1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "CISACodeGen/helper.h"
#include "common/IGCIRBuilder.h"
#include "Compiler/IGCPassSupport.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "Probe/Assertion.h"
#include "AddRequiredMemoryFences.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
namespace IGC {
////////////////////////////////////////////////////////////////////////////////
// @brief This pass inserts SLM fences after the last SLM store or SLM atomic
// instruction(s) in the function.
class AddRequiredMemoryFences : public llvm::FunctionPass {
public:
static char ID;
AddRequiredMemoryFences();
void getAnalysisUsage(llvm::AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.addPreserved<PostDominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
}
StringRef getPassName() const { return "AddRequiredMemoryFences"; }
bool runOnFunction(Function &F);
};
char AddRequiredMemoryFences::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG "igc-add-required-memory-fences"
#define PASS_DESCRIPTION "Add memory fences required by the HW memory model"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(AddRequiredMemoryFences, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
IGC_INITIALIZE_PASS_END(AddRequiredMemoryFences, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
#undef PASS_ANALYSIS
#undef PASS_CFG_ONLY
#undef PASS_DESCRIPTION
#undef PASS_FLAG
////////////////////////////////////////////////////////////////////////////////
AddRequiredMemoryFences::AddRequiredMemoryFences() : FunctionPass(ID) {
initializeAddRequiredMemoryFencesPass(*PassRegistry::getPassRegistry());
}
////////////////////////////////////////////////////////////////////////////////
FunctionPass *createAddRequiredMemoryFencesPass() { return new AddRequiredMemoryFences(); }
////////////////////////////////////////////////////////////////////////////////
inline bool IsSlmFence(Instruction *inst) {
if (GenIntrinsicInst *intr = dyn_cast<GenIntrinsicInst>(inst)) {
const GenISAIntrinsic::ID id = intr->getIntrinsicID();
if (id == GenISAIntrinsic::GenISA_LSCFence && LSC_SFID::LSC_SLM == getImmValueEnum<LSC_SFID>(intr->getOperand(0))) {
return true;
} else if (id == GenISAIntrinsic::GenISA_memoryfence && false == getImmValueBool(intr->getOperand(5))) {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
inline bool IsSlmStoreOrAtomic(Instruction *inst) {
Instruction *store = nullptr;
if (GenIntrinsicInst *intr = dyn_cast<GenIntrinsicInst>(inst)) {
const GenISAIntrinsic::ID id = intr->getIntrinsicID();
if (id == GenISAIntrinsic::GenISA_LSCStore || id == GenISAIntrinsic::GenISA_LSCStoreBlock ||
id == GenISAIntrinsic::GenISA_simdBlockWrite) {
store = intr;
}
// This pass assumes that the input shader is optimized, only
// instructions with no uses are considered as needing the fence.
else if (intr->getNumUses() == 0 && IsStatelessMemAtomicIntrinsic(*intr, id)) {
store = intr;
}
} else {
store = dyn_cast<StoreInst>(inst);
}
if (store) {
Value *ptr = GetBufferOperand(store);
IGC_ASSERT(ptr && ptr->getType()->isPointerTy());
if (ptr && ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_LOCAL) {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
bool AddRequiredMemoryFences::runOnFunction(Function &F) {
PostDominatorTree *const PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
LoopInfo *const LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
bool modified = false;
// The high-level algorithm is:
// for each function exit:
// - walk the post-dominator tree in the depth-first order, for each basic
// block check instructions, start from the last instruction:
// - break if a basic block contains an SLM fence
// - or break is a basic block contains an SLM store or SLM atomic
// instruction, remember the store/atomic instruction
// - find the common post-dominator block for all unfenced SLM store
// or atomic instructions
// - if the common post-dominator block is in a loop find the outermost
// loop, and find the common post-dominator block for all loop exits
// - insert an SLM fence at the end of the common post-dominator block
for (BasicBlock *rootBB : PDT->roots()) {
if (isa<UnreachableInst>(rootBB->getTerminator())) {
continue;
}
SmallPtrSet<BasicBlock *, 16> seen{rootBB};
SmallVector<BasicBlock *, 16> worklist{rootBB};
SmallVector<BasicBlock *, 8> unfenced;
while (!worklist.empty()) {
bool hasUnfencedSlmStore = false;
bool hasSlmFence = false;
BasicBlock *BB = worklist.back();
worklist.pop_back();
seen.insert(BB);
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (IsSlmFence(&(*II))) {
hasSlmFence = true;
break;
} else if (IsSlmStoreOrAtomic(&(*II))) {
hasUnfencedSlmStore = true;
break;
}
}
if (hasUnfencedSlmStore) {
unfenced.push_back(BB);
} else if (!hasSlmFence) {
for (BasicBlock *pred : predecessors(BB)) {
if (seen.count(pred) == 0) {
worklist.push_back(pred);
}
}
}
}
if (!unfenced.empty()) {
// Lambda finds a common post-dominator block for a set of basic blocks.
auto FindPostDominator = [&PDT](const auto &blocks) {
auto it = blocks.begin();
BasicBlock *postDomBB = *it++;
for (; it != blocks.end() && postDomBB != nullptr; ++it) {
postDomBB = PDT->findNearestCommonDominator(postDomBB, *it);
}
return postDomBB;
};
BasicBlock *postDomBB = FindPostDominator(unfenced);
if (postDomBB != nullptr) {
Loop *L = LI->getLoopFor(postDomBB);
if (L) {
while (!L->isOutermost()) {
L = L->getParentLoop();
}
SmallVector<BasicBlock *, 4> exitBlocks;
L->getUniqueExitBlocks(exitBlocks);
postDomBB = FindPostDominator(exitBlocks);
}
}
if (postDomBB == nullptr) {
// Common post-dominator may not exist if kernel has the unreachable
// instruction.
postDomBB = rootBB;
}
IGC_ASSERT(postDomBB);
IGCIRBuilder<> IRB(postDomBB->getTerminator());
Function *fenceFuncPtr = GenISAIntrinsic::getDeclaration(F.getParent(), GenISAIntrinsic::GenISA_LSCFence);
Value *args[] = {IRB.getInt32(LSC_SLM), IRB.getInt32(LSC_SCOPE_GROUP), IRB.getInt32(LSC_FENCE_OP_NONE)};
IRB.CreateCall(fenceFuncPtr, args);
modified = true;
}
}
return modified;
}
} // namespace IGC
|