1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021-2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMWarningsPush.hpp"
#include "llvm/PassInfo.h"
#include "llvm/PassRegistry.h"
#include "common/LLVMWarningsPop.hpp"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "IGC/Compiler/CodeGenPublic.h"
#include "common/IGCIRBuilder.h"
#include "Probe/Assertion.h"
#include "Compiler/CISACodeGen/helper.h"
#include "Compiler/IGCPassSupport.h"
#include "BarrierControlFlowOptimization.hpp"
#include "visa_igc_common_header.h"
#include <llvm/Transforms/Utils/BasicBlockUtils.h>
using namespace llvm;
namespace IGC {
/////////////////////////////////////////////////////////////////////////////////////////////
/// @brief Optimize LSC fence (UGM/SLM/TGM) and barrier sync control flow
/// proposed optimization:
/// sync() - all threads in group - assure all prior reads\writes are retired
/// if (thread0) - pick the owning thread
/// flush() - simd1 (per-thread-group)
/// sync() - all threads in group - assure flush op is completed before releasing.
class BarrierControlFlowOptimization : public llvm::FunctionPass {
public:
static char ID; ///< ID used by the llvm PassManager (the value is not important)
BarrierControlFlowOptimization();
////////////////////////////////////////////////////////////////////////
virtual bool runOnFunction(llvm::Function &F);
////////////////////////////////////////////////////////////////////////
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const;
////////////////////////////////////////////////////////////////////////
private:
////////////////////////////////////////////////////////////////////////
bool ProcessFunction();
////////////////////////////////////////////////////////////////////////
void InvalidateMembers();
////////////////////////////////////////////////////////////////////////
void CollectFenceBarrierInstructions();
////////////////////////////////////////////////////////////////////////
bool OptimizeBarrierControlFlow();
////////////////////////////////////////////////////////////////////////
void EraseOldInstructions();
////////////////////////////////////////////////////////////////////////
static bool IsThreadBarrierOperation(const llvm::Instruction *pInst);
////////////////////////////////////////////////////////////////////////
// static bool IsFenceOperation(const llvm::Instruction* pInst);
std::vector<llvm::Instruction *> m_LscMemoryFences;
std::vector<llvm::Instruction *> m_ThreadGroupBarriers;
std::vector<llvm::Instruction *> m_OrderedFenceBarrierInstructions;
std::vector<std::vector<llvm::Instruction *>> m_OrderedFenceBarrierInstructionsBlock;
llvm::Function *m_CurrentFunction = nullptr;
};
static inline bool IsLscFenceOperation(const Instruction *pInst);
static inline LSC_SFID GetLscMem(const Instruction *pInst);
static inline LSC_SCOPE GetLscScope(const Instruction *pInst);
static inline LSC_FENCE_OP GetLscFenceOp(const Instruction *pInst);
char BarrierControlFlowOptimization::ID = 0;
////////////////////////////////////////////////////////////////////////////
BarrierControlFlowOptimization::BarrierControlFlowOptimization() : llvm::FunctionPass(ID) {
initializeBarrierControlFlowOptimizationPass(*PassRegistry::getPassRegistry());
}
////////////////////////////////////////////////////////////////////////
bool BarrierControlFlowOptimization::runOnFunction(llvm::Function &F) {
m_CurrentFunction = &F;
InvalidateMembers();
return ProcessFunction();
}
////////////////////////////////////////////////////////////////////////
bool BarrierControlFlowOptimization::IsThreadBarrierOperation(const llvm::Instruction *pInst) {
if (llvm::isa<llvm::GenIntrinsicInst>(pInst)) {
const llvm::GenIntrinsicInst *pGenIntrinsicInst = llvm::cast<llvm::GenIntrinsicInst>(pInst);
switch (pGenIntrinsicInst->getIntrinsicID()) {
case llvm::GenISAIntrinsic::GenISA_threadgroupbarrier:
return true;
default:
break;
}
}
return false;
}
void BarrierControlFlowOptimization::CollectFenceBarrierInstructions() {
for (llvm::BasicBlock &basicBlock : *m_CurrentFunction) {
m_OrderedFenceBarrierInstructions.clear();
for (llvm::Instruction &inst : basicBlock) {
if (IsLscFenceOperation(&inst) || IsThreadBarrierOperation(&inst)) {
