1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "ResolveConstExprCalls.h"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/Type.h"
#include "llvmWrapper/IR/Function.h"
#include <llvm/Pass.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Attributes.h>
#include <llvm/IR/IRBuilder.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
// Register pass to igc-opt
#define PASS_FLAG "igc-resolve-constexpr-calls"
#define PASS_DESCRIPTION "Resolve pseudo indirect calls"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ResolveConstExprCalls, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(ResolveConstExprCalls, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char ResolveConstExprCalls::ID = 0;
ResolveConstExprCalls::ResolveConstExprCalls() : ModulePass(ID) {
initializeResolveConstExprCallsPass(*PassRegistry::getPassRegistry());
}
/// Return the specified type promoted as it would be to pass though a va_arg
/// area.
static Type *getPromotedType(Type *Ty) {
if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
return Type::getInt32Ty(Ty->getContext());
}
return Ty;
}
/// This function is the simplified version of one from LLVM InstCombineCalls.cpp file
/// We do not consider the cases with different number of arguments and different return values
/// If the callee is a constexpr cast of a function, attempt to move the cast to
/// the arguments of the call.
bool transformConstExprCastCall(CallInst &Call) {
auto *Callee = dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
if (!Callee)
return false;
// If this is a call to a thunk function, don't remove the cast. Thunks are
// used to transparently forward all incoming parameters and outgoing return
// values, so it's important to leave the cast in place.
if (Callee->hasFnAttribute("thunk"))
return false;
// If this is a musttail call, the callee's prototype must match the caller's
// prototype with the exception of pointee types. The code below doesn't
// implement that, so we can't do this transform.
// TODO: Do the transform if it only requires adding pointer casts.
if (Call.isMustTailCall())
return false;
Instruction *Caller = &Call;
const AttributeList &CallerPAL = Call.getAttributes();
// Okay, this is a cast from a function to a different type. Unless doing so
// would cause a type conversion of one of our arguments, change this call to
// be a direct call with arguments casted to the appropriate types.
FunctionType *FT = Callee->getFunctionType();
Type *OldRetTy = Caller->getType();
Type *NewRetTy = FT->getReturnType();
auto &DL = Call.getFunction()->getParent()->getDataLayout();
// Check to see if we are changing the return type...
if (OldRetTy != NewRetTy)
return false; // We'll skip this case
unsigned NumActualArgs = Call.arg_size();
if (NumActualArgs != FT->getNumParams())
return false; // We'll skip this case
// Prevent us turning:
// declare void @takes_i32_inalloca(i32* inalloca)
// call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
//
// into:
// call void @takes_i32_inalloca(i32* null)
//
// Similarly, avoid folding away bitcasts of byval calls.
if (Callee->getAttributes().hasAttrSomewhere(llvm::Attribute::InAlloca))
return false;
auto AI = Call.arg_begin();
for (unsigned i = 0, e = NumActualArgs; i != e; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
Type *ActTy = (*AI)->getType();
if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
return false; // Cannot transform this parameter value.
AttrBuilder AB(FT->getContext(), CallerPAL.getParamAttrs(i));
if (AB.overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
return false; // Attribute not compatible with transformed value.
if (Call.isInAllocaArgument(i))
return false; // Cannot transform to and from inalloca.
if (CallerPAL.hasParamAttr(i, llvm::Attribute::ByVal) !=
Callee->getAttributes().hasParamAttr(i, llvm::Attribute::ByVal))
return false; // Cannot transform to or from byval.
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, llvm::Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (!ParamPTy || !IGCLLVM::getArg(*Callee, i)->getParamByValType()->isSized())
return false;
Type *CurElTy = Call.getParamByValType(i);
if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(IGCLLVM::getArg(*Callee, i)->getParamByValType()))
return false;
}
}
if (Callee->isDeclaration()) {
// If the callee is just a declaration, don't change the varargsness of the
// call. We don't want to introduce a varargs call where one doesn't
// already exist.
if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
return false;
// If both the callee and the cast type are varargs, we still have to make
// sure the number of fixed parameters are the same or we have the same
// ABI issues as if we introduce a varargs call.
if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
FT->getNumParams() != Call.getFunctionType()->getNumParams())
return false;
}
// Okay, we decided that this is a safe thing to do: go ahead and start
// inserting cast instructions as necessary.
SmallVector<Value *, 8> Args;
SmallVector<AttributeSet, 8> ArgAttrs;
Args.reserve(NumActualArgs);
ArgAttrs.reserve(NumActualArgs);
// Get any return attributes.
AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
// If the return value is not being used, the type may not be compatible
// with the existing attributes. Wipe out any problematic attributes.
RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
LLVMContext &Ctx = Call.getContext();
AI = Call.arg_begin();
IRBuilder<> Builder(&Call);
for (unsigned i = 0; i != NumActualArgs; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
Value *NewArg = *AI;
if ((*AI)->getType() != ParamTy)
NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
Args.push_back(NewArg);
// Add any parameter attributes.
AttrBuilder AB(Ctx, CallerPAL.getParamAttrs(i));
if (CallerPAL.hasParamAttr(i, llvm::Attribute::ByVal)) {
AB.addByValAttr(Callee->getArg(i)->getParamByValType());
}
ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
}
AttributeSet FnAttrs = CallerPAL.getFnAttrs();
if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
IGC_ASSERT_MESSAGE((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()), "missing argument attributes");
AttributeList NewCallerPAL = AttributeList::get(Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
SmallVector<OperandBundleDef, 1> OpBundles;
Call.getOperandBundlesAsDefs(OpBundles);
CallBase *NewCall;
NewCall = Builder.CreateCall(Callee, Args, OpBundles);
cast<CallInst>(NewCall)->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
NewCall->takeName(Caller);
NewCall->setCallingConv(Call.getCallingConv());
NewCall->setAttributes(NewCallerPAL);
// Preserve prof metadata if any.
NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
Value *NV = NewCall;
if (!Caller->use_empty())
Caller->replaceAllUsesWith(NV);
else if (Caller->hasValueHandle())
ValueHandleBase::ValueIsRAUWd(Caller, NV);
Caller->eraseFromParent();
return true;
}
bool ResolveConstExprCalls::runOnModule(Module &M) {
// Process through all functions and transform all constexpr cast calls
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Function *F = &(*I);
SmallVector<CallInst *, 8> TransformList;
SmallVector<ConstantExpr *, 8> DropList;
// Collect all constexpr cast calls into list
for (auto u = F->user_begin(), e = F->user_end(); u != e; u++) {
CallInst *call = dyn_cast<CallInst>(*u);
if (!call || call->getCalledOperand() != F) {
auto CE = dyn_cast<ConstantExpr>(*u);
if (CE) {
for (auto CEuser : CE->users())
if (CallInst *CallCE = dyn_cast<CallInst>(CEuser))
TransformList.push_back(CallCE);
DropList.push_back(CE);
}
}
}
for (auto I : TransformList)
transformConstExprCastCall(*I);
// If constexpr without uses drop all references on it
for (auto I : DropList)
if (I->user_empty())
I->dropAllReferences();
}
return true;
}
|