1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/DataLayout.h"
#include "llvm/ADT/StringExtras.h"
#include "common/LLVMWarningsPop.hpp"
#include "AdaptorCommon/ImplicitArgs.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/CISACodeGen/OpenCLKernelCodeGen.hpp"
#include "Compiler/CISACodeGen/messageEncoding.hpp"
#include "Compiler/CISACodeGen/DebugInfo.hpp"
#include "Compiler/CISACodeGen/CSWalkOrder.hpp"
#include "Compiler/Optimizer/OpenCLPasses/KernelArgs/KernelArgs.hpp"
#include "Compiler/CISACodeGen/EmitVISAPass.hpp"
#include "Compiler/Optimizer/OCLBIUtils.h"
#include "AdaptorOCL/OCL/KernelAnnotations.hpp"
#include "common/igc_regkeys.hpp"
#include "common/Stats.hpp"
#include "common/SystemThread.h"
#include "common/secure_mem.h"
#include "common/MDFrameWork.h"
#include <iStdLib/utility.h>
#include "Probe/Assertion.h"
#include <fstream>
#include "ZEBinWriter/zebin/source/ZEELFObjectBuilder.hpp"
/***********************************************************************************
This file contains the code specific to opencl kernels
************************************************************************************/
namespace IGC {
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
bool OpenCLProgramContext::isSPIRV() const { return isSpirV; }
void OpenCLProgramContext::setAsSPIRV() { isSpirV = true; }
bool OpenCLProgramContext::needsDivergentBarrierHandling() const {
return IGC_IS_FLAG_ENABLED(EnableDivergentBarrierWA) || m_InternalOptions.EnableDivergentBarrierHandling;
}
float OpenCLProgramContext::getProfilingTimerResolution() { return m_ProfilingTimerResolution; }
int32_t OpenCLProgramContext::getNumThreadsPerEU() const {
if (m_Options.IntelRequiredEUThreadCount) {
return m_Options.requiredEUThreadCount;
}
if (m_InternalOptions.IntelNumThreadPerEU) {
return m_InternalOptions.numThreadsPerEU;
}
return -1;
}
uint32_t OpenCLProgramContext::getExpGRFSize() const {
if (IGC_GET_FLAG_VALUE(TotalGRFNum)) {
return IGC_GET_FLAG_VALUE(TotalGRFNum);
}
if (m_InternalOptions.IntelExpGRFSize) {
return m_InternalOptions.expGRFSize;
}
if (m_Options.IntelExpGRFSize) {
return m_Options.expGRFSize;
}
return 0;
}
uint32_t OpenCLProgramContext::getNumGRFPerThread(bool returnDefault) {
if (platform.supportsStaticRegSharing()) {
if (m_InternalOptions.Intel128GRFPerThread || m_Options.Intel128GRFPerThread) {
return 128;
} else if (m_InternalOptions.Intel256GRFPerThread || m_Options.Intel256GRFPerThread ||
m_Options.IntelLargeRegisterFile) {
return 256;
}
}
return CodeGenContext::getNumGRFPerThread(returnDefault);
}
bool OpenCLProgramContext::isAutoGRFSelectionEnabled() const {
if (getNumThreadsPerEU() == 0)
return true;
if ((platform.supportsAutoGRFSelection() &&
(m_DriverInfo.supportsAutoGRFSelection() || m_InternalOptions.IntelEnableAutoLargeGRF ||
m_Options.IntelEnableAutoLargeGRF) ||
supportsVRT()) &&
!m_InternalOptions.Intel128GRFPerThread && !m_Options.Intel128GRFPerThread &&
!m_InternalOptions.Intel256GRFPerThread && !m_Options.Intel256GRFPerThread
) {
return true;
}
return false;
}
bool OpenCLProgramContext::forceGlobalMemoryAllocation() const {
return m_InternalOptions.ForceGlobalMemoryAllocation || m_hasGlobalInPrivateAddressSpace;
}
bool OpenCLProgramContext::allocatePrivateAsGlobalBuffer() const {
return forceGlobalMemoryAllocation() ||
(m_instrTypes.hasDynamicGenericLoadStore && platform.canForcePrivateToGlobal());
}
bool OpenCLProgramContext::noLocalToGenericOptionEnabled() const { return m_Options.NoLocalToGeneric; }
bool OpenCLProgramContext::mustDistinguishBetweenPrivateAndGlobalPtr() const {
return m_mustDistinguishBetweenPrivateAndGlobalPtr;
}
void OpenCLProgramContext::setDistinguishBetweenPrivateAndGlobalPtr(bool distinguish) {
m_mustDistinguishBetweenPrivateAndGlobalPtr = distinguish;
}
bool OpenCLProgramContext::enableTakeGlobalAddress() const {
return m_Options.EnableTakeGlobalAddress || getModuleMetaData()->capabilities.globalVariableDecorationsINTEL;
}
int16_t OpenCLProgramContext::getVectorCoalescingControl() const {
// cmdline option > registry key
int val = m_InternalOptions.VectorCoalescingControl;
if (val < 0) {
// no cmdline option
val = IGC_GET_FLAG_VALUE(VectorAlias);
}
return val;
}
uint32_t OpenCLProgramContext::getPrivateMemoryMinimalSizePerThread() const {
return m_InternalOptions.IntelPrivateMemoryMinimalSizePerThread;
}
bool OpenCLProgramContext::isBufferBoundsChecking() const { return m_InternalOptions.EnableBufferBoundsChecking; }
uint32_t OpenCLProgramContext::getIntelScratchSpacePrivateMemoryMinimalSizePerThread() const {
return m_InternalOptions.IntelScratchSpacePrivateMemoryMinimalSizePerThread;
}
void OpenCLProgramContext::failOnSpills() {
if (!m_InternalOptions.FailOnSpill) {
return;
}
// If there is fail-on-spill option provided
// and __attribute__((annotate("igc-do-not-spill"))) is present for a kernel,
// we fail compilation
auto &programList = m_programOutput.m_ShaderProgramList;
for (auto &kernel : programList) {
for (auto mode : {SIMDMode::SIMD8, SIMDMode::SIMD16, SIMDMode::SIMD32}) {
COpenCLKernel *shader = static_cast<COpenCLKernel *>(kernel->GetShader(mode));
if (!COpenCLKernel::IsValidShader(shader)) {
continue;
}
auto &funcMD = modMD->FuncMD[shader->entry];
auto &annotatnions = funcMD.UserAnnotations;
auto output = shader->ProgramOutput();
if (hasSpills(output->m_scratchSpaceUsedBySpills, output->m_numGRFTotal) &&
std::find(annotatnions.begin(), annotatnions.end(), "igc-do-not-spill") != annotatnions.end()) {
std::string msg = "Spills detected in kernel: " + shader->m_kernelInfo.m_kernelName;
EmitError(msg.c_str(), nullptr);
}
}
}
}
float OpenCLProgramContext::GetSpillThreshold(SIMDMode dispatchSize) {
float threshold = 0.0f;
if (this->platform.getGRFSize() >= 64) {
if (dispatchSize == SIMDMode::SIMD32)
threshold = float(m_DriverInfo.getSIMD32_SpillThreshold()) / 100.0f;
else if (dispatchSize == SIMDMode::SIMD16)
threshold = float(m_DriverInfo.getSIMD16_SpillThreshold() * 2) / 100.0f;
} else {
if (dispatchSize == SIMDMode::SIMD16)
threshold = float(m_DriverInfo.getSIMD16_SpillThreshold()) / 100.0f;
else if (dispatchSize == SIMDMode::SIMD8)
threshold = float(m_DriverInfo.getSIMD8_SpillThreshold()) / 100.0f;
}
return threshold;
}
unsigned OpenCLProgramContext::GetSlmSizePerSubslice() { return platform.getSlmSizePerSsOrDss(); }
uint64_t OpenCLProgramContext::getMinimumValidAddress() const { return m_InternalOptions.MinimumValidAddress; }
COpenCLKernel::COpenCLKernel(OpenCLProgramContext *ctx, Function *pFunc, CShaderProgram *pProgram)
: m_State(*pFunc, *pProgram->GetContext()), CComputeShaderBase(pFunc, pProgram, m_State) {
m_HasTID = false;
m_HasGlobalSize = false;
m_disableMidThreadPreemption = false;
m_perWIStatelessPrivateMemSize = 0;
m_Context = ctx;
m_localOffsetsMap.clear();
m_pBtiLayout = &(ctx->btiLayout);
m_Platform = &(ctx->platform);
m_DriverInfo = &(ctx->m_DriverInfo);
m_regularGRFRequested = false;
m_largeGRFRequested = false;
m_annotatedNumThreads = -1;
if (m_Platform->supportsStaticRegSharing()) {
// Obtain number of threads from user annotations if it is set
auto &FuncInfo = m_Context->getModuleMetaData()->FuncMD[pFunc];
int numThreads = extractAnnotatedNumThreads(FuncInfo);
if (numThreads >= 0 && m_Platform->isValidNumThreads(numThreads)) {
m_annotatedNumThreads = numThreads;
}
// check if option is set to use certain GRF size
auto FuncName = pFunc->getName().str();
for (const auto &SubNameR : ctx->m_Options.RegularGRFKernels) {
if (FuncName.find(SubNameR) != std::string::npos) {
m_regularGRFRequested = true;
break;
}
}
for (const auto &SubNameL : ctx->m_Options.LargeGRFKernels) {
if (FuncName.find(SubNameL) != std::string::npos) {
m_largeGRFRequested = true;
break;
}
}
}
}
COpenCLKernel::~COpenCLKernel() { m_simdProgram.Destroy(); }
void COpenCLKernel::PreCompile() {
CreateImplicitArgs();
// We explicitly want this to be GRF-sized, without relation to simd width
RecomputeBTLayout();
// need to clear m_walkOrderStruct for each shader compile
m_Context->m_walkOrderStruct = {};
ModuleMetaData *modMD = m_Context->getModuleMetaData();
auto funcIter = modMD->FuncMD.find(entry);
// Initialize the table of offsets for GlobalVariables representing locals
if (funcIter != modMD->FuncMD.end()) {
auto loIter = funcIter->second.localOffsets.begin();
auto loEnd = funcIter->second.localOffsets.end();
for (; loIter != loEnd; ++loIter) {
LocalOffsetMD loHandle = *loIter;
m_localOffsetsMap[loHandle.m_Var] = loHandle.m_Offset;
}
}
if (m_Platform->supportHWGenerateTID() && m_DriverInfo->SupportHWGenerateTID())
tryHWGenerateLocalIDs();
}
void COpenCLKernel::tryHWGenerateLocalIDs() {
auto Dims = IGCMetaDataHelper::getThreadGroupDims(*m_pMdUtils, entry);
if (!Dims)
return;
auto WO = getWorkGroupWalkOrder();
bool ForcedWalkOrder = false;
if (WO.dim0 != 0 || WO.dim1 != 0 || WO.dim2 != 0) {
if (auto Order = checkLegalWalkOrder(*Dims, WO)) {
ForcedWalkOrder = true;
// Don't do TileY if forced in this way.
m_Context->m_walkOrderStruct.m_threadIDLayout = ThreadIDLayout::X;
m_Context->m_walkOrderStruct.m_walkOrder = *Order;
} else {
auto WalkOrder = getWalkOrderInPass(WO.dim0, WO.dim1);
if (WalkOrder != CS_WALK_ORDER::WO_XYZ) {
IGC_ASSERT_MESSAGE(0, "unhandled walk order!");
}
return;
}
}
// OpenCL currently emits all local IDs even if only one dimension
// is requested. Let's mirror that for now.
ImplicitArgs implicitArgs(*entry, m_pMdUtils);
if (implicitArgs.isImplicitArgExist(ImplicitArg::LOCAL_ID_X) ||
implicitArgs.isImplicitArgExist(ImplicitArg::LOCAL_ID_Y) ||
implicitArgs.isImplicitArgExist(ImplicitArg::LOCAL_ID_Z)) {
if (ForcedWalkOrder)
m_Context->m_walkOrderStruct.m_enableHWGenerateLID = true;
setEmitLocalMaskInPass(THREAD_ID_IN_GROUP_Z, m_Context->m_walkOrderStruct.m_emitMask);
}
if (!ForcedWalkOrder) {
selectWalkOrderInPass(false, 0, 0, 0, /* dummy 1D accesses */
0, /* dummy 2D accesses */
0, /* dummy SLM accessed */
(*Dims)[0], (*Dims)[1], (*Dims)[2], m_Context, m_Context->m_walkOrderStruct);
}
encoder.GetVISABuilder()->SetOption(vISA_autoLoadLocalID, m_Context->m_walkOrderStruct.m_enableHWGenerateLID);
}
WorkGroupWalkOrderMD COpenCLKernel::getWorkGroupWalkOrder() {
const CodeGenContext *pCtx = GetContext();
const ModuleMetaData *MMD = pCtx->getModuleMetaData();
if (auto I = MMD->FuncMD.find(entry); I != MMD->FuncMD.end()) {
auto &FMD = I->second;
auto &Order = FMD.workGroupWalkOrder;
return Order;
}
return {};
}
SOpenCLKernelInfo::SResourceInfo COpenCLKernel::getResourceInfo(int argNo) {
CodeGenContext *pCtx = GetContext();
ModuleMetaData *modMD = pCtx->getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[entry];
ResourceAllocMD *resAllocMD = &funcMD->resAllocMD;
IGC_ASSERT_MESSAGE(resAllocMD->argAllocMDList.size() > 0, "ArgAllocMD List Out of Bounds");
ArgAllocMD *argAlloc = &resAllocMD->argAllocMDList[argNo];
SOpenCLKernelInfo::SResourceInfo resInfo;
ResourceTypeEnum type = (ResourceTypeEnum)argAlloc->type;
if (type == ResourceTypeEnum::UAVResourceType || type == ResourceTypeEnum::BindlessUAVResourceType) {
resInfo.Type = SOpenCLKernelInfo::SResourceInfo::RES_UAV;
} else if (type == ResourceTypeEnum::SRVResourceType) {
resInfo.Type = SOpenCLKernelInfo::SResourceInfo::RES_SRV;
} else {
resInfo.Type = SOpenCLKernelInfo::SResourceInfo::RES_OTHER;
}
resInfo.Index = argAlloc->indexType;
return resInfo;
}
ResourceExtensionTypeEnum COpenCLKernel::getExtensionInfo(int argNo) {
CodeGenContext *pCtx = GetContext();
ModuleMetaData *modMD = pCtx->getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[entry];
ResourceAllocMD *resAllocMD = &funcMD->resAllocMD;
IGC_ASSERT_MESSAGE(resAllocMD->argAllocMDList.size() > 0, "ArgAllocMD List Out of Bounds");
ArgAllocMD *argAlloc = &resAllocMD->argAllocMDList[argNo];
return (ResourceExtensionTypeEnum)argAlloc->extensionType;
}
void COpenCLKernel::CreateZEInlineSamplerAnnotations() {
auto getZESamplerAddrMode = [](int addrMode) {
switch (addrMode) {
case LEGACY_CLK_ADDRESS_NONE:
return zebin::PreDefinedAttrGetter::ArgSamplerAddrMode::none;
case LEGACY_CLK_ADDRESS_CLAMP:
return zebin::PreDefinedAttrGetter::ArgSamplerAddrMode::clamp_border;
case LEGACY_CLK_ADDRESS_CLAMP_TO_EDGE:
return zebin::PreDefinedAttrGetter::ArgSamplerAddrMode::clamp_edge;
case LEGACY_CLK_ADDRESS_REPEAT:
return zebin::PreDefinedAttrGetter::ArgSamplerAddrMode::repeat;
case LEGACY_CLK_ADDRESS_MIRRORED_REPEAT:
return zebin::PreDefinedAttrGetter::ArgSamplerAddrMode::mirror;
default:
IGC_ASSERT_MESSAGE(false, "Unsupported sampler addressing mode");
return zebin::PreDefinedAttrGetter::ArgSamplerAddrMode::none;
}
};
auto getZESamplerFilterMode = [](int filterMode) {
switch (filterMode) {
case iOpenCL::SAMPLER_MAPFILTER_POINT:
return zebin::PreDefinedAttrGetter::ArgSamplerFilterMode::nearest;
case iOpenCL::SAMPLER_MAPFILTER_LINEAR:
return zebin::PreDefinedAttrGetter::ArgSamplerFilterMode::linear;
default:
IGC_ASSERT_MESSAGE(false, "Unsupported sampler filter mode");
return zebin::PreDefinedAttrGetter::ArgSamplerFilterMode::nearest;
}
};
auto funcMDIter = m_Context->getModuleMetaData()->FuncMD.find(entry);
if (funcMDIter != m_Context->getModuleMetaData()->FuncMD.end()) {
const ResourceAllocMD &resAllocMD = funcMDIter->second.resAllocMD;
for (const auto &inlineSamplerMD : resAllocMD.inlineSamplersMD) {
auto addrMode = getZESamplerAddrMode(inlineSamplerMD.addressMode);
auto filterMode = getZESamplerFilterMode(inlineSamplerMD.MagFilterType);
bool normalized = inlineSamplerMD.NormalizedCoords != 0 ? true : false;
zebin::ZEInfoBuilder::addInlineSampler(m_kernelInfo.m_zeInlineSamplers, inlineSamplerMD.index, addrMode,
filterMode, normalized);
}
}
}
std::string COpenCLKernel::getKernelArgTypeName(const FunctionMetaData &funcMD, uint argIndex) const {
// The type name is expected to also have the type size, appended after a ";"
std::string result = funcMD.m_OpenCLArgTypes[argIndex] + ";";
// Unfortunately, unlike SPIR, legacy OCL uses an ABI that has byval pointers.
// So, if the parameter is a byval pointer, look at the contained type
Function::arg_iterator argumentIter = entry->arg_begin();
std::advance(argumentIter, argIndex);
Type *argType = entry->getFunctionType()->getParamType(argIndex);
if (argumentIter->hasByValAttr()) {
argType = argumentIter->getParamByValType();
}
result += utostr(m_DL->getTypeAllocSize(argType));
return result;
}
std::string COpenCLKernel::getKernelArgTypeQualifier(const FunctionMetaData &funcMD, uint argIndex) const {
// If there are no type qualifiers, "NONE" is expected
std::string result = funcMD.m_OpenCLArgTypeQualifiers[argIndex];
if (result.empty()) {
result = "NONE";
}
return result;
}
std::string COpenCLKernel::getKernelArgAddressQualifier(const FunctionMetaData &funcMD, uint argIndex) const {
// The address space is expected to have a __ prefix
switch (funcMD.m_OpenCLArgAddressSpaces[argIndex]) {
case ADDRESS_SPACE_CONSTANT:
return "__constant";
case ADDRESS_SPACE_GLOBAL:
return "__global";
case ADDRESS_SPACE_LOCAL:
return "__local";
case ADDRESS_SPACE_PRIVATE:
return "__private";
default:
m_Context->EmitError("Generic pointers are not allowed as kernel argument storage class!", nullptr);
IGC_ASSERT_MESSAGE(0, "Unexpected address space");
break;
}
return "";
}
std::string COpenCLKernel::getKernelArgAccessQualifier(const FunctionMetaData &funcMD, uint argIndex) const {
// The access qualifier is expected to have a "__" prefix, or an upper-case "NONE" if there is no qualifier
std::string result = funcMD.m_OpenCLArgAccessQualifiers[argIndex];
if (result == "none" || result == "") {
result = "NONE";
} else if (result[0] != '_') {
result = "__" + result;
}
return result;
}
uint32_t COpenCLKernel::getReqdSubGroupSize(llvm::Function &F, MetaDataUtils *MDUtils) const {
FunctionInfoMetaDataHandle funcInfoMD = MDUtils->getFunctionsInfoItem(&F);
int simd_size = funcInfoMD->getSubGroupSize()->getSIMDSize();
// Finds the kernel and get the group simd size from the kernel
if (m_FGA) {
llvm::Function *Kernel = &F;
auto FG = m_FGA->getGroup(&F);
Kernel = FG->getHead();
funcInfoMD = MDUtils->getFunctionsInfoItem(Kernel);
simd_size = funcInfoMD->getSubGroupSize()->getSIMDSize();
}
return simd_size;
}
uint32_t COpenCLKernel::getMaxPressure(llvm::Function &F, MetaDataUtils *MDUtils) const {
FunctionInfoMetaDataHandle funcInfoMD = MDUtils->getFunctionsInfoItem(&F);
unsigned int maxPressure = funcInfoMD->getMaxRegPressure()->getMaxPressure();
if (m_FGA) {
llvm::Function *Kernel = &F;
auto FG = m_FGA->getGroup(&F);
Kernel = FG->getHead();
funcInfoMD = MDUtils->getFunctionsInfoItem(Kernel);
maxPressure = funcInfoMD->getMaxRegPressure()->getMaxPressure();
}
return maxPressure;
}
std::string COpenCLKernel::getVecTypeHintTypeString(const VectorTypeHintMetaDataHandle &vecTypeHintInfo) const {
std::string vecTypeString;
// Get the information about the type
Type *baseType = vecTypeHintInfo->getVecType()->getType();
unsigned int numElements = 1;
if (baseType->isVectorTy()) {
numElements = (unsigned)cast<IGCLLVM::FixedVectorType>(baseType)->getNumElements();
baseType = cast<VectorType>(baseType)->getElementType();
}
// ExecutionModel doesn't differentiate base type in term of signed/unsigned.
if (baseType->isIntegerTy()) {
vecTypeString += "u";
}
switch (baseType->getTypeID()) {
case Type::IntegerTyID:
switch (baseType->getIntegerBitWidth()) {
case 8:
vecTypeString += "char";
break;
case 16:
vecTypeString += "short";
break;
case 32:
vecTypeString += "int";
break;
case 64:
vecTypeString += "long";
break;
default:
IGC_ASSERT_MESSAGE(0, "Unexpected data type in vec_type_hint");
break;
}
break;
case Type::DoubleTyID:
vecTypeString += "double";
break;
case Type::FloatTyID:
vecTypeString += "float";
break;
case Type::HalfTyID:
vecTypeString += "half";
break;
default:
IGC_ASSERT_MESSAGE(0, "Unexpected data type in vec_type_hint");
break;
}
if (numElements != 1) {
vecTypeString += utostr(numElements);
}
return vecTypeString;
}
bool COpenCLKernel::CreateZEPayloadArguments(IGC::KernelArg *kernelArg, uint payloadPosition,
PtrArgsAttrMapType &ptrArgsAttrMap) {
#ifndef DX_ONLY_IGC
#ifndef VK_ONLY_IGC
switch (kernelArg->getArgType()) {
case KernelArg::ArgType::IMPLICIT_PAYLOAD_HEADER: {
// PayloadHeader contains global work offset x,y,z and local size x,y,z
// global work offset, size is int32x3
uint cur_pos = payloadPosition;
uint32_t size = iOpenCL::DATA_PARAMETER_DATA_SIZE * 3;
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::global_id_offset, cur_pos, size);
cur_pos += size;
// local size, size is int32x3, the same as above
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::local_size, cur_pos, size);
break;
}
case KernelArg::ArgType::IMPLICIT_GLOBAL_OFFSET: {
uint32_t size = iOpenCL::DATA_PARAMETER_DATA_SIZE * 3;
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::global_id_offset, payloadPosition, size);
break;
}
case KernelArg::ArgType::IMPLICIT_PRIVATE_BASE:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::private_base_stateless,
payloadPosition, kernelArg->getSize());
break;
case KernelArg::ArgType::IMPLICIT_NUM_GROUPS:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::group_count, payloadPosition,
iOpenCL::DATA_PARAMETER_DATA_SIZE * 3);
break;
case KernelArg::ArgType::IMPLICIT_LOCAL_SIZE:
// FIXME: duplicated information as KernelArg::ArgType::IMPLICIT_PAYLOAD_HEADER?
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::local_size, payloadPosition,
iOpenCL::DATA_PARAMETER_DATA_SIZE * 3);
break;
case KernelArg::ArgType::IMPLICIT_ENQUEUED_LOCAL_WORK_SIZE:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::enqueued_local_size,
payloadPosition, iOpenCL::DATA_PARAMETER_DATA_SIZE * 3);
break;
case KernelArg::ArgType::IMPLICIT_GLOBAL_SIZE:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::global_size, payloadPosition,
iOpenCL::DATA_PARAMETER_DATA_SIZE * 3);
break;
case KernelArg::ArgType::IMPLICIT_WORK_DIM:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::work_dimensions,
payloadPosition, iOpenCL::DATA_PARAMETER_DATA_SIZE);
break;
// pointer args
case KernelArg::ArgType::PTR_GLOBAL:
case KernelArg::ArgType::PTR_CONSTANT: {
uint32_t arg_idx = kernelArg->getAssociatedArgNo();
FunctionMetaData &funcMD = GetContext()->getModuleMetaData()->FuncMD[entry];
auto addr_space = kernelArg->getArgType() == KernelArg::ArgType::PTR_GLOBAL
? zebin::PreDefinedAttrGetter::ArgAddrSpace::global
: zebin::PreDefinedAttrGetter::ArgAddrSpace::constant;
auto access_type = zebin::PreDefinedAttrGetter::ArgAccessType::readwrite;
if (kernelArg->getArgType() == KernelArg::ArgType::PTR_CONSTANT ||
arg_idx < funcMD.m_OpenCLArgTypeQualifiers.size() && funcMD.m_OpenCLArgTypeQualifiers[arg_idx] == "const")
access_type = zebin::PreDefinedAttrGetter::ArgAccessType::readonly;
// FIXME: do not set bti if the number is 0xffffffff (?)
SOpenCLKernelInfo::SResourceInfo resInfo = getResourceInfo(arg_idx);
uint32_t bti_idx = getBTI(resInfo);
// There are 3 stateful modes, we need to create different payload_arguments for
// each mode: BTI mode, Bindless legacy mode and Bindless advance
bool is_stateful_mode = bti_idx != 0xffffffff;
const bool use_bindless_mode = GetContext()->getModuleMetaData()->compOpt.UseBindlessMode;
const bool use_bindless_legacy_mode = GetContext()->getModuleMetaData()->compOpt.UseLegacyBindlessMode;
if (is_stateful_mode && (!use_bindless_mode)) {
// Add BTI argument if being promoted to stateful BTI mode
// promoted arg has 0 offset and 0 size
zebin::ZEInfoBuilder::addPayloadArgumentByPointer(m_kernelInfo.m_zePayloadArgs, 0, 0, arg_idx,
zebin::PreDefinedAttrGetter::ArgAddrMode::stateful, addr_space,
access_type);
// add the corresponding BTI table index
zebin::ZEInfoBuilder::addBindingTableIndex(m_kernelInfo.m_zeBTIArgs, bti_idx, arg_idx);
}
// check if all reference are promoted, if it is, we can skip creating stateless payload arg
bool is_stateful_only = is_stateful_mode && IGC_IS_FLAG_ENABLED(EnableStatelessToStateful) &&
IGC_IS_FLAG_ENABLED(EnableStatefulToken) && m_DriverInfo->SupportStatefulToken() &&
!m_Context->getModuleMetaData()->compOpt.GreaterThan4GBBufferRequired &&
kernelArg->getArg() &&
((kernelArg->getArgType() == KernelArg::ArgType::PTR_GLOBAL &&
(kernelArg->getArg()->use_empty() || !GetHasGlobalStatelessAccess())) ||
(kernelArg->getArgType() == KernelArg::ArgType::PTR_CONSTANT &&
(kernelArg->getArg()->use_empty() || !GetHasConstantStatelessAccess())));
bool is_bindless_legacy_mode = use_bindless_mode && use_bindless_legacy_mode;
bool is_bindless_advance_mode = use_bindless_mode && !use_bindless_legacy_mode;
// When on bindless advance mode, there's an IMPLICIT_BINDLESS_OFFSET argument generated
// associated to this argument. Keep track of addrspace and access_type for setting the
// IMPLICIT_BINDLESS_OFFSET's attributes
if (is_bindless_advance_mode) {
auto zeArgTy = zebin::PreDefinedAttrGetter::ArgType::arg_bypointer;
ptrArgsAttrMap[arg_idx] = std::make_tuple(addr_space, access_type, zeArgTy);
}
// For BindlessLegacyMode, this argument represents the bindless offset of the argument. Skip buffer_address
// creation and fall through to below bindless payload_argument creation
// For BindlessAdvanceMode and BTI modes, this argument represents either the original stateless address
// or the "buffer_address" when all accesses are promoted to stateful
if (is_stateful_only && !is_bindless_legacy_mode) {
// create buffer_address for statefull only arg in case of address check is needed
// for example: something like "if(buffer != nullptr)" in the kernel.
// this address will be accessed as a value and cannot be de-referenced
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::buffer_address, payloadPosition,
kernelArg->getSize());
arg.arg_index = arg_idx;
break;
}
ResourceAllocMD &resAllocMD = GetContext()->getModuleMetaData()->FuncMD[entry].resAllocMD;
IGC_ASSERT_MESSAGE(resAllocMD.argAllocMDList.size() > 0, "ArgAllocMDList is empty.");
ArgAllocMD &argAlloc = resAllocMD.argAllocMDList[arg_idx];
zebin::PreDefinedAttrGetter::ArgAddrMode addr_mode = zebin::PreDefinedAttrGetter::ArgAddrMode::stateless;
if (argAlloc.type == ResourceTypeEnum::BindlessUAVResourceType)
addr_mode = zebin::PreDefinedAttrGetter::ArgAddrMode::bindless;
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentByPointer(
m_kernelInfo.m_zePayloadArgs, payloadPosition, kernelArg->getSize(), arg_idx, addr_mode, addr_space,
access_type);
arg.is_pipe =
arg_idx < funcMD.m_OpenCLArgTypeQualifiers.size() && funcMD.m_OpenCLArgTypeQualifiers[arg_idx] == "pipe";
break;
}
case KernelArg::ArgType::PTR_LOCAL:
zebin::ZEInfoBuilder::addPayloadArgumentByPointer(
m_kernelInfo.m_zePayloadArgs, payloadPosition, kernelArg->getSize(), kernelArg->getAssociatedArgNo(),
zebin::PreDefinedAttrGetter::ArgAddrMode::slm, zebin::PreDefinedAttrGetter::ArgAddrSpace::local,
zebin::PreDefinedAttrGetter::ArgAccessType::readwrite, kernelArg->getAlignment());
break;
// by value arguments
case KernelArg::ArgType::CONSTANT_REG:
zebin::ZEInfoBuilder::addPayloadArgumentByValue(m_kernelInfo.m_zePayloadArgs, payloadPosition, kernelArg->getSize(),
kernelArg->getAssociatedArgNo(), kernelArg->getStructArgOffset(),
kernelArg->isScalarAsPointer());
break;
// Local ids are supported in per-thread payload arguments
case KernelArg::ArgType::IMPLICIT_LOCAL_IDS:
break;
// Bindless offset for pointer argument. This ArgType presents when bindless-advanced-mode
// is enabled
case KernelArg::ArgType::IMPLICIT_BINDLESS_OFFSET: {
auto argidx = kernelArg->getAssociatedArgNo();
IGC_ASSERT_MESSAGE(ptrArgsAttrMap.find(argidx) != ptrArgsAttrMap.end(),
"Cannot find ptrArgsAttr for IMPLICIT_BINDLESS_OFFSET");
PtrArgAttrType &attrs = ptrArgsAttrMap[argidx];
auto argTy = std::get<2>(attrs);
if (argTy == zebin::PreDefinedAttrGetter::ArgType::const_base ||
argTy == zebin::PreDefinedAttrGetter::ArgType::global_base) {
// If the associated arg for bindless_offset refers to another implicit argument,
// instead of mapping it via arg_index (since "arg_index" in payload_arguments
// refers to the user (explicit) arguments' index in the original kernel definition),
// create another version of the implicit arg with the bindless addrmode set.
//
// Example:
// - arg_type : const_base
// offset : 40
// size : 8
// - arg_type : const_base
// offset : 80
// size : 4
// addrmode : bindless
//
// Ultimately in zeinfo we end up with two definitions of the implicit arg, where
// one of them is the stateless pointer, and the other is the bindless offset.
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, argTy, payloadPosition, kernelArg->getSize());
arg.addrmode = zebin::PreDefinedAttrGetter::get(zebin::PreDefinedAttrGetter::ArgAddrMode::bindless);
} else {
zebin::ZEInfoBuilder::addPayloadArgumentByPointer(
m_kernelInfo.m_zePayloadArgs, payloadPosition, kernelArg->getSize(), argidx,
zebin::PreDefinedAttrGetter::ArgAddrMode::bindless, std::get<0>(attrs), std::get<1>(attrs));
}
break;
}
// Images
case KernelArg::ArgType::IMAGE_1D:
case KernelArg::ArgType::BINDLESS_IMAGE_1D:
case KernelArg::ArgType::IMAGE_1D_BUFFER:
case KernelArg::ArgType::BINDLESS_IMAGE_1D_BUFFER:
case KernelArg::ArgType::IMAGE_2D:
case KernelArg::ArgType::BINDLESS_IMAGE_2D:
case KernelArg::ArgType::IMAGE_3D:
case KernelArg::ArgType::BINDLESS_IMAGE_3D:
case KernelArg::ArgType::IMAGE_CUBE:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE:
case KernelArg::ArgType::IMAGE_CUBE_DEPTH:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE_DEPTH:
case KernelArg::ArgType::IMAGE_1D_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_1D_ARRAY:
case KernelArg::ArgType::IMAGE_2D_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_ARRAY:
case KernelArg::ArgType::IMAGE_2D_DEPTH:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_DEPTH:
case KernelArg::ArgType::IMAGE_2D_DEPTH_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_DEPTH_ARRAY:
case KernelArg::ArgType::IMAGE_2D_MSAA:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA:
case KernelArg::ArgType::IMAGE_2D_MSAA_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA_ARRAY:
case KernelArg::ArgType::IMAGE_2D_MSAA_DEPTH:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA_DEPTH:
case KernelArg::ArgType::IMAGE_2D_MSAA_DEPTH_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA_DEPTH_ARRAY:
case KernelArg::ArgType::IMAGE_CUBE_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE_ARRAY:
case KernelArg::ArgType::IMAGE_CUBE_DEPTH_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE_DEPTH_ARRAY: {
// the image arg is either bindless or stateful. check from "kernelArg->needsAllocation()"
// For stateful image argument, the arg has 0 offset and 0 size
zebin::PreDefinedAttrGetter::ArgAddrMode arg_addrmode = zebin::PreDefinedAttrGetter::ArgAddrMode::stateful;
uint arg_off = 0;
uint arg_size = 0;
int arg_idx = kernelArg->getAssociatedArgNo();
if (kernelArg->needsAllocation()) {
// set to bindless
arg_addrmode = zebin::PreDefinedAttrGetter::ArgAddrMode::bindless;
arg_off = payloadPosition;
arg_size = kernelArg->getSize();
} else {
// add bti index for this arg if it's stateful
SOpenCLKernelInfo::SResourceInfo resInfo = getResourceInfo(arg_idx);
zebin::ZEInfoBuilder::addBindingTableIndex(m_kernelInfo.m_zeBTIArgs, getBTI(resInfo), arg_idx);
}
auto access_type = [](KernelArg::AccessQual qual) {
if (qual == KernelArg::AccessQual::READ_ONLY)
return zebin::PreDefinedAttrGetter::ArgAccessType::readonly;
if (qual == KernelArg::AccessQual::WRITE_ONLY)
return zebin::PreDefinedAttrGetter::ArgAccessType::writeonly;
return zebin::PreDefinedAttrGetter::ArgAccessType::readwrite;
}(kernelArg->getAccessQual());
auto image_type = getZEImageType(getImageTypeFromKernelArg(*kernelArg));
// add the payload argument
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImage(
m_kernelInfo.m_zePayloadArgs, arg_off, arg_size, arg_idx, arg_addrmode, access_type, image_type);
// TODO: When ZEBIN path supports inline sampler, follow Patch Token
// path to check if the samplers allow 3D images to be represented
// as arrays of 2D images.
// (deprecated InlineSamplersAllow3DImageTransformation())
arg.image_transformable = kernelArg->getArgType() == KernelArg::ArgType::IMAGE_3D &&
kernelArg->getImgAccessedIntCoords() && !kernelArg->getImgAccessedFloatCoords();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_HEIGHT: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_height, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_WIDTH: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_width, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_DEPTH: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_depth, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_NUM_MIP_LEVELS: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_num_mip_levels, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_CHANNEL_DATA_TYPE: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_channel_data_type, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_CHANNEL_ORDER: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_channel_order, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_SRGB_CHANNEL_ORDER: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_srgb_channel_order, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_ARRAY_SIZE: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_array_size, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_IMAGE_NUM_SAMPLES: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::image_num_samples, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_FLAT_IMAGE_BASEOFFSET: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::flat_image_baseoffset, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_FLAT_IMAGE_HEIGHT: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::flat_image_height, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_FLAT_IMAGE_WIDTH: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::flat_image_width, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_FLAT_IMAGE_PITCH: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::flat_image_pitch, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
// sampler
case KernelArg::ArgType::SAMPLER:
case KernelArg::ArgType::BINDLESS_SAMPLER: {
// the sampler arg is either bindless or stateful. check from "kernelArg->needsAllocation()"
// For stateful image argument, the arg has 0 offset and 0 size
// NOTE: we only have stateful sampler now
zebin::PreDefinedAttrGetter::ArgAddrMode arg_addrmode = zebin::PreDefinedAttrGetter::ArgAddrMode::stateful;
uint arg_off = 0;
uint arg_size = 0;
if (kernelArg->needsAllocation()) {
// set to bindless
arg_addrmode = zebin::PreDefinedAttrGetter::ArgAddrMode::bindless;
arg_off = payloadPosition;
arg_size = kernelArg->getSize();
}
int arg_idx = kernelArg->getAssociatedArgNo();
SOpenCLKernelInfo::SResourceInfo resInfo = getResourceInfo(arg_idx);
auto sampler_type = getZESamplerType(getSamplerTypeFromKernelArg(*kernelArg));
// add the payload argument
zebin::ZEInfoBuilder::addPayloadArgumentSampler(
m_kernelInfo.m_zePayloadArgs, arg_off, arg_size, arg_idx, resInfo.Index, arg_addrmode,
zebin::PreDefinedAttrGetter::ArgAccessType::readwrite, sampler_type);
break;
}
case KernelArg::ArgType::IMPLICIT_SAMPLER_ADDRESS: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::sampler_address, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_SAMPLER_NORMALIZED: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::sampler_normalized, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_SAMPLER_SNAP_WA: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::sampler_snap_wa, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_INLINE_SAMPLER: {
uint32_t arg_idx = kernelArg->getAssociatedArgNo();
ResourceAllocMD &resAllocMD = GetContext()->getModuleMetaData()->FuncMD[entry].resAllocMD;
auto it = llvm::find_if(resAllocMD.inlineSamplersMD,
[&](auto &inlineSamplerMD) { return inlineSamplerMD.m_Value == arg_idx; });
IGC_ASSERT_MESSAGE(it != resAllocMD.inlineSamplersMD.end(), "Inline sampler isn't found in metadata.");
zebin::ZEInfoBuilder::addPayloadArgumentImplicitInlineSampler(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::inline_sampler,
payloadPosition, kernelArg->getSize(), it->index);
break;
}
case KernelArg::ArgType::IMPLICIT_BUFFER_OFFSET: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::buffer_offset, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
case KernelArg::ArgType::IMPLICIT_PRINTF_BUFFER:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::printf_buffer,
payloadPosition, kernelArg->getSize());
break;
case KernelArg::ArgType::IMPLICIT_ARG_BUFFER:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::implicit_arg_buffer,
payloadPosition, kernelArg->getSize());
break;
case KernelArg::ArgType::IMPLICIT_SYNC_BUFFER:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::sync_buffer, payloadPosition,
kernelArg->getSize());
break;
case KernelArg::ArgType::IMPLICIT_RT_GLOBAL_BUFFER:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::rt_global_buffer,
payloadPosition, kernelArg->getSize());
break;
case KernelArg::ArgType::IMPLICIT_ASSERT_BUFFER:
zebin::ZEInfoBuilder::addPayloadArgumentImplicit(m_kernelInfo.m_zePayloadArgs,
zebin::PreDefinedAttrGetter::ArgType::assert_buffer,
payloadPosition, kernelArg->getSize());
break;
case KernelArg::ArgType::IMPLICIT_CONSTANT_BASE:
case KernelArg::ArgType::IMPLICIT_GLOBAL_BASE: {
uint32_t arg_idx = kernelArg->getAssociatedArgNo();
auto zeArgType = kernelArg->getArgType() == KernelArg::ArgType::IMPLICIT_CONSTANT_BASE
? zebin::PreDefinedAttrGetter::ArgType::const_base
: zebin::PreDefinedAttrGetter::ArgType::global_base;
auto addr_space = kernelArg->getArgType() == KernelArg::ArgType::IMPLICIT_GLOBAL_BASE
? zebin::PreDefinedAttrGetter::ArgAddrSpace::global
: zebin::PreDefinedAttrGetter::ArgAddrSpace::constant;
auto access_type = zebin::PreDefinedAttrGetter::ArgAccessType::readwrite;
if (kernelArg->getArgType() == KernelArg::ArgType::IMPLICIT_CONSTANT_BASE)
access_type = zebin::PreDefinedAttrGetter::ArgAccessType::readonly;
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zeArgType, payloadPosition, kernelArg->getSize(), kernelArg->isScalarAsPointer());
SOpenCLKernelInfo::SResourceInfo resInfo = getResourceInfo(kernelArg->getAssociatedArgNo());
unsigned btiValue = getBTI(resInfo);
if (m_Context->m_InternalOptions.UseBindlessMode) {
if (m_Context->m_InternalOptions.UseBindlessLegacyMode) {
zebin::PreDefinedAttrGetter::ArgAddrMode addr_mode = zebin::PreDefinedAttrGetter::ArgAddrMode::bindless;
arg.addrmode = zebin::PreDefinedAttrGetter::get(addr_mode);
arg.addrspace = zebin::PreDefinedAttrGetter::get(addr_space);
arg.access_type = zebin::PreDefinedAttrGetter::get(access_type);
} else // bindless-advanced-mode
{
// For bindless access of const_base and global_base, create an associated arg entry
// mapping this implicit arg to a bindless_offset arg
ptrArgsAttrMap[arg_idx] = std::make_tuple(addr_space, access_type, zeArgType);
}
} else if (btiValue != 0xffffffff) {
arg.bti_value = btiValue;
}
break;
}
case KernelArg::ArgType::IMPLICIT_BUFFER_SIZE: {
zebin::zeInfoPayloadArgument &arg = zebin::ZEInfoBuilder::addPayloadArgumentImplicit(
m_kernelInfo.m_zePayloadArgs, zebin::PreDefinedAttrGetter::ArgType::buffer_size, payloadPosition,
kernelArg->getSize());
arg.arg_index = kernelArg->getAssociatedArgNo();
break;
}
// We don't need these in ZEBinary, can safely skip them
case KernelArg::ArgType::IMPLICIT_R0:
case KernelArg::ArgType::R1:
case KernelArg::ArgType::STRUCT:
break;
case KernelArg::ArgType::IMPLICIT_STAGE_IN_GRID_ORIGIN:
case KernelArg::ArgType::IMPLICIT_STAGE_IN_GRID_SIZE:
default:
return false;
} // end switch (kernelArg->getArgType())
#endif // ifndef VK_ONLY_IGC
#endif // ifndef DX_ONLY_IGC
return true;
}
iOpenCL::IMAGE_MEMORY_OBJECT_TYPE COpenCLKernel::getImageTypeFromKernelArg(const KernelArg &kernelArg) {
switch (kernelArg.getArgType()) {
case KernelArg::ArgType::IMAGE_1D:
case KernelArg::ArgType::BINDLESS_IMAGE_1D:
return iOpenCL::IMAGE_MEMORY_OBJECT_1D;
case KernelArg::ArgType::IMAGE_1D_BUFFER:
case KernelArg::ArgType::BINDLESS_IMAGE_1D_BUFFER:
return iOpenCL::IMAGE_MEMORY_OBJECT_BUFFER;
case KernelArg::ArgType::IMAGE_2D:
case KernelArg::ArgType::BINDLESS_IMAGE_2D:
if (getExtensionInfo(kernelArg.getAssociatedArgNo()) == ResourceExtensionTypeEnum::MediaResourceType)
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA;
else if (getExtensionInfo(kernelArg.getAssociatedArgNo()) == ResourceExtensionTypeEnum::MediaResourceBlockType)
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA_BLOCK;
return iOpenCL::IMAGE_MEMORY_OBJECT_2D;
case KernelArg::ArgType::IMAGE_3D:
case KernelArg::ArgType::BINDLESS_IMAGE_3D:
return iOpenCL::IMAGE_MEMORY_OBJECT_3D;
case KernelArg::ArgType::IMAGE_CUBE:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE:
return iOpenCL::IMAGE_MEMORY_OBJECT_CUBE;
case KernelArg::ArgType::IMAGE_CUBE_DEPTH:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE_DEPTH:
// Use regular cube texture for depth:
return iOpenCL::IMAGE_MEMORY_OBJECT_CUBE;
case KernelArg::ArgType::IMAGE_1D_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_1D_ARRAY:
return iOpenCL::IMAGE_MEMORY_OBJECT_1D_ARRAY;
case KernelArg::ArgType::IMAGE_2D_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_ARRAY:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY;
case KernelArg::ArgType::IMAGE_2D_DEPTH:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_DEPTH:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_DEPTH;
case KernelArg::ArgType::IMAGE_2D_DEPTH_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_DEPTH_ARRAY:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY_DEPTH;
case KernelArg::ArgType::IMAGE_2D_MSAA:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_MSAA;
case KernelArg::ArgType::IMAGE_2D_MSAA_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA_ARRAY:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY_MSAA;
case KernelArg::ArgType::IMAGE_2D_MSAA_DEPTH:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA_DEPTH:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_MSAA_DEPTH;
case KernelArg::ArgType::IMAGE_2D_MSAA_DEPTH_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_2D_MSAA_DEPTH_ARRAY:
return iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY_MSAA_DEPTH;
case KernelArg::ArgType::IMAGE_CUBE_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE_ARRAY:
return iOpenCL::IMAGE_MEMORY_OBJECT_CUBE_ARRAY;
case KernelArg::ArgType::IMAGE_CUBE_DEPTH_ARRAY:
case KernelArg::ArgType::BINDLESS_IMAGE_CUBE_DEPTH_ARRAY:
// Use regular cube texture array for depth
return iOpenCL::IMAGE_MEMORY_OBJECT_CUBE_ARRAY;
default:
break;
}
return iOpenCL::IMAGE_MEMORY_OBJECT_INVALID;
}
iOpenCL::SAMPLER_OBJECT_TYPE COpenCLKernel::getSamplerTypeFromKernelArg(const KernelArg &kernelArg) {
IGC_ASSERT(kernelArg.getArgType() == KernelArg::ArgType::SAMPLER ||
kernelArg.getArgType() == KernelArg::ArgType::BINDLESS_SAMPLER);
switch (getExtensionInfo(kernelArg.getAssociatedArgNo())) {
case ResourceExtensionTypeEnum::MediaSamplerType:
return iOpenCL::SAMPLER_OBJECT_VME;
case ResourceExtensionTypeEnum::MediaSamplerTypeConvolve:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_2DCONVOLVE;
case ResourceExtensionTypeEnum::MediaSamplerTypeErode:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_ERODE;
case ResourceExtensionTypeEnum::MediaSamplerTypeDilate:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_DILATE;
case ResourceExtensionTypeEnum::MediaSamplerTypeMinMaxFilter:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_MINMAXFILTER;
case ResourceExtensionTypeEnum::MediaSamplerTypeMinMax:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_MINMAX;
case ResourceExtensionTypeEnum::MediaSamplerTypeCentroid:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_CENTROID;
case ResourceExtensionTypeEnum::MediaSamplerTypeBoolCentroid:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_BOOL_CENTROID;
case ResourceExtensionTypeEnum::MediaSamplerTypeBoolSum:
return iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_BOOL_SUM;
default:
return iOpenCL::SAMPLER_OBJECT_TEXTURE;
}
}
void COpenCLKernel::ParseShaderSpecificOpcode(llvm::Instruction *inst) {
auto setStatelessAccess = [&](unsigned AS) {
if (AS == ADDRESS_SPACE_GLOBAL || AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_GLOBAL_OR_PRIVATE) {
SetHasGlobalStatelessAccess();
}
if (AS == ADDRESS_SPACE_CONSTANT) {
SetHasConstantStatelessAccess();
}
};
// Currently we see data corruption when we have IEEE macros and midthread preemption enabled.
// Adding a temporary work around to disable mid thread preemption when we see IEEE Macros.
switch (inst->getOpcode()) {
case Instruction::FDiv:
if (inst->getType()->isDoubleTy()) {
SetDisableMidthreadPreemption();
}
break;
case Instruction::Call:
if (inst->getType()->isDoubleTy()) {
if (GetOpCode(inst) == llvm_sqrt) {
SetDisableMidthreadPreemption();
}
}
break;
case Instruction::Load: {
unsigned AS = cast<LoadInst>(inst)->getPointerAddressSpace();
setStatelessAccess(AS);
break;
}
case Instruction::Store: {
unsigned AS = cast<StoreInst>(inst)->getPointerAddressSpace();
setStatelessAccess(AS);
break;
}
default:
break;
}
if (CallInst *CallI = dyn_cast<CallInst>(inst)) {
bool mayHasMemoryAccess = true; // for checking stateless access
if (GenIntrinsicInst *GII = dyn_cast<GenIntrinsicInst>(CallI)) {
GenISAIntrinsic::ID id = GII->getIntrinsicID();
switch (id) {
default:
break;
case GenISAIntrinsic::GenISA_dpas:
case GenISAIntrinsic::GenISA_sub_group_dpas:
m_State.SetHasDPAS();
break;
case GenISAIntrinsic::GenISA_ptr_to_pair:
case GenISAIntrinsic::GenISA_pair_to_ptr:
mayHasMemoryAccess = false;
break;
} // End of switch
}
if (InlineAsm *IA = dyn_cast<InlineAsm>(IGCLLVM::getCalledValue(CallI))) {
if (IA->getAsmString().find("dpas") != std::string::npos) {
m_State.SetHasDPAS();
}
}
if (mayHasMemoryAccess) {
// Checking stateless access info
if (!isa<IntrinsicInst>(CallI) && !isa<GenIntrinsicInst>(CallI)) {
// function/subroutine call. Give up
SetHasConstantStatelessAccess();
SetHasGlobalStatelessAccess();
} else {
for (int i = 0, e = (int)IGCLLVM::getNumArgOperands(CallI); i < e; ++i) {
Value *arg = CallI->getArgOperand(i);
PointerType *PTy = dyn_cast<PointerType>(arg->getType());
if (!PTy)
continue;
unsigned AS = PTy->getAddressSpace();
setStatelessAccess(AS);
}
}
}
}
}
void COpenCLKernel::AllocatePayload() {
IGC_ASSERT(m_Context);
bool loadThreadPayload = false;
loadThreadPayload = m_Platform->supportLoadThreadPayloadForCompute();
// SKL defaults to indirect thread payload storage.
// BDW needs CURBE payload. Spec says:
// "CURBE should be used for the payload when using indirect dispatch rather than indirect payload".
m_kernelInfo.m_threadPayload.CompiledForIndirectPayloadStorage = true;
if (IGC_IS_FLAG_ENABLED(DisableGPGPUIndirectPayload) ||
m_Context->platform.getWATable().WaDisableIndirectDataForIndirectDispatch) {
m_kernelInfo.m_threadPayload.CompiledForIndirectPayloadStorage = false;
}
if (loadThreadPayload) {
m_kernelInfo.m_threadPayload.CompiledForIndirectPayloadStorage = true;
}
m_kernelInfo.m_threadPayload.HasFlattenedLocalID = false;
m_kernelInfo.m_threadPayload.HasLocalIDx = false;
m_kernelInfo.m_threadPayload.HasLocalIDy = false;
m_kernelInfo.m_threadPayload.HasLocalIDz = false;
m_kernelInfo.m_threadPayload.HasGlobalIDOffset = false;
m_kernelInfo.m_threadPayload.HasGroupID = false;
m_kernelInfo.m_threadPayload.HasLocalID = false;
m_kernelInfo.m_threadPayload.UnusedPerThreadConstantPresent = false;
m_kernelInfo.m_threadPayload.HasStageInGridOrigin = false;
m_kernelInfo.m_threadPayload.HasStageInGridSize = false;
m_kernelInfo.m_threadPayload.HasRTStackID = false;
if (m_Context->m_walkOrderStruct.m_enableHWGenerateLID) {
m_kernelInfo.m_threadPayload.generateLocalID = true;
m_kernelInfo.m_threadPayload.emitLocalMask = m_Context->m_walkOrderStruct.m_emitMask;
m_kernelInfo.m_threadPayload.walkOrder = static_cast<unsigned int>(m_Context->m_walkOrderStruct.m_walkOrder);
m_kernelInfo.m_threadPayload.tileY = (m_Context->m_walkOrderStruct.m_threadIDLayout == ThreadIDLayout::TileY);
}
// Set the amount of the private memory used by the kernel
// Set only if the private memory metadata actually exists and we don't use
// scratch space for private memory.
bool noScratchSpacePrivMem = !m_Context->getModuleMetaData()->compOpt.UseScratchSpacePrivateMemory;
if (noScratchSpacePrivMem) {
auto StackMemIter = m_Context->getModuleMetaData()->PrivateMemoryPerFG.find(entry);
if (StackMemIter != m_Context->getModuleMetaData()->PrivateMemoryPerFG.end()) {
m_perWIStatelessPrivateMemSize = StackMemIter->second;
}
}
m_State.m_ConstantBufferLength = 0;
m_State.m_NOSBufferSize = 0;
uint offset = 0;
uint constantBufferStart = 0;
bool constantBufferStartSet = false;
uint prevOffset = 0;
bool nosBufferAllocated = false;
KernelArgsOrder::InputType layout = m_kernelInfo.m_threadPayload.CompiledForIndirectPayloadStorage
? KernelArgsOrder::InputType::INDIRECT
: KernelArgsOrder::InputType::CURBE;
KernelArgs kernelArgs(*entry, m_DL, m_pMdUtils, m_ModuleMetadata, getGRFSize(), layout);
if (layout == KernelArgsOrder::InputType::INDIRECT && !loadThreadPayload) {
kernelArgs.checkForZeroPerThreadData();
}
const bool useInlineData = passNOSInlineData();
const uint inlineDataSize = m_Platform->getInlineDataSize();
bool inlineDataProcessed = false;
uint offsetCorrection = 0;
// keep track of the pointer arguments' addrspace and access_type for setting the correct
// attributes to their corresponding bindless offset arguments
PtrArgsAttrMapType ptrArgsAttrMap;
for (KernelArgs::const_iterator i = kernelArgs.begin(), e = kernelArgs.end(); i != e; ++i) {
KernelArg arg = *i;
prevOffset = offset;
// skip unused arguments
bool IsUnusedArg = isUnusedArg(arg);
// Runtime Values should not be processed any further. No annotations shall be created for them.
// Only added to KernelArgs to enforce correct allocation order.
bool isRuntimeValue = (arg.getArgType() == KernelArg::ArgType::RUNTIME_VALUE);
if (!constantBufferStartSet && arg.isConstantBuf()) {
constantBufferStart = offset;
constantBufferStartSet = true;
}
if (!nosBufferAllocated && isRuntimeValue) {
IGC_ASSERT_MESSAGE(arg.isConstantBuf(), "RuntimeValues must be marked as isConstantBuf");
AllocateNOSConstants(offset);
nosBufferAllocated = true;
}
// Local IDs are non-uniform and may have two instances in SIMD32 mode
int numAllocInstances = arg.getArgType() == KernelArg::ArgType::IMPLICIT_LOCAL_IDS ? m_numberInstance : 1;
if (arg.getArgType() == KernelArg::ArgType::RT_STACK_ID) {
numAllocInstances = m_numberInstance;
}
auto allocSize = arg.getAllocateSize();
if (!IsUnusedArg && !isRuntimeValue) {
if (arg.needsAllocation()) {
// Align on the desired alignment for this argument
auto alignment = arg.getAlignment();
if (arg.isArgPtrType())
alignment = m_Context->getModule()->getDataLayout().getPointerTypeSize(arg.getArg()->getType());
// FIXME: move alignment checks to implicit arg creation
if ((arg.getArgType() == KernelArg::ArgType::IMPLICIT_LOCAL_IDS ||
arg.getArgType() == KernelArg::ArgType::RT_STACK_ID) &&
m_Platform->getGRFSize() == 64) {
alignment = 64;
// generate a single SIMD32 variable in this case
if (m_State.m_dispatchSize == SIMDMode::SIMD16 && m_Platform->getGRFSize() == 64) {
allocSize = 64;
} else {
allocSize = PVCLSCEnabled() ? 64 : 32;
}
}
offset = iSTD::Align(offset, alignment);
// Arguments larger than a GRF must be at least GRF-aligned.
// Arguments smaller than a GRF may not cross GRF boundaries.
// This means that arguments that cross a GRF boundary
// must be GRF aligned.
// Note that this is done AFTER we align on the base alignment,
// because of edge cases where aligning on the base alignment
// is what causes the "overflow".
unsigned int startGRF = offset / getGRFSize();
unsigned int endGRF = (offset + allocSize - 1) / getGRFSize();
if (startGRF != endGRF) {
offset = iSTD::Align(offset, getGRFSize());
}
// offsetCorrection should be set only when we are loading payload in kenrel prolog
if (loadThreadPayload) {
bool isFirstCrossThreadArgument = constantBufferStartSet && prevOffset == constantBufferStart;
// if we don't use inline data and first argument does not start in first avaliable register
// because of its alignment (which can be greater than GRF size), we correct the offset in payload,
// so that it can be loaded properly in prolog, we want it to be on 0 offset in payload
//
// payload_position = offset - constant_buffer_start - correction
//
// examples:
// alignment offset constant_buffer_start correction payload_position
// 128 128 32 96 0
// 8 32 32 0 0
if (!useInlineData && isFirstCrossThreadArgument) {
offsetCorrection = offset - constantBufferStart;
}
if (useInlineData && !inlineDataProcessed && arg.getArgType() != KernelArg::ArgType::IMPLICIT_LOCAL_IDS &&
arg.getArgType() != KernelArg::ArgType::RT_STACK_ID &&
arg.getArgType() != KernelArg::ArgType::IMPLICIT_R0) {
// Calc if we can fit this arg in inlinedata:
// We check if arg exceeds inline data boundaries,
// if it does, we align it to next GRF.
if (offset + allocSize - constantBufferStart > inlineDataSize) {
inlineDataProcessed = true;
if (getGRFSize() > inlineDataSize) {
// If inline data is used and a plaftorm has 64B GRFs,
// we must correct the offset of cross-thread arguments
// which are not loaded in inline data
// the reason behind this is that inline data has only 32B,
// so the position of next arg needs to be aligned to next GRF,
// because the input arguments are loaded with alignment of GRF
offset = iSTD::Align(offset, getGRFSize());
}
// numAllocInstances can be greater than 1, only when:
// artype == IMPLICIT_LOCAL_IDS
// or argtype == RT_STACK_ID,
// so there is no need to handle it here
// current arg is first to be loaded (it does not come in inlinedata)
// so we want it to be at 32B offset in payload annotations
// (first 32B are for inline data)
offsetCorrection = offset - inlineDataSize - constantBufferStart;
}
}
}
// And now actually tell vISA we need this space.
// (Except for r0, which is a predefined variable, and should never be allocated as input!)
const llvm::Argument *A = arg.getArg();
if (A != nullptr && arg.getArgType() != KernelArg::ArgType::IMPLICIT_R0) {
CVariable *var = GetSymbol(const_cast<Argument *>(A));
for (int i = 0; i < numAllocInstances; ++i) {
uint totalOffset = offset + (allocSize * i);
if ((totalOffset / getGRFSize()) >= m_Context->getNumGRFPerThread()) {
m_Context->EmitError("Kernel inputs exceed total register size!", A);
return;
}
AllocateInput(var, totalOffset, i);
}
}
// or else we would just need to increase an offset
}
const uint offsetInPayload = offset - constantBufferStart - offsetCorrection;
if (arg.getArgType() == KernelArg::ArgType::IMPLICIT_LOCAL_IDS) {
m_kernelInfo.m_threadPayload.HasLocalIDx = true;
m_kernelInfo.m_threadPayload.HasLocalIDy = true;
m_kernelInfo.m_threadPayload.HasLocalIDz = true;
}
bool Res = CreateZEPayloadArguments(&arg, offsetInPayload, ptrArgsAttrMap);
IGC_ASSERT_MESSAGE(Res, "ZEBin: unsupported KernelArg Type");
(void)Res;
if (arg.needsAllocation()) {
for (int i = 0; i < numAllocInstances; ++i) {
offset += allocSize;
}
// FIXME: Should we allocate R0 to be 64 byte for PVC?
if (arg.getArgType() == KernelArg::ArgType::IMPLICIT_R0 && m_Platform->getGRFSize() == 64) {
offset += 32;
}
}
}
if (arg.isConstantBuf()) {
m_State.m_ConstantBufferLength += offset - prevOffset;
}
}
// Disable EU Fusion.
if (IGC_IS_FLAG_ENABLED(DisableEuFusion) || m_Context->m_InternalOptions.DisableEUFusion ||
m_Context->getModuleMetaData()->compOpt.DisableEUFusion) {
m_kernelInfo.m_executionEnvironment.RequireDisableEUFusion = true;
}
// ToDo: we should avoid passing all three dimensions of local id
if (m_kernelInfo.m_threadPayload.HasLocalIDx || m_kernelInfo.m_threadPayload.HasLocalIDy ||
m_kernelInfo.m_threadPayload.HasLocalIDz) {
if (loadThreadPayload) {
uint perThreadInputSize = SIZE_WORD * 3 * (m_State.m_dispatchSize == SIMDMode::SIMD32 ? 32 : 16);
if (m_State.m_dispatchSize == SIMDMode::SIMD16 && getGRFSize() == 64) {
perThreadInputSize *= 2;
}
encoder.GetVISAKernel()->AddKernelAttribute("PerThreadInputSize", sizeof(perThreadInputSize),
&perThreadInputSize);
}
}
m_kernelInfo.m_threadPayload.OffsetToSkipPerThreadDataLoad = 0;
m_kernelInfo.m_threadPayload.OffsetToSkipSetFFIDGP = 0;
m_State.m_ConstantBufferLength = iSTD::Align(m_State.m_ConstantBufferLength, getGRFSize());
CreateZEInlineSamplerAnnotations();
}
bool COpenCLKernel::isUnusedArg(KernelArg &arg) const {
if (!arg.getArg() || !arg.getArg()->use_empty())
return false;
// Implicit arguments related to buffers can be always removed if unused.
if (arg.getArgType() == KernelArg::ArgType::IMPLICIT_BUFFER_OFFSET ||
arg.getArgType() == KernelArg::ArgType::IMPLICIT_BINDLESS_OFFSET ||
arg.getArgType() == KernelArg::ArgType::IMPLICIT_BUFFER_SIZE)
return true;
// When removing unused implicit arguments, assume subroutine calls use implicit arguments.
if (!AllowRemovingUnusedImplicitArguments(m_Context) || HasSubroutines())
return false;
return arg.getArgType() == KernelArg::ArgType::IMPLICIT_PAYLOAD_HEADER || // contains global_id_offset
arg.getArgType() == KernelArg::ArgType::IMPLICIT_GLOBAL_OFFSET ||
arg.getArgType() == KernelArg::ArgType::IMPLICIT_ENQUEUED_LOCAL_WORK_SIZE;
}
bool COpenCLKernel::passNOSInlineData() {
if (IGC_GET_FLAG_VALUE(EnablePassInlineData) == -1) {
return false;
}
const bool forceEnablePassInlineData = (IGC_GET_FLAG_VALUE(EnablePassInlineData) == 1);
bool passInlineData = false;
const bool loadThreadPayload = m_Platform->supportLoadThreadPayloadForCompute();
const bool inlineDataSupportEnabled =
(m_Platform->supportInlineDataOCL() && (m_DriverInfo->UseInlineData() || forceEnablePassInlineData));
if (loadThreadPayload && inlineDataSupportEnabled) {
passInlineData = true;
// FIXME: vISA assumes inline data size is 1 GRF, but it's 8 dword in HW.
// The generated cross-thread-load payload would be incorrect when inline data is enabled on
// platforms those GRF size are not 8 dword.
// Passed the value assumed by vISA for error detection at runtime side.
// vISA should be updated to use 8 dword.
m_kernelInfo.m_threadPayload.PassInlineDataSize = m_Platform->getInlineDataSize();
}
return passInlineData;
}
bool COpenCLKernel::loadThreadPayload() { return true; }
unsigned int COpenCLKernel::GetSLMMappingValue(llvm::Value *c) {
unsigned int val = 0;
auto localIter = m_localOffsetsMap.find(c);
if (localIter != m_localOffsetsMap.end()) {
val = localIter->second;
} else {
IGC_ASSERT_MESSAGE(0, "Trying to access a GlobalVariable not in locals map");
}
return val;
}
CVariable *COpenCLKernel::GetSLMMapping(llvm::Value *c) {
VISA_Type type = GetType(c->getType());
unsigned int val = GetSLMMappingValue(c);
return ImmToVariable(val, type);
}
unsigned int COpenCLKernel::getSumFixedTGSMSizes(Function *F) {
// Find whether we have size information for this kernel.
// If not, then the total TGSM is 0, otherwise pull it from the MD
ModuleMetaData *modMD = m_Context->getModuleMetaData();
auto funcMD = modMD->FuncMD.find(F);
if (funcMD == modMD->FuncMD.end()) {
return 0;
}
return funcMD->second.localSize;
}
void COpenCLKernel::FillZEKernelArgInfo() {
auto funcMDIt = m_Context->getModuleMetaData()->FuncMD.find(entry);
if (funcMDIt == m_Context->getModuleMetaData()->FuncMD.end())
return;
FunctionMetaData &funcMD = (*funcMDIt).second;
uint count = funcMD.m_OpenCLArgAccessQualifiers.size();
for (uint i = 0; i < count; ++i) {
zebin::zeInfoArgInfo &argInfo = m_kernelInfo.m_zeKernelArgsInfo.emplace_back();
argInfo.index = i;
// argument name is not guaranteed to be present if -cl-kernel-arg-info is not passed in.
if (funcMD.m_OpenCLArgNames.size() > i)
argInfo.name = funcMD.m_OpenCLArgNames[i];
argInfo.address_qualifier = getKernelArgAddressQualifier(funcMD, i);
argInfo.access_qualifier = getKernelArgAccessQualifier(funcMD, i);
argInfo.type_name = getKernelArgTypeName(funcMD, i);
argInfo.type_qualifiers = getKernelArgTypeQualifier(funcMD, i);
}
}
void COpenCLKernel::FillZEUserAttributes(IGC::IGCMD::FunctionInfoMetaDataHandle &funcInfoMD) {
// intel_reqd_sub_group_size
SubGroupSizeMetaDataHandle subGroupSize = funcInfoMD->getSubGroupSize();
if (subGroupSize->hasValue()) {
m_kernelInfo.m_zeUserAttributes.intel_reqd_sub_group_size = subGroupSize->getSIMDSize();
}
// intel_reqd_workgroup_walk_order
auto it = m_Context->getModuleMetaData()->FuncMD.find(entry);
if (it != m_Context->getModuleMetaData()->FuncMD.end()) {
WorkGroupWalkOrderMD workgroupWalkOrder = it->second.workGroupWalkOrder;
if (workgroupWalkOrder.dim0 || workgroupWalkOrder.dim1 || workgroupWalkOrder.dim2) {
m_kernelInfo.m_zeUserAttributes.intel_reqd_workgroup_walk_order.push_back(workgroupWalkOrder.dim0);
m_kernelInfo.m_zeUserAttributes.intel_reqd_workgroup_walk_order.push_back(workgroupWalkOrder.dim1);
m_kernelInfo.m_zeUserAttributes.intel_reqd_workgroup_walk_order.push_back(workgroupWalkOrder.dim2);
}
}
// reqd_work_group_size
ThreadGroupSizeMetaDataHandle threadGroupSize = funcInfoMD->getThreadGroupSize();
if (threadGroupSize->hasValue()) {
m_kernelInfo.m_zeUserAttributes.reqd_work_group_size.push_back(threadGroupSize->getXDim());
m_kernelInfo.m_zeUserAttributes.reqd_work_group_size.push_back(threadGroupSize->getYDim());
m_kernelInfo.m_zeUserAttributes.reqd_work_group_size.push_back(threadGroupSize->getZDim());
}
// vec_type_hint
VectorTypeHintMetaDataHandle vecTypeHintInfo = funcInfoMD->getOpenCLVectorTypeHint();
if (vecTypeHintInfo->hasValue()) {
m_kernelInfo.m_zeUserAttributes.vec_type_hint = getVecTypeHintTypeString(vecTypeHintInfo);
}
// work_group_size_hint
ThreadGroupSizeMetaDataHandle threadGroupSizeHint = funcInfoMD->getThreadGroupSizeHint();
if (threadGroupSizeHint->hasValue()) {
m_kernelInfo.m_zeUserAttributes.work_group_size_hint.push_back(threadGroupSizeHint->getXDim());
m_kernelInfo.m_zeUserAttributes.work_group_size_hint.push_back(threadGroupSizeHint->getYDim());
m_kernelInfo.m_zeUserAttributes.work_group_size_hint.push_back(threadGroupSizeHint->getZDim());
}
// function attribute added at PoisonFP64KernelsPass for describing the invalid kernel reason "uses-fp64-math"
const std::string invalidAttributeName = "invalid_kernel(\"uses-fp64-math\")";
std::string llvmFnAttrStr = entry->getAttributes().getAsString(AttributeList::FunctionIndex);
if (llvmFnAttrStr.find(invalidAttributeName) != std::string::npos) {
m_kernelInfo.m_zeUserAttributes.invalid_kernel = "uses-fp64-math";
}
}
void COpenCLKernel::FillKernel(SIMDMode simdMode) {
auto pOutput = ProgramOutput();
if (simdMode == SIMDMode::SIMD32)
m_kernelInfo.m_kernelProgram.simd32 = *pOutput;
else if (simdMode == SIMDMode::SIMD16)
m_kernelInfo.m_kernelProgram.simd16 = *pOutput;
else if (simdMode == SIMDMode::SIMD8)
m_kernelInfo.m_kernelProgram.simd8 = *pOutput;
m_Context->SetSIMDInfo(SIMD_SELECTED, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
m_kernelInfo.m_executionEnvironment.CompiledSIMDSize = numLanes(simdMode);
m_kernelInfo.m_executionEnvironment.PerThreadPrivateMemoryUsage =
pOutput->m_UseScratchSpacePrivateMemory ? pOutput->m_scratchSpaceUsedByShader
: m_perWIStatelessPrivateMemSize * numLanes(simdMode);
m_kernelInfo.m_executionEnvironment.PerThreadSpillMemoryUsage = pOutput->m_scratchSpaceUsedBySpills;
m_kernelInfo.m_executionEnvironment.PerThreadScratchSpace = pOutput->getScratchSpaceUsageInSlot0();
m_kernelInfo.m_executionEnvironment.PerThreadScratchSpaceSlot1 = pOutput->getScratchSpaceUsageInSlot1();
m_kernelInfo.m_executionEnvironment.PerThreadPrivateOnStatelessSize = m_perWIStatelessPrivateMemSize;
m_kernelInfo.m_kernelProgram.NOSBufferSize =
m_State.m_NOSBufferSize / getMinPushConstantBufferAlignmentInBytes(); // in 256 bits
m_kernelInfo.m_kernelProgram.ConstantBufferLength =
m_State.m_ConstantBufferLength / getMinPushConstantBufferAlignmentInBytes(); // in 256 bits
m_kernelInfo.m_kernelProgram.MaxNumberOfThreads = m_Platform->getMaxGPGPUShaderThreads() / GetShaderThreadUsageRate();
m_kernelInfo.m_executionEnvironment.SumFixedTGSMSizes = getSumFixedTGSMSizes(entry);
// TODO: need to change misleading HasBarriers to NumberofBarriers
m_kernelInfo.m_executionEnvironment.HasBarriers = m_State.GetBarrierNumber();
m_kernelInfo.m_executionEnvironment.HasSample = m_State.GetHasSampleGather4();
m_kernelInfo.m_executionEnvironment.DisableMidThreadPreemption = GetDisableMidThreadPreemption();
m_kernelInfo.m_executionEnvironment.SubgroupIndependentForwardProgressRequired =
m_Context->getModuleMetaData()->compOpt.SubgroupIndependentForwardProgressRequired;
m_kernelInfo.m_executionEnvironment.CompiledForGreaterThan4GBBuffers =
m_Context->getModuleMetaData()->compOpt.GreaterThan4GBBufferRequired;
IGC_ASSERT(m_State.gatherMap.size() == 0);
m_kernelInfo.m_kernelProgram.gatherMapSize = 0;
m_kernelInfo.m_kernelProgram.bindingTableEntryCount = 0;
m_kernelInfo.m_executionEnvironment.HasDeviceEnqueue = false;
m_kernelInfo.m_executionEnvironment.IsSingleProgramFlow = false;
// m_kernelInfo.m_executionEnvironment.PerSIMDLanePrivateMemorySize = m_perWIStatelessPrivateMemSize;
m_kernelInfo.m_executionEnvironment.HasFixedWorkGroupSize = false;
m_kernelInfo.m_kernelName = entry->getName().str();
m_kernelInfo.m_ShaderHashCode = m_Context->hash.getAsmHash();
FunctionInfoMetaDataHandle funcInfoMD = m_pMdUtils->getFunctionsInfoItem(entry);
ThreadGroupSizeMetaDataHandle threadGroupSize = funcInfoMD->getThreadGroupSize();
if (threadGroupSize->hasValue()) {
m_kernelInfo.m_executionEnvironment.HasFixedWorkGroupSize = true;
m_kernelInfo.m_executionEnvironment.FixedWorkgroupSize[0] = threadGroupSize->getXDim();
m_kernelInfo.m_executionEnvironment.FixedWorkgroupSize[1] = threadGroupSize->getYDim();
m_kernelInfo.m_executionEnvironment.FixedWorkgroupSize[2] = threadGroupSize->getZDim();
}
SubGroupSizeMetaDataHandle subGroupSize = funcInfoMD->getSubGroupSize();
if (subGroupSize->hasValue()) {
m_kernelInfo.m_executionEnvironment.CompiledSIMDSize = subGroupSize->getSIMDSize();
}
auto &FuncMap = m_Context->getModuleMetaData()->FuncMD;
auto FuncIter = FuncMap.find(entry);
if (FuncIter != FuncMap.end()) {
IGC::FunctionMetaData funcMD = FuncIter->second;
WorkGroupWalkOrderMD workGroupWalkOrder = funcMD.workGroupWalkOrder;
if (workGroupWalkOrder.dim0 || workGroupWalkOrder.dim1 || workGroupWalkOrder.dim2) {
m_kernelInfo.m_executionEnvironment.WorkgroupWalkOrder[0] = workGroupWalkOrder.dim0;
m_kernelInfo.m_executionEnvironment.WorkgroupWalkOrder[1] = workGroupWalkOrder.dim1;
m_kernelInfo.m_executionEnvironment.WorkgroupWalkOrder[2] = workGroupWalkOrder.dim2;
}
m_kernelInfo.m_executionEnvironment.IsInitializer = funcMD.IsInitializer;
m_kernelInfo.m_executionEnvironment.IsFinalizer = funcMD.IsFinalizer;
m_kernelInfo.m_executionEnvironment.CompiledSubGroupsNumber = funcMD.CompiledSubGroupsNumber;
m_kernelInfo.m_executionEnvironment.HasRTCalls = funcMD.hasSyncRTCalls;
}
m_kernelInfo.m_executionEnvironment.HasGlobalAtomics = GetHasGlobalAtomics();
m_kernelInfo.m_threadPayload.OffsetToSkipPerThreadDataLoad = ProgramOutput()->m_offsetToSkipPerThreadDataLoad;
m_kernelInfo.m_threadPayload.OffsetToSkipSetFFIDGP = ProgramOutput()->m_offsetToSkipSetFFIDGP;
m_kernelInfo.m_executionEnvironment.NumGRFRequired = ProgramOutput()->m_numGRFTotal;
m_kernelInfo.m_executionEnvironment.HasDPAS = m_State.GetHasDPAS();
m_kernelInfo.m_executionEnvironment.StatelessWritesCount = GetStatelessWritesCount();
m_kernelInfo.m_executionEnvironment.IndirectStatelessCount = GetIndirectStatelessCount();
m_kernelInfo.m_executionEnvironment.numThreads = ProgramOutput()->m_numThreads;
m_kernelInfo.m_executionEnvironment.UseBindlessMode = m_Context->m_InternalOptions.UseBindlessMode;
m_kernelInfo.m_executionEnvironment.HasStackCalls = HasStackCalls();
if (m_Context->m_DriverInfo.getLscStoresWithNonDefaultL1CacheControls()) {
m_kernelInfo.m_executionEnvironment.HasLscStoresWithNonDefaultL1CacheControls =
m_State.GetHasLscStoresWithNonDefaultL1CacheControls();
}
FillZEKernelArgInfo();
FillZEUserAttributes(funcInfoMD);
}
void COpenCLKernel::RecomputeBTLayout() {
CodeGenContext *pCtx = GetContext();
ModuleMetaData *modMD = pCtx->getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[entry];
ResourceAllocMD *resAllocMD = &funcMD->resAllocMD;
// Get the number of UAVs and Resources from MD.
int numUAVs = resAllocMD->uavsNumType;
int numResources = resAllocMD->srvsNumType;
// Now, update the layout information
USC::SShaderStageBTLayout *layout = ((COCLBTILayout *)m_pBtiLayout)->getModifiableLayout();
// The BT layout contains the minimum and the maximum number BTI for each kind
// of resource. E.g. UAVs may be mapped to BTIs 0..3, SRVs to 4..5, and the scratch
// surface to 6.
// Note that the names are somewhat misleading. They are used for the sake of consistency
// with the ICBE sources.
// Some fields are always 0 for OCL.
layout->resourceNullBoundOffset = 0;
layout->immediateConstantBufferOffset = 0;
layout->interfaceConstantBufferOffset = 0;
layout->constantBufferNullBoundOffset = 0;
layout->JournalIdx = 0;
layout->JournalCounterIdx = 0;
// And TGSM (aka SLM) is always 254.
layout->TGSMIdx = 254;
int index = 0;
// First, allocate BTI for debug surface
if (m_Context->m_InternalOptions.KernelDebugEnable) {
layout->systemThreadIdx = index++;
}
// Now, allocate BTIs for all the SRVs.
layout->minResourceIdx = index;
if (numResources) {
index += numResources - 1;
layout->maxResourceIdx = index++;
} else {
layout->maxResourceIdx = index;
}
// Now, ConstantBuffers - used as a placeholder for the inline constants, if present.
layout->minConstantBufferIdx = index;
layout->maxConstantBufferIdx = index;
// Now, the UAVs
layout->minUAVIdx = index;
if (numUAVs) {
index += numUAVs - 1;
layout->maxUAVIdx = index++;
} else {
layout->maxUAVIdx = index;
}
// And finally, the scratch surface
layout->surfaceScratchIdx = index++;
// Overall number of used BT entries, not including TGSM.
layout->maxBTsize = index;
}
bool COpenCLKernel::HasFullDispatchMask() {
unsigned int groupSize = IGCMetaDataHelper::getThreadGroupSize(*m_pMdUtils, entry);
if (groupSize != 0) {
if (groupSize % numLanes(m_State.m_dispatchSize) == 0) {
return true;
}
}
return false;
}
unsigned int COpenCLKernel::getBTI(SOpenCLKernelInfo::SResourceInfo &resInfo) {
switch (resInfo.Type) {
case SOpenCLKernelInfo::SResourceInfo::RES_UAV:
return m_pBtiLayout->GetUavIndex(resInfo.Index);
case SOpenCLKernelInfo::SResourceInfo::RES_SRV:
return m_pBtiLayout->GetTextureIndex(resInfo.Index);
default:
return 0xffffffff;
}
}
void CollectProgramInfo(OpenCLProgramContext *ctx) {
MetaDataUtils mdUtils(ctx->getModule());
ModuleMetaData *modMD = ctx->getModuleMetaData();
if (modMD->inlineBuffers[InlineProgramScopeBufferType::Constants].allocSize ||
modMD->inlineBuffers[InlineProgramScopeBufferType::ConstantStrings].allocSize) {
// For ZeBin, constants are mantained in two separate buffers
// the first is for general constants, and the second for string literals
// General constants
auto &ipsbMDHandle = modMD->inlineBuffers[InlineProgramScopeBufferType::Constants];
std::unique_ptr<iOpenCL::InitConstantAnnotation> initConstant(new iOpenCL::InitConstantAnnotation());
initConstant->Alignment = ipsbMDHandle.alignment;
initConstant->AllocSize = ipsbMDHandle.allocSize;
size_t bufferSize = (ipsbMDHandle.Buffer).size();
initConstant->InlineData.resize(bufferSize);
memcpy_s(initConstant->InlineData.data(), bufferSize, ipsbMDHandle.Buffer.data(), bufferSize);
ctx->m_programInfo.m_initConstantAnnotation = std::move(initConstant);
// String literals
auto &ipsbStringMDHandle = modMD->inlineBuffers[InlineProgramScopeBufferType::ConstantStrings];
std::unique_ptr<iOpenCL::InitConstantAnnotation> initStringConstant(new iOpenCL::InitConstantAnnotation());
initStringConstant->Alignment = ipsbStringMDHandle.alignment;
initStringConstant->AllocSize = ipsbStringMDHandle.allocSize;
bufferSize = (ipsbStringMDHandle.Buffer).size();
initStringConstant->InlineData.resize(bufferSize);
memcpy_s(initStringConstant->InlineData.data(), bufferSize, ipsbStringMDHandle.Buffer.data(), bufferSize);
ctx->m_programInfo.m_initConstantStringAnnotation = std::move(initStringConstant);
}
if (modMD->inlineBuffers[InlineProgramScopeBufferType::Globals].allocSize) {
auto &ipsbMDHandle = modMD->inlineBuffers[InlineProgramScopeBufferType::Globals];
std::unique_ptr<iOpenCL::InitGlobalAnnotation> initGlobal(new iOpenCL::InitGlobalAnnotation());
initGlobal->Alignment = ipsbMDHandle.alignment;
initGlobal->AllocSize = ipsbMDHandle.allocSize;
size_t bufferSize = (ipsbMDHandle.Buffer).size();
initGlobal->InlineData.resize(bufferSize);
memcpy_s(initGlobal->InlineData.data(), bufferSize, ipsbMDHandle.Buffer.data(), bufferSize);
ctx->m_programInfo.m_initGlobalAnnotation = std::move(initGlobal);
}
// Pointer address relocation table data for GLOBAL buffer
for (const auto &globalRelocEntry : modMD->GlobalBufferAddressRelocInfo) {
ctx->m_programInfo.m_GlobalPointerAddressRelocAnnotation.globalReloc.emplace_back(
(globalRelocEntry.PointerSize == 8) ? vISA::GenRelocType::R_SYM_ADDR : vISA::GenRelocType::R_SYM_ADDR_32,
(uint32_t)globalRelocEntry.BufferOffset, globalRelocEntry.Symbol);
}
// Pointer address relocation table data for CONST buffer
for (const auto &constRelocEntry : modMD->ConstantBufferAddressRelocInfo) {
ctx->m_programInfo.m_GlobalPointerAddressRelocAnnotation.globalConstReloc.emplace_back(
(constRelocEntry.PointerSize == 8) ? vISA::GenRelocType::R_SYM_ADDR : vISA::GenRelocType::R_SYM_ADDR_32,
(uint32_t)constRelocEntry.BufferOffset, constRelocEntry.Symbol);
}
}
bool COpenCLKernel::IsValidShader(COpenCLKernel *pShader) {
return pShader && (pShader->ProgramOutput()->m_programSize > 0);
}
bool COpenCLKernel::IsVisaCompiledSuccessfullyForShader(COpenCLKernel *pShader) {
return pShader && pShader->GetEncoder().IsVisaCompiledSuccessfully();
}
bool COpenCLKernel::IsVisaCompileStatusFailureForShader(COpenCLKernel *pShader) {
return pShader && pShader->GetEncoder().IsVisaCompileStatusFailure();
}
enum class RetryType {
NO_Retry,
NO_Retry_Pick_Prv,
NO_Retry_ExceedScratch,
NO_Retry_WorseStatelessPrivateMemSize,
YES_Retry,
YES_ForceRecompilation
};
static unsigned long getScratchUse(CShader *shader, OpenCLProgramContext *ctx) {
unsigned int totalScratchUse = shader->ProgramOutput()->m_scratchSpaceUsedBySpills;
if (shader->ProgramOutput()->m_UseScratchSpacePrivateMemory)
totalScratchUse += shader->ProgramOutput()->m_scratchSpaceUsedByShader;
return totalScratchUse;
}
static bool exceedMaxScratchUse(CShader *shader, OpenCLProgramContext *ctx) {
return shader && getScratchUse(shader, ctx) > shader->ProgramOutput()->m_scratchSpaceSizeLimit;
}
static bool isWorsePrivateMemSize(CShader *shader, IGC::CShaderProgram *pPrevKernel) {
for (auto mode : {SIMDMode::SIMD8, SIMDMode::SIMD16, SIMDMode::SIMD32}) {
auto pPrevShader = pPrevKernel->GetShader(mode);
if (pPrevShader) {
// if after retry the current function generate 10x more (and base version had more than 5Kb)
// private memory in global memory - consider using previous kernel
if (pPrevShader->PrivateMemoryPerWI() > 5000 &&
pPrevShader->PrivateMemoryPerWI() * 10 < shader->PrivateMemoryPerWI()) {
return true;
}
break;
}
}
return false;
}
RetryType NeedsRetry(OpenCLProgramContext *ctx, COpenCLKernel *pShader, CShaderProgram::UPtr &pKernel, Function *pFunc,
MetaDataUtils *pMdUtils, SIMDMode simdMode) {
IGC_ASSERT(pShader && pKernel);
pShader->FillKernel(simdMode);
SProgramOutput *pOutput = pShader->ProgramOutput();
CShader *program = pKernel.get()->GetShader(simdMode);
bool isWorstThanPrv = false;
// Look for previous generated shaders
// ignoring case for multi-simd compilation, or if kernel has stackcalls
if (!((ctx->m_enableSimdVariantCompilation) && (ctx->getModuleMetaData()->csInfo.forcedSIMDSize == 0)) &&
!(program->HasStackCalls() || program->IsIntelSymbolTableVoidProgram())) {
isWorstThanPrv = !ctx->m_retryManager.IsBetterThanPrevious(pKernel.get(), 2.0f);
}
auto pPreviousKernel = ctx->m_retryManager.GetPrevious(pKernel.get());
if (pPreviousKernel && exceedMaxScratchUse(program, ctx)) {
// For case when we have recompilation but exceed
// the scratch space in recompiled kernel
return RetryType::NO_Retry_ExceedScratch;
} else if (IGC_IS_FLAG_ENABLED(ForceRecompilation) && !ctx->m_retryManager.IsLastTry()) {
return RetryType::YES_ForceRecompilation;
} else if (pPreviousKernel && isWorsePrivateMemSize(program, pPreviousKernel)) {
// For case when we have recompilation but generate 20x more
// private memory in global memory in recompiled kernel
return RetryType::NO_Retry_WorseStatelessPrivateMemSize;
} else if (pShader->IsRecompilationRequestForced() && !ctx->m_retryManager.IsLastTry()) {
return RetryType::YES_Retry;
} else if (isWorstThanPrv) {
return RetryType::NO_Retry_Pick_Prv;
} else if (!ctx->hasSpills(pOutput->m_scratchSpaceUsedBySpills, pOutput->m_numGRFTotal) ||
ctx->getModuleMetaData()->compOpt.OptDisable || ctx->m_retryManager.IsLastTry() ||
(!ctx->m_retryManager.kernelSkip.empty() &&
ctx->m_retryManager.kernelSkip.count(pFunc->getName().str()))) {
return RetryType::NO_Retry;
} else {
return RetryType::YES_Retry;
}
}
void GatherDataForDriver(OpenCLProgramContext *ctx, COpenCLKernel *pShader, CShaderProgram::UPtr pKernel,
Function *pFunc, MetaDataUtils *pMdUtils, SIMDMode simdMode) {
IGC_ASSERT_EXIT(ctx && pShader && pKernel && pFunc && pMdUtils);
CShaderProgram::UPtr pSelectedKernel;
switch (auto retryType = NeedsRetry(ctx, pShader, pKernel, pFunc, pMdUtils, simdMode)) {
case RetryType::NO_Retry_WorseStatelessPrivateMemSize:
case RetryType::NO_Retry_ExceedScratch:
case RetryType::NO_Retry_Pick_Prv: {
// In case retry compilation give worst generated kernel
// consider using the previous one do not retry on this
// kernel again
std::ostringstream reason("[RetryManager] Used previous version of the kernel, reason : ", std::ostringstream::ate);
switch (retryType) {
case RetryType::NO_Retry_WorseStatelessPrivateMemSize:
reason << "NO_Retry_WorseStatelessPrivateMemSize";
break;
case RetryType::NO_Retry_ExceedScratch:
reason << "NO_Retry_ExceedScratch";
break;
case RetryType::NO_Retry_Pick_Prv:
reason << "NO_Retry_Pick_Prv";
break;
default:
reason << "Unknown";
break;
}
ctx->EmitWarning(reason.str().c_str(), pFunc);
if (IGC_IS_FLAG_ENABLED(ShaderDumpEnable)) {
// Set mark on the version which we pick in shader dumps
IGC::Debug::DumpName dumpName =
IGC::Debug::DumpName(IGC::Debug::GetShaderOutputName()).Type(ctx->type).Hash(ctx->hash).StagedInfo(ctx);
std::string shaderName(pShader->entry->getName().str());
pShader->getShaderFileName(shaderName);
dumpName = dumpName.PostFix(shaderName);
if (dumpName.allow()) {
std::ostringstream FullPath(dumpName.str(), std::ostringstream::ate);
FullPath << "_previous_kernel_pick.txt";
std::ofstream OutF(FullPath.str(), std::ofstream::out);
if (OutF)
OutF.write(reason.str().c_str(), reason.str().length());
}
}
pSelectedKernel = CShaderProgram::UPtr(ctx->m_retryManager.GetPrevious(pKernel.get(), true));
}
case RetryType::NO_Retry: {
// Save the shader program to the state processor to be handled later
if (!pSelectedKernel) {
pSelectedKernel = std::move(pKernel);
}
}
// Common part for NO_Retry:
{
if (pSelectedKernel) {
COMPILER_SHADER_STATS_PRINT(pSelectedKernel->m_shaderStats, ShaderType::OPENCL_SHADER, ctx->hash,
pFunc->getName().str());
COMPILER_SHADER_STATS_SUM(ctx->m_sumShaderStats, pSelectedKernel->m_shaderStats, ShaderType::OPENCL_SHADER);
COMPILER_SHADER_STATS_DEL(pSelectedKernel->m_shaderStats);
ctx->m_programOutput.m_ShaderProgramList.push_back(std::move(pSelectedKernel));
}
break;
}
case RetryType::YES_Retry:
case RetryType::YES_ForceRecompilation: {
ctx->EmitWarning("[RetryManager] Start recompilation of the kernel", pFunc);
// Collect the current compilation for the next compare
ctx->m_retryManager.Collect(std::move(pKernel));
ctx->m_retryManager.kernelSet.insert(pShader->m_kernelInfo.m_kernelName);
break;
}
}
}
static bool verifyHasOOBScratch(OpenCLProgramContext *ctx, COpenCLKernel *simd8Shader, COpenCLKernel *simd16Shader,
COpenCLKernel *simd32Shader) {
auto verify = [ctx](CShader *shader) {
if (exceedMaxScratchUse(shader, ctx)) {
return true;
}
return false;
};
// Need to check if simd* shader is not nullptr and its vISA compile status,
// since it may be created without going through full vISA compilation and
// the spill size record may be invalid
bool result = false;
if (simd8Shader && !COpenCLKernel::IsVisaCompileStatusFailureForShader(simd8Shader))
result |= verify(simd8Shader);
else if (simd16Shader && !COpenCLKernel::IsVisaCompileStatusFailureForShader(simd16Shader))
result |= verify(simd16Shader);
else if (simd32Shader && !COpenCLKernel::IsVisaCompileStatusFailureForShader(simd32Shader))
result |= verify(simd32Shader);
return result;
}
static void CodeGen(OpenCLProgramContext *ctx, CShaderProgram::KernelShaderMap &shaders) {
COMPILER_TIME_START(ctx, TIME_CodeGen);
COMPILER_TIME_START(ctx, TIME_CG_Add_Passes);
IGCPassManager Passes(ctx, "CG");
AddLegalizationPasses(*ctx, Passes);
AddAnalysisPasses(*ctx, Passes);
if (ctx->m_enableFunctionPointer && (ctx->m_enableSimdVariantCompilation) &&
ctx->getModuleMetaData()->csInfo.forcedSIMDSize == 0) {
// In order to support compiling multiple SIMD modes for function pointer calls,
// we require a separate pass manager per SIMD mode, due to interdependencies across
// function compilations.
SIMDMode pass1Mode;
SIMDMode pass2Mode;
if (ctx->platform.getMinDispatchMode() == SIMDMode::SIMD16) {
pass1Mode = SIMDMode::SIMD32;
pass2Mode = SIMDMode::SIMD16;
} else {
pass1Mode = SIMDMode::SIMD16;
pass2Mode = SIMDMode::SIMD8;
}
// Run first pass
AddCodeGenPasses(*ctx, shaders, Passes, pass1Mode, false);
Passes.run(*(ctx->getModule()));
// Create and run second pass
IGCPassManager Passes2(ctx, "CG2");
// Add required immutable passes
Passes2.add(new MetaDataUtilsWrapper(ctx->getMetaDataUtils(), ctx->getModuleMetaData()));
Passes2.add(new CodeGenContextWrapper(ctx));
Passes2.add(createGenXFunctionGroupAnalysisPass());
AddCodeGenPasses(*ctx, shaders, Passes2, pass2Mode, false);
COMPILER_TIME_END(ctx, TIME_CG_Add_Passes);
Passes2.run(*(ctx->getModule()));
COMPILER_TIME_END(ctx, TIME_CodeGen);
DumpLLVMIR(ctx, "codegen");
return;
}
if (ctx->platform.getMinDispatchMode() == SIMDMode::SIMD16) {
bool abortOnSpills = IGC_GET_FLAG_VALUE(AllowSIMD16DropForXE2) && ctx->platform.isCoreXE2() &&
(ctx->getModuleMetaData()->csInfo.forcedSIMDSize != 32);
abortOnSpills |= IGC_GET_FLAG_VALUE(AllowSIMD16DropForXE3) && ctx->platform.isCoreXE3() &&
(ctx->getModuleMetaData()->csInfo.forcedSIMDSize != 32);
AddCodeGenPasses(*ctx, shaders, Passes, SIMDMode::SIMD32, abortOnSpills);
AddCodeGenPasses(*ctx, shaders, Passes, SIMDMode::SIMD16, false);
ctx->SetSIMDInfo(SIMD_SKIP_HW, SIMDMode::SIMD8, ShaderDispatchMode::NOT_APPLICABLE);
} else {
// The order in which we call AddCodeGenPasses matters, please to not change order
AddCodeGenPasses(*ctx, shaders, Passes, SIMDMode::SIMD32, (ctx->getModuleMetaData()->csInfo.forcedSIMDSize != 32));
AddCodeGenPasses(*ctx, shaders, Passes, SIMDMode::SIMD16, (ctx->getModuleMetaData()->csInfo.forcedSIMDSize != 16));
AddCodeGenPasses(*ctx, shaders, Passes, SIMDMode::SIMD8, false);
}
Passes.add(new DebugInfoPass(shaders));
COMPILER_TIME_END(ctx, TIME_CG_Add_Passes);
Passes.run(*(ctx->getModule()));
COMPILER_TIME_END(ctx, TIME_CodeGen);
DumpLLVMIR(ctx, "codegen");
}
void CodeGen(OpenCLProgramContext *ctx) {
#ifndef DX_ONLY_IGC
#ifndef VK_ONLY_IGC
// Do program-wide code generation.
// Currently, this just creates the program-scope patch stream.
if (ctx->m_retryManager.IsFirstTry()) {
CollectProgramInfo(ctx);
}
MetaDataUtils *pMdUtils = ctx->getMetaDataUtils();
// Clear spill parameters of retry manager in the very begining of code gen
ctx->m_retryManager.ClearSpillParams();
// early retry kernel set should always be empty before compilation
ctx->m_retryManager.earlyRetryKernelSet.clear();
CShaderProgram::KernelShaderMap shaders;
CodeGen(ctx, shaders);
if (ctx->m_programOutput.m_pSystemThreadKernelOutput == nullptr) {
const auto options = ctx->m_InternalOptions;
if (options.IncludeSIPCSR || options.IncludeSIPKernelDebug || options.IncludeSIPKernelDebugWithLocalMemory ||
options.KernelDebugEnable) {
DWORD systemThreadMode = 0;
if (options.IncludeSIPCSR) {
systemThreadMode |= USC::SYSTEM_THREAD_MODE_CSR;
}
if (options.KernelDebugEnable || options.IncludeSIPKernelDebug) {
systemThreadMode |= USC::SYSTEM_THREAD_MODE_DEBUG;
}
if (options.IncludeSIPKernelDebugWithLocalMemory) {
systemThreadMode |= USC::SYSTEM_THREAD_MODE_DEBUG_LOCAL;
}
bool success = SIP::CSystemThread::CreateSystemThreadKernel(
ctx->platform, (USC::SYSTEM_THREAD_MODE)systemThreadMode, ctx->m_programOutput.m_pSystemThreadKernelOutput);
if (!success) {
ctx->EmitError("System thread kernel could not be created!", nullptr);
}
}
}
// Clear the retry set and collect kernels for retry in the loop below.
ctx->m_retryManager.kernelSet.clear();
// If kernel needs retry, its shaderProgram should be deleted
SmallVector<CShaderProgram *, 8> toBeDeleted;
// gather data to send back to the driver
for (const auto &k : shaders) {
Function *pFunc = k.first;
CShaderProgram::UPtr pKernel = CShaderProgram::UPtr(static_cast<CShaderProgram *>(k.second));
COpenCLKernel *simd8Shader = static_cast<COpenCLKernel *>(pKernel->GetShader(SIMDMode::SIMD8));
COpenCLKernel *simd16Shader = static_cast<COpenCLKernel *>(pKernel->GetShader(SIMDMode::SIMD16));
COpenCLKernel *simd32Shader = static_cast<COpenCLKernel *>(pKernel->GetShader(SIMDMode::SIMD32));
if ((ctx->m_enableSimdVariantCompilation) && (ctx->getModuleMetaData()->csInfo.forcedSIMDSize == 0)) {
// Gather the kernel binary for each compiled kernel
if (COpenCLKernel::IsValidShader(simd32Shader))
GatherDataForDriver(ctx, simd32Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD32);
if (COpenCLKernel::IsValidShader(simd16Shader))
GatherDataForDriver(ctx, simd16Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD16);
if (COpenCLKernel::IsValidShader(simd8Shader))
GatherDataForDriver(ctx, simd8Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD8);
// TODO: check if we need to invoke verifyOOBScratch(...) here
} else if (ctx->m_InternalOptions.EmitVisaOnly) {
if (COpenCLKernel::IsVisaCompiledSuccessfullyForShader(simd32Shader))
GatherDataForDriver(ctx, simd32Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD32);
else if (COpenCLKernel::IsVisaCompiledSuccessfullyForShader(simd16Shader))
GatherDataForDriver(ctx, simd16Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD16);
else if (COpenCLKernel::IsVisaCompiledSuccessfullyForShader(simd8Shader))
GatherDataForDriver(ctx, simd8Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD8);
} else if (ctx->m_retryManager.earlyRetryKernelSet.count(pFunc->getName().str())) {
ctx->EmitWarning("[RetryManager] Start recompilation of the kernel", pFunc);
ctx->m_retryManager.kernelSet.insert(pFunc->getName().str());
} else {
// Gather the kernel binary only for 1 SIMD mode of the kernel
if (COpenCLKernel::IsValidShader(simd32Shader))
GatherDataForDriver(ctx, simd32Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD32);
else if (COpenCLKernel::IsValidShader(simd16Shader))
GatherDataForDriver(ctx, simd16Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD16);
else if (COpenCLKernel::IsValidShader(simd8Shader))
GatherDataForDriver(ctx, simd8Shader, std::move(pKernel), pFunc, pMdUtils, SIMDMode::SIMD8);
else if (verifyHasOOBScratch(ctx, simd8Shader, simd16Shader, simd32Shader)) {
// Get the simd* shader with the OOB access.
COpenCLKernel *shader = exceedMaxScratchUse(simd32Shader, ctx) ? simd32Shader
: exceedMaxScratchUse(simd16Shader, ctx) ? simd16Shader
: exceedMaxScratchUse(simd8Shader, ctx) ? simd8Shader
: nullptr;
IGC_ASSERT(shader);
if (!ctx->m_retryManager.IsLastTry()) {
// If this is not the last try, force retry on this kernel to potentially avoid
// OOB access on the next try by reducing spill size and thus SS usage.
ctx->m_retryManager.kernelSet.insert(shader->entry->getName().str());
} else {
if (IGC_GET_FLAG_VALUE(ForceSIMDRPELimit) != 0) {
IGC_SET_FLAG_VALUE(ForceSIMDRPELimit, 0);
ctx->m_retryManager.kernelSet.insert(shader->entry->getName().str());
ctx->EmitWarning("we couldn't compile without exceeding max permitted PTSS, drop SIMD \n", nullptr);
} else {
std::string errorMsg = "total scratch space exceeds HW "
"supported limit for kernel " +
shader->entry->getName().str() + ": " + std::to_string(getScratchUse(shader, ctx)) +
" bytes (max permitted PTSS " +
std::to_string(shader->ProgramOutput()->m_scratchSpaceSizeLimit) + " bytes)";
ctx->EmitError(errorMsg.c_str(), nullptr);
}
}
}
}
}
// The skip set to avoid retry is not needed. Clear it and collect a new set
// during retry compilation.
ctx->m_retryManager.kernelSkip.clear();
#endif // ifndef VK_ONLY_IGC
#endif // ifndef DX_ONLY_IGC
}
bool COpenCLKernel::hasReadWriteImage(llvm::Function &F) {
if (!isEntryFunc(m_pMdUtils, &F)) {
// Ignore read/write flags for subroutines for now.
// TODO: get access types for subroutines without using kernel args
return false;
}
KernelArgs kernelArgs(F, m_DL, m_pMdUtils, m_ModuleMetadata, getGRFSize(), KernelArgsOrder::InputType::INDEPENDENT);
for (const auto &KA : kernelArgs) {
// RenderScript annotation sets "read_write" qualifier
// for any applicable kernel argument, not only for kernel arguments
// that are images, so we should check if kernel argument is an image.
if (KA.getAccessQual() == KernelArg::AccessQual::READ_WRITE && KA.getArgType() >= KernelArg::ArgType::IMAGE_1D &&
KA.getArgType() <= KernelArg::ArgType::BINDLESS_IMAGE_CUBE_DEPTH_ARRAY) {
return true;
}
}
return false;
}
bool COpenCLKernel::CompileSIMDSize(SIMDMode simdMode, EmitPass &EP, llvm::Function &F) {
if (!CompileSIMDSizeInCommon(simdMode))
return false;
// Skip compiling the simd size if -emit-visa-only and there's already
// one visa compiled for any other simd size.
if (m_Context->m_InternalOptions.EmitVisaOnly) {
for (auto mode : {SIMDMode::SIMD8, SIMDMode::SIMD16, SIMDMode::SIMD32}) {
COpenCLKernel *shader = static_cast<COpenCLKernel *>(m_parent->GetShader(mode));
if (COpenCLKernel::IsVisaCompiledSuccessfullyForShader(shader))
return false;
}
}
if (!m_Context->m_retryManager.IsFirstTry()) {
m_Context->ClearSIMDInfo(simdMode, ShaderDispatchMode::NOT_APPLICABLE);
m_Context->SetSIMDInfo(SIMD_RETRY, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
}
// Currently the FunctionMetaData is being looked up solely in order to get the hasSyncRTCalls
// If we would need to get some non-raytracing related field out of the FunctionMetaData,
// then we can move the lookup out of the #if and just leave the bool hasSyncRTCalls inside.
auto &FuncMap = m_Context->getModuleMetaData()->FuncMD;
// we want to check the setting for the associated kernel
auto FuncIter = FuncMap.find(entry);
if (FuncIter == FuncMap.end()) { // wasn't able to find the meta data for the passed in llvm::Function!
// All of the kernels should have an entry in the map.
IGC_ASSERT(0);
return false;
}
const FunctionMetaData &funcMD = FuncIter->second;
bool hasSyncRTCalls = funcMD.hasSyncRTCalls; // if the function/kernel has sync raytracing calls
// If forced SIMD Mode (by driver or regkey), then:
// 1. Compile only that SIMD mode and nothing else
// 2. Compile that SIMD mode even if it is not profitable, i.e. even if compileThisSIMD() returns false for it.
// So, don't bother checking profitability for it
unsigned char forcedSIMDSize = m_Context->getModuleMetaData()->csInfo.forcedSIMDSize;
if (forcedSIMDSize != 0) {
// Check if forced SIMD width is smaller than required by used platform. Emit error when true.
if (m_Context->platform.getMinDispatchMode() == SIMDMode::SIMD16 && forcedSIMDSize < 16) {
m_Context->EmitError((std::string("SIMD size of ") + std::to_string(forcedSIMDSize) +
std::string(" has been forced when SIMD size of at least 16") +
std::string(" is required on this platform"))
.c_str(),
&F);
return false;
}
// Entered here means driver has requested a specific SIMD mode, which was forced in the regkey ForceOCLSIMDWidth.
// We return the condition can we compile the given forcedSIMDSize with this simdMode?
return (
// These statements are basically equivalent to (simdMode == forcedSIMDSize)
(simdMode == SIMDMode::SIMD8 && m_Context->getModuleMetaData()->csInfo.forcedSIMDSize == 8) ||
(simdMode == SIMDMode::SIMD16 && m_Context->getModuleMetaData()->csInfo.forcedSIMDSize == 16) ||
// if we want to compile SIMD32, we need to be lacking any raytracing calls; raytracing doesn't support SIMD16
(simdMode == SIMDMode::SIMD32 && m_Context->getModuleMetaData()->csInfo.forcedSIMDSize == 32 &&
!hasSyncRTCalls));
}
SIMDStatus simdStatus = SIMDStatus::SIMD_FUNC_FAIL;
if (m_Context->platform.getMinDispatchMode() == SIMDMode::SIMD16) {
simdStatus = checkSIMDCompileCondsForMin16(simdMode, EP, F, hasSyncRTCalls);
} else {
simdStatus = checkSIMDCompileConds(simdMode, EP, F, hasSyncRTCalls);
}
// Func and Perf checks pass, compile this SIMD
if (simdStatus == SIMDStatus::SIMD_PASS) {
return true;
}
// Report an error if intel_reqd_sub_group_size cannot be satisfied
else {
MetaDataUtils *pMdUtils = EP.getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
CodeGenContext *ctx = GetContext();
auto reqdSubGroupSize = getReqdSubGroupSize(F, pMdUtils);
if (reqdSubGroupSize == numLanes(simdMode)) {
ctx->EmitError((std::string("Cannot compile a kernel in the SIMD mode specified by intel_reqd_sub_group_size(") +
std::to_string(reqdSubGroupSize) + std::string(")"))
.c_str(),
&F);
return false;
}
}
// Functional failure, skip compiling this SIMD
if (simdStatus == SIMDStatus::SIMD_FUNC_FAIL)
return false;
IGC_ASSERT(simdStatus == SIMDStatus::SIMD_PERF_FAIL);
return simdStatus == SIMDStatus::SIMD_PASS;
}
SIMDStatus COpenCLKernel::checkSIMDCompileCondsForMin16(SIMDMode simdMode, EmitPass &EP, llvm::Function &F,
bool hasSyncRTCalls) {
if (simdMode == SIMDMode::SIMD8) {
return SIMDStatus::SIMD_FUNC_FAIL;
}
// Next we check if there is a required sub group size specified
CodeGenContext *pCtx = GetContext();
CShader *simd16Program = m_parent->GetShader(SIMDMode::SIMD16);
CShader *simd32Program = m_parent->GetShader(SIMDMode::SIMD32);
bool compileFunctionVariants =
pCtx->m_enableSimdVariantCompilation && (m_FGA && IGC::isIntelSymbolTableVoidProgram(m_FGA->getGroupHead(&F)));
if ((simd16Program && simd16Program->ProgramOutput()->m_programSize > 0) ||
(simd32Program && simd32Program->ProgramOutput()->m_programSize > 0)) {
bool canCompileMultipleSIMD = compileFunctionVariants;
if (!(canCompileMultipleSIMD && (pCtx->getModuleMetaData()->csInfo.forcedSIMDSize == 0)))
return SIMDStatus::SIMD_FUNC_FAIL;
}
MetaDataUtils *pMdUtils = EP.getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(&F);
uint32_t requiredSimdSize = getReqdSubGroupSize(F, pMdUtils);
// there is a requirement for specific compilation size, we can't abort on simd32
if (requiredSimdSize != 0)
EP.m_canAbortOnSpill = false;
bool hasSubGroupForce = hasSubGroupIntrinsicPVC(F);
uint32_t maxPressure = getMaxPressure(F, pMdUtils);
auto FG = m_FGA ? m_FGA->getGroup(&F) : nullptr;
bool hasStackCall = FG && FG->hasStackCall();
bool isIndirectGroup = FG && m_FGA->isIndirectCallGroup(FG);
bool hasSubroutine = FG && !FG->isSingleIgnoringStackOverflowDetection() && !hasStackCall && !isIndirectGroup;
bool forceLowestSIMDForStackCalls =
IGC_IS_FLAG_ENABLED(ForceLowestSIMDForStackCalls) && (hasStackCall || isIndirectGroup);
if (requiredSimdSize == 0) {
if (maxPressure >= IGC_GET_FLAG_VALUE(ForceSIMDRPELimit) && simdMode != SIMDMode::SIMD16) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
funcInfoMD->getSubGroupSize()->setSIMDSize(16);
return SIMDStatus::SIMD_FUNC_FAIL;
}
if (hasSubroutine && simdMode != SIMDMode::SIMD16) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
if (forceLowestSIMDForStackCalls && simdMode != SIMDMode::SIMD16) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
}
bool optDisable = this->GetContext()->getModuleMetaData()->compOpt.OptDisable;
if (optDisable && requiredSimdSize == 0) // if simd size not requested in MD
{
if (simdMode == SIMDMode::SIMD32) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
// simd16 forced when all optimizations disabled due to compile time optimization
pCtx->getModuleMetaData()->csInfo.forcedSIMDSize = (unsigned char)numLanes(SIMDMode::SIMD16);
}
if (simdMode == SIMDMode::SIMD32 && hasSyncRTCalls) {
return SIMDStatus::SIMD_FUNC_FAIL;
} else if (simdMode == SIMDMode::SIMD16 && hasSyncRTCalls) {
return SIMDStatus::SIMD_PASS;
}
if (requiredSimdSize) {
if (requiredSimdSize != numLanes(simdMode)) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
} else {
// Checking registry/flag here. Note that if ForceOCLSIMDWidth is set to
// 8/16/32, only corresponding EnableOCLSIMD<N> is set to true. Therefore,
// if any of EnableOCLSIMD<N> is disabled, ForceOCLSIMDWidth must set to
// a value other than <N> if set. See igc_regkeys.cpp for detail.
if ((simdMode == SIMDMode::SIMD32 && IGC_IS_FLAG_DISABLED(EnableOCLSIMD32)) ||
(simdMode == SIMDMode::SIMD16 && IGC_IS_FLAG_DISABLED(EnableOCLSIMD16))) {
return SIMDStatus::SIMD_FUNC_FAIL;
}
// Check if we force code generation for the current SIMD size.
// Note that for SIMD8, we always force it!
// ATTN: This check is redundant!
if (numLanes(simdMode) == pCtx->getModuleMetaData()->csInfo.forcedSIMDSize) {
return SIMDStatus::SIMD_PASS;
}
if (simdMode == SIMDMode::SIMD16 && (!pCtx->platform.isCoreXE2() && !pCtx->platform.isCoreXE3()) &&
!hasSubGroupForce && !forceLowestSIMDForStackCalls && !hasSubroutine) {
pCtx->SetSIMDInfo(SIMD_SKIP_PERF, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
if (simdMode == SIMDMode::SIMD32 && hasSubGroupForce) {
pCtx->SetSIMDInfo(SIMD_SKIP_PERF, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
}
return SIMDStatus::SIMD_PASS;
}
int COpenCLKernel::getAnnotatedNumThreads() { return m_annotatedNumThreads; }
bool COpenCLKernel::IsRegularGRFRequested() { return m_regularGRFRequested; }
bool COpenCLKernel::IsLargeGRFRequested() { return m_largeGRFRequested; }
SIMDStatus COpenCLKernel::checkSIMDCompileConds(SIMDMode simdMode, EmitPass &EP, llvm::Function &F,
bool hasSyncRTCalls) {
CShader *simd8Program = m_parent->GetShader(SIMDMode::SIMD8);
CShader *simd16Program = m_parent->GetShader(SIMDMode::SIMD16);
CShader *simd32Program = m_parent->GetShader(SIMDMode::SIMD32);
CodeGenContext *pCtx = GetContext();
bool compileFunctionVariants =
pCtx->m_enableSimdVariantCompilation && (m_FGA && IGC::isIntelSymbolTableVoidProgram(m_FGA->getGroupHead(&F)));
// Here we see if we have compiled a size for this shader already
if ((simd8Program && simd8Program->ProgramOutput()->m_programSize > 0) ||
(simd16Program && simd16Program->ProgramOutput()->m_programSize > 0) ||
(simd32Program && simd32Program->ProgramOutput()->m_programSize > 0)) {
bool canCompileMultipleSIMD = compileFunctionVariants;
if (!(canCompileMultipleSIMD && (pCtx->getModuleMetaData()->csInfo.forcedSIMDSize == 0)))
return SIMDStatus::SIMD_FUNC_FAIL;
}
// Next we check if there is a required sub group size specified
MetaDataUtils *pMdUtils = EP.getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
ModuleMetaData *modMD = pCtx->getModuleMetaData();
FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(&F);
uint32_t simd_size = getReqdSubGroupSize(F, pMdUtils);
uint32_t maxPressure = getMaxPressure(F, pMdUtils);
// For simd variant functions, detect which SIMD sizes are needed
if (compileFunctionVariants && F.hasFnAttribute("variant-function-def")) {
bool canCompile = true;
if (simdMode == SIMDMode::SIMD16)
canCompile = F.hasFnAttribute("CompileSIMD16");
else if (simdMode == SIMDMode::SIMD8)
canCompile = F.hasFnAttribute("CompileSIMD8");
if (!canCompile) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
}
auto FG = m_FGA ? m_FGA->getGroup(&F) : nullptr;
bool hasStackCall = FG && FG->hasStackCall();
bool isIndirectGroup = FG && m_FGA->isIndirectCallGroup(FG);
bool hasSubroutine = FG && !FG->isSingle() && !hasStackCall && !isIndirectGroup;
// Library compilation size is forced to a specific SIMD size, don't change it
bool forceLibSize = pCtx->getModuleMetaData()->compOpt.IsLibraryCompilation &&
pCtx->getModuleMetaData()->compOpt.LibraryCompileSIMDSize != 0;
// If stack calls are present, disable simd32 in order to do CallWA in visa
if (!forceLibSize && pCtx->platform.requireCallWA() && simdMode == SIMDMode::SIMD32) {
bool hasNestedCall = FG && FG->hasNestedCall();
bool hasIndirectCall = FG && FG->hasIndirectCall();
if (hasNestedCall || hasIndirectCall || isIndirectGroup) {
// Disable EU fusion if SIMD32 is requested
if (getReqdSubGroupSize(F, pMdUtils) == numLanes(SIMDMode::SIMD32)) {
pCtx->getModuleMetaData()->compOpt.DisableEUFusion = true;
if (FG->getHead() == &F) {
pCtx->EmitWarning(std::string("EU fusion is disabled, it does not work on the current platform if SIMD32 "
"mode specified by intel_reqd_sub_group_size(32)")
.c_str(),
&F);
}
} else {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
}
}
if (simd_size == 0) {
// Default to lowest SIMD mode for stack calls/indirect calls
if (IGC_IS_FLAG_ENABLED(ForceLowestSIMDForStackCalls) && (hasStackCall || isIndirectGroup) &&
simdMode != SIMDMode::SIMD8) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
if (maxPressure >= IGC_GET_FLAG_VALUE(ForceSIMDRPELimit) && simdMode != SIMDMode::SIMD8) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
funcInfoMD->getSubGroupSize()->setSIMDSize(8);
return SIMDStatus::SIMD_FUNC_FAIL;
}
// Just subroutines and subgroup size is not set, default to SIMD8
if (hasSubroutine && simdMode != SIMDMode::SIMD8) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
}
uint32_t groupSize = 0;
if (modMD->csInfo.maxWorkGroupSize) {
groupSize = modMD->csInfo.maxWorkGroupSize;
} else {
groupSize = IGCMetaDataHelper::getThreadGroupSize(*pMdUtils, &F);
}
if (groupSize == 0) {
groupSize = IGCMetaDataHelper::getThreadGroupSizeHint(*pMdUtils, &F);
}
if (simd_size) {
switch (simd_size) {
// Apparently the only possible simdModes here are SIMD8, SIMD16, SIMD32
case 8:
if (simdMode != SIMDMode::SIMD8) {
pCtx->SetSIMDInfo(SIMD_SKIP_THGRPSIZE, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
break;
case 16:
if (simdMode != SIMDMode::SIMD16) {
pCtx->SetSIMDInfo(SIMD_SKIP_THGRPSIZE, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
EP.m_canAbortOnSpill = false;
break;
case 32:
if (simdMode != SIMDMode::SIMD32) {
pCtx->SetSIMDInfo(SIMD_SKIP_THGRPSIZE, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
} else {
if (hasSyncRTCalls) {
return SIMDStatus::SIMD_FUNC_FAIL; // SIMD32 unsupported with raytracing calls
} else { // simdMode == SIMDMode::SIMD32 && !hasSyncRTCalls
EP.m_canAbortOnSpill = false;
}
}
break;
default:
IGC_ASSERT_MESSAGE(0, "Unsupported required sub group size");
break;
}
} else {
// Checking registry/flag here. Note that if ForceOCLSIMDWidth is set to
// 8/16/32, only corresponding EnableOCLSIMD<N> is set to true. Therefore,
// if any of EnableOCLSIMD<N> is disabled, ForceOCLSIMDWidth must set to
// a value other than <N> if set. See igc_regkeys.cpp for detail.
if ((simdMode == SIMDMode::SIMD32 && IGC_IS_FLAG_DISABLED(EnableOCLSIMD32)) ||
(simdMode == SIMDMode::SIMD16 && IGC_IS_FLAG_DISABLED(EnableOCLSIMD16))) {
return SIMDStatus::SIMD_FUNC_FAIL;
}
// Check if we force code generation for the current SIMD size.
// Note that for SIMD8, we always force it!
// ATTN: This check is redundant!
if (numLanes(simdMode) == pCtx->getModuleMetaData()->csInfo.forcedSIMDSize || simdMode == SIMDMode::SIMD8) {
return SIMDStatus::SIMD_PASS;
}
if (hasSyncRTCalls) {
// If we get all the way to here, then set it to the preferred SIMD size for Ray Tracing.
SIMDMode mode = SIMDMode::UNKNOWN;
mode = m_Context->platform.getPreferredRayTracingSIMDSize();
return (mode == simdMode) ? SIMDStatus::SIMD_PASS : SIMDStatus::SIMD_FUNC_FAIL;
}
if (groupSize != 0 && groupSize <= 16) {
if (simdMode == SIMDMode::SIMD32 || (groupSize <= 8 && simdMode != SIMDMode::SIMD8)) {
pCtx->SetSIMDInfo(SIMD_SKIP_THGRPSIZE, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_FUNC_FAIL;
}
}
// Here we check profitablility, etc.
if (simdMode == SIMDMode::SIMD16) {
bool optDisable = this->GetContext()->getModuleMetaData()->compOpt.OptDisable;
if (optDisable) {
return SIMDStatus::SIMD_FUNC_FAIL;
}
// bail out of SIMD16 if it's not profitable.
Simd32ProfitabilityAnalysis &PA = EP.getAnalysis<Simd32ProfitabilityAnalysis>();
if (!PA.isSimd16Profitable()) {
pCtx->SetSIMDInfo(SIMD_SKIP_PERF, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_PERF_FAIL;
}
}
if (simdMode == SIMDMode::SIMD32) {
bool optDisable = this->GetContext()->getModuleMetaData()->compOpt.OptDisable;
if (optDisable) {
return SIMDStatus::SIMD_FUNC_FAIL;
}
// bail out of SIMD32 if it's not profitable.
Simd32ProfitabilityAnalysis &PA = EP.getAnalysis<Simd32ProfitabilityAnalysis>();
if (!PA.isSimd32Profitable()) {
pCtx->SetSIMDInfo(SIMD_SKIP_HW, simdMode, ShaderDispatchMode::NOT_APPLICABLE);
return SIMDStatus::SIMD_PERF_FAIL;
}
}
}
return SIMDStatus::SIMD_PASS;
}
} // namespace IGC
|