1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "CallMergerPass.hpp"
#include "CodeGenPublic.h"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/IGCPassSupport.h"
#include "llvmWrapper/IR/BasicBlock.h"
#include "Probe/Assertion.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/Function.h>
#include <llvm/IR/Instruction.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Use.h>
#include <llvm/Pass.h>
#include <llvm/ADT/DenseMap.h>
#include <llvm/ADT/SmallVector.h>
#include "common/LLVMWarningsPop.hpp"
using namespace IGC;
using namespace llvm;
// Register pass to igc-opt
namespace IGC {
#define PASS_FLAG "call-merger-pass"
#define PASS_DESCRIPTION "Merge mutually exclusive calls to enable further inlining."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(CallMerger, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(EstimateFunctionSize)
IGC_INITIALIZE_PASS_END(CallMerger, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
} // namespace IGC
using CallSiteMap = DenseMap<Function *, SmallVector<CallInst *, 2>>;
namespace {
CallSiteMap collectAllCallSites(Function &F) {
CallSiteMap callSites;
for (auto &BB : F) {
for (auto &I : BB) {
if (auto *callInst = dyn_cast<CallInst>(&I)) {
auto *calledFunc = callInst->getCalledFunction();
if (calledFunc && !calledFunc->isIntrinsic()) {
callSites[calledFunc].push_back(callInst);
}
}
}
}
return callSites;
}
void setNewTerminator(BasicBlock *oldBB, BasicBlock *newBB) {
auto *oldTerminator = oldBB->getTerminator();
oldTerminator->eraseFromParent();
IGCLLVM::pushBackInstruction(oldBB, BranchInst::Create(newBB));
}
// We assume that BBs with call instructions have terminator with single successor
// and that the list of uses of both calls is the same.
void mergeCalls(Function *F, CallInst *call1, CallInst *call2) {
auto *parentBB1 = call1->getParent();
auto *parentBB2 = call2->getParent();
auto *successorBB = parentBB1->getSingleSuccessor();
auto *newBB = llvm::BasicBlock::Create(F->getContext(), "mergedCallsBB", F, successorBB);
llvm::IRBuilder<> Builder(newBB);
IGC_ASSERT(call1->arg_size() == call2->arg_size());
SmallVector<Value *, 4> args;
for (unsigned i = 0; i < call1->arg_size(); ++i) {
auto *arg1 = call1->getArgOperand(i);
auto *arg2 = call2->getArgOperand(i);
if (arg1 == arg2) {
args.push_back(arg1);
continue;
}
auto *PN = Builder.CreatePHI(arg1->getType(), 2);
PN->addIncoming(arg1, parentBB1);
PN->addIncoming(arg2, parentBB2);
args.push_back(PN);
}
auto *newCall = Builder.CreateCall(call1->getCalledFunction(), args);
newCall->setCallingConv(call1->getCallingConv());
newCall->setAttributes(call1->getAttributes());
newCall->setTailCall(call1->isTailCall());
Builder.CreateBr(successorBB);
setNewTerminator(parentBB1, newBB);
setNewTerminator(parentBB2, newBB);
for (auto &u : call1->uses()) {
auto *userI = cast<Instruction>(u.getUser());
userI->replaceUsesOfWith(call1, newCall);
}
for (auto &u : call2->uses()) {
auto *userI = cast<Instruction>(u.getUser());
userI->replaceUsesOfWith(call2, newCall);
}
call1->eraseFromParent();
call2->eraseFromParent();
}
bool haveSingleCommonSuccessor(CallInst *call1, CallInst *call2) {
auto *successor1 = call1->getParent()->getSingleSuccessor();
auto *successor2 = call2->getParent()->getSingleSuccessor();
if (!successor1 || !successor2 || successor1 != successor2) {
return false;
}
return true;
}
bool isAfterInstInBB(Instruction *inst1, Instruction *inst2) {
for (auto &I : *inst1->getParent()) {
if (&I == inst1) {
return false;
}
if (&I == inst2) {
return true;
}
}
return false;
}
bool hasUsesInCurrentBB(CallInst *call) {
auto *currentBB = call->getParent();
// Check if call results is used in same block as call
for (auto *user : call->users()) {
auto *userI = cast<Instruction>(user);
if (userI->getParent() == currentBB) {
return true;
}
}
// Check if any non const argument is used in call block
// after call
for (auto &arg : call->args()) {
if (!arg->getType()->isPointerTy()) {
continue;
}
for (auto *user : arg->users()) {
if (auto *userI = dyn_cast<Instruction>(user)) {
if (userI == call || userI->getParent() != currentBB) {
continue;
}
if (isAfterInstInBB(call, userI)) {
continue;
}
return true;
}
}
}
return false;
}
bool hasSameUsesAs(CallInst *call1, CallInst *call2) {
if (call1->getNumUses() != call2->getNumUses()) {
return false;
}
for (auto &use1 : call1->uses()) {
bool matched = false;
for (auto &use2 : call2->uses()) {
if (use1 == use2) {
matched = true;
break;
}
}
if (!matched) {
return false;
}
}
return true;
}
void filterCallSites(CallSiteMap &callSites, EstimateFunctionSize *EFS) {
SmallVector<Function *, 4> elementsToErase;
size_t PerFuncThreshold = IGC_GET_FLAG_VALUE(SubroutineInlinerThreshold);
for (const auto &[calledFunc, callInsts] : callSites) {
if (callInsts.size() != 2) {
elementsToErase.push_back(calledFunc);
continue;
}
// We don't need to process function that can't get inlined
if (calledFunc->hasFnAttribute(llvm::Attribute::NoInline) || calledFunc->hasFnAttribute("igc-force-stackcall") ||
calledFunc->hasFnAttribute("KMPLOCK")) {
elementsToErase.push_back(calledFunc);
continue;
}
// We can skip functions that are small enough to be inlined.
if (EFS->getExpandedSize(calledFunc) <= PerFuncThreshold) {
elementsToErase.push_back(calledFunc);
continue;
}
// We can merge calls with common successor, without result or args having uses in
// call block. We also only merge function calls with same use list.
if (!haveSingleCommonSuccessor(callInsts[0], callInsts[1]) || hasUsesInCurrentBB(callInsts[0]) ||
hasUsesInCurrentBB(callInsts[1]) || !hasSameUsesAs(callInsts[0], callInsts[1])) {
elementsToErase.push_back(calledFunc);
continue;
}
}
for (auto *calledFunc : elementsToErase) {
callSites.erase(calledFunc);
}
}
} // anonymous namespace
char CallMerger::ID = 0;
CallMerger::CallMerger() : ModulePass(ID) { initializeCallMergerPass(*PassRegistry::getPassRegistry()); }
void CallMerger::getAnalysisUsage(llvm::AnalysisUsage &AU) const {
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<EstimateFunctionSize>();
}
bool CallMerger::runOnFunction(Function &F) {
auto callSites = collectAllCallSites(F);
filterCallSites(callSites, EFS);
if (callSites.empty()) {
return false;
}
for (auto &[calledFunc, callInsts] : callSites) {
mergeCalls(&F, callInsts[0], callInsts[1]);
}
return true;
}
bool CallMerger::runOnModule(Module &M) {
EFS = &getAnalysis<EstimateFunctionSize>();
CTX = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
// We don't need to do any work if all functions will get inlined
// or function control is not default.
if (IGC::ForceAlwaysInline(CTX) || CTX->m_enableSubroutine == false ||
getFunctionControl(CTX) != FLAG_FCALL_DEFAULT || !EFS->shouldEnableSubroutine()) {
return false;
}
bool changed = false;
for (auto &F : M) {
if (F.isDeclaration() || F.isIntrinsic() || F.hasOptNone()) {
continue;
}
changed |= runOnFunction(F);
}
return changed;
}
|