->getOperand(1) == U1 && brI && lhs && rhs);
            if (found) {
              break;
            }
          }
        }
      }
    }
  }
  if (!found) {
    return false;
  }

  BasicBlock *orBB = brI->getSuccessor(0);

  auto *lhsBlock = lhs->getParent();
  auto *rhsBB = lhsBlock->splitBasicBlock(++lhs->getIterator(), VALUE_NAME("rhsBB"));
  lhsBlock->getTerminator()->eraseFromParent();
  builder.SetInsertPoint(lhsBlock);
  builder.CreateCondBr(lhs, orBB, rhsBB);

  builder.SetInsertPoint(I);

  // orI->eraseFromParent();
#if defined(_DEBUG)
  llvm::verifyModule(*m_CGCtx->getModule());
#endif

  return true;
}

void TraceRayInlineLoweringPass::LowerCommitProceduralPrimitiveHit(Function &F) {
  vector<RayQueryCommitProceduralPrimitiveHit *> CommitHits;

  for (auto &I : instructions(F)) {
    if (auto *intrin = dyn_cast<RayQueryCommitProceduralPrimitiveHit>(&I))
      CommitHits.push_back(intrin);
  }

  if (CommitHits.empty())
    return;

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);

  for (auto CH : CommitHits) {
    builder.SetInsertPoint(CH);
    auto *const ShadowMemStackPointer = getShMemRayQueryRTStack(builder, CH->getQueryObjIndex());
    builder.commitProceduralPrimitiveHit(ShadowMemStackPointer, CH->getTHit());

    builder.setSyncTraceRayControl(getShMemRTCtrl(builder, CH->getQueryObjIndex()), TraceRayCtrl::TRACE_RAY_COMMIT);

    HandleAcceptHitAndEndSearch(builder, ShadowMemStackPointer, CH);
  }

  for (auto CH : CommitHits) {
    CH->eraseFromParent();
  }
}

void TraceRayInlineLoweringPass::HandleAcceptHitAndEndSearch(RTBuilder &builder,
                                                             RTBuilder::SyncStackPointerVal *ShadowMemStackPointer,
                                                             Instruction *IP) {
  auto *rayFlags = builder.getRayFlags(ShadowMemStackPointer);
  auto *AcceptHitAndEndSearch =
      builder.getInt16(static_cast<uint32_t>(RTStackFormat::RayFlags::ACCEPT_FIRST_HIT_AND_END_SEARCH));

  Value *V;

  V = builder.CreateAnd(rayFlags, AcceptHitAndEndSearch);
  V = builder.CreateICmpNE(V, builder.getInt16(0));

  auto [accepthitBB, _] = builder.createTriangleFlow(V, IP, VALUE_NAME("AcceptHitAndEndSearch"), VALUE_NAME("Default"));
  builder.SetInsertPoint(accepthitBB->getTerminator());
  builder.setDoneBit(ShadowMemStackPointer, false);
}

// For 3D/Compute Shaders The RTGlobals Pointer comes from a different location.
class RTGlobalsPointerLoweringPass : public FunctionPass {
public:
  RTGlobalsPointerLoweringPass() : FunctionPass(ID) {}
  bool runOnFunction(Function &F) override;
  llvm::StringRef getPassName() const override { return "RTGlobalsPointerLoweringPass"; }
  virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override { AU.addRequired<CodeGenContextWrapper>(); }
  static char ID;

private:
  CodeGenContext *m_CGCtx = nullptr;
  static bool needsSplitting(const CodeGenContext *Ctx);
};

char RTGlobalsPointerLoweringPass::ID = 0;

bool RTGlobalsPointerLoweringPass::runOnFunction(Function &F) {
  m_CGCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

  if (!m_CGCtx->platform.supportRayTracing())
    return false;

  vector<GenIntrinsicInst *> globalBuffPtrs;
  for (auto &I : instructions(F)) {
    if (isa<GenIntrinsicInst>(&I, GenISAIntrinsic::GenISA_GlobalBufferPointer))
      globalBuffPtrs.push_back(cast<GenIntrinsicInst>(&I));
  }

  RTBuilder builder(&*F.getEntryBlock().begin(), *m_CGCtx);
  ModuleMetaData *modMD = m_CGCtx->getModuleMetaData();

  IGC_ASSERT_MESSAGE(nullptr != modMD, "Invalid Module Metadata in RTGlobalsPointerLoweringPass");

  const bool NeedsSplitting = m_CGCtx->syncRTCallsNeedSplitting();

  for (auto *GBP : globalBuffPtrs) {
    builder.SetInsertPoint(GBP);
    Function *pFunc =
        GenISAIntrinsic::getDeclaration(F.getParent(), GenISAIntrinsic::GenISA_RuntimeValue, GBP->getType());

    Value *rtGlobalsPtr = builder.CreateCall(pFunc, builder.getInt32(modMD->pushInfo.inlineRTGlobalPtrOffset));
    rtGlobalsPtr->takeName(GBP);

    Value *rtGlobalsPtrSplit = rtGlobalsPtr;
    if (NeedsSplitting) {
      uint32_t Addrspace = rtGlobalsPtr->getType()->getPointerAddressSpace();
      auto *LaneId = builder.get32BitLaneID();
      auto *Cond = builder.CreateICmpULT(LaneId, builder.getInt32(numLanes(SIMDMode::SIMD16)));
      auto *Ptr = builder.CreateBitCast(rtGlobalsPtr, builder.getInt8PtrTy(Addrspace));
      // UMD will allocate back-to-back RTGlobals if requested. The upper
      // 16 lanes will get the pointer to the second one.
       // We need at least 64-byte alignment. Let's just align both
       // structures to `RTGlobalsAlign`.
      constexpr uint32_t Offset = IGC::Align(sizeof(RayDispatchGlobalData), IGC::RTGlobalsAlign);
      Ptr = builder.CreateGEP(builder.getInt8Ty(), Ptr, builder.getInt32(Offset));
      auto *rtGlobalsPtrHi = builder.CreateBitCast(Ptr, rtGlobalsPtr->getType());
      rtGlobalsPtrSplit = builder.CreateSelect(Cond, rtGlobalsPtr, rtGlobalsPtrHi, VALUE_NAME("split.global.pointer"));
    }

    GBP->replaceAllUsesWith(rtGlobalsPtrSplit);
  }

  for (auto *GBP : globalBuffPtrs) {
    GBP->eraseFromParent();
  }

  return true;
}

namespace IGC {
Pass *CreateTraceRayInlineLoweringPass() { return new TraceRayInlineLoweringPass(); }

Pass *CreateRTGlobalsPointerLoweringPass() { return new RTGlobalsPointerLoweringPass(); }
} // namespace IGC