m_OrderedFenceBarrierInstructions.push_back(&inst);
} else if (m_OrderedFenceBarrierInstructions.size() > 0) {
// if not lsc fence and threadbarrier, ends a set barrier instructions
m_OrderedFenceBarrierInstructionsBlock.push_back(m_OrderedFenceBarrierInstructions);
m_OrderedFenceBarrierInstructions.clear();
}
}
}
}
bool BarrierControlFlowOptimization::OptimizeBarrierControlFlow() {
const CodeGenContext *const pContext = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
bool bModified = false;
Value *onThread = nullptr;
// Optimize barrier control flow
for (auto &B : m_OrderedFenceBarrierInstructionsBlock) {
m_ThreadGroupBarriers.clear();
m_LscMemoryFences.clear();
if (IsLscFenceOperation(B[0])) {
Instruction *nextInst = nullptr;
for (auto *I : B) {
nextInst = I;
if (IsLscFenceOperation(I)) {
// nextInst is pointing to another fence
m_LscMemoryFences.push_back(I);
} else if (IsThreadBarrierOperation(I)) {
m_ThreadGroupBarriers.push_back(I);
}
}
// thread barrier could be not used, but lsc fence must exist
// if so, found the pattern and stop the loop and return
if (m_LscMemoryFences.size() >= 1) {
IGCIRBuilder<> IRB(nextInst);
llvm::Module *module = nextInst->getParent()->getParent()->getParent();
// all barrier instructions from the blocks are exected on the same thread
// get the owning thread ID once
if (!onThread) {
Function *systemValueIntrinsic =
GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_DCL_SystemValue, IRB.getInt32Ty());
Value *threadIDX = nullptr;
if (pContext->type == ShaderType::TASK_SHADER || pContext->type == ShaderType::MESH_SHADER) {
threadIDX =
IRB.CreateCall(systemValueIntrinsic, IRB.getInt32(IGC::THREAD_ID_IN_GROUP_X), VALUE_NAME("TID"));
} else {
Value *subgroupId = IRB.CreateCall(systemValueIntrinsic, IRB.getInt32(THREAD_ID_WITHIN_THREAD_GROUP));
Function *simdSizeIntrinsic = GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_simdSize);
Value *simdSize = IRB.CreateZExtOrTrunc(IRB.CreateCall(simdSizeIntrinsic), IRB.getInt32Ty());
Function *simdLaneIdIntrinsic = GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_simdLaneId);
Value *subgroupLocalInvocationId =
IRB.CreateZExtOrTrunc(IRB.CreateCall(simdLaneIdIntrinsic), IRB.getInt32Ty());
threadIDX =
IRB.CreateAdd(IRB.CreateMul(subgroupId, simdSize), subgroupLocalInvocationId, VALUE_NAME("TID"));
}
onThread = IRB.CreateICmpEQ(threadIDX, IRB.getInt32(0));
}
// 1. All threads do fence, scope=local, flush=None
for (auto *I : m_LscMemoryFences) {
if (GetLscMem(I) == LSC_SLM) {
Function *FenceFn = GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_LSCFence);
Value *Args[] = {IRB.getInt32(LSC_SLM), IRB.getInt32(LSC_SCOPE_GROUP), IRB.getInt32(LSC_FENCE_OP_NONE)};
IRB.CreateCall(FenceFn, Args);
}
}
// 2. All threads barrier (if in group?)
if (m_ThreadGroupBarriers.size() > 0) {
Function *BarrierFn = GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_threadgroupbarrier);
IRB.CreateCall(BarrierFn);
}
// 3. One thread designated to do a fence, scope=GPU, flush=evict
// if (thread0) - pick the owning thread
llvm::Instruction *br = nullptr;
if (nextInst->getNextNode()) {
br = SplitBlockAndInsertIfThen(onThread, nextInst->getNextNode(), false);
IRB.SetInsertPoint(&(*br->getParent()->begin()));
}
// create new lsc fence based on the fence mem
for (auto *I : m_LscMemoryFences) {
LSC_SFID lscMem = GetLscMem(I);
if (lscMem != LSC_SLM) {
Function *FenceFn = GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_LSCFence);
Value *Args[] = {IRB.getInt32(lscMem), IRB.getInt32(LSC_SCOPE_GPU), IRB.getInt32(LSC_FENCE_OP_EVICT)};
IRB.CreateCall(FenceFn, Args);
}
}
// ends the if-then block
if (br) {
IRB.SetInsertPoint(&(*br->getSuccessor(0)->begin()));
}
if (m_ThreadGroupBarriers.size() > 0) {
Function *BarrierFn = GenISAIntrinsic::getDeclaration(module, GenISAIntrinsic::GenISA_threadgroupbarrier);
IRB.CreateCall(BarrierFn);
}
bModified = true;
}
}
}
return bModified;
}
void BarrierControlFlowOptimization::EraseOldInstructions() {
for (auto &B : m_OrderedFenceBarrierInstructionsBlock) {
for (llvm::Instruction *I : B) {
I->eraseFromParent();
}
}
}
////////////////////////////////////////////////////////////////////////
/// @brief Processes an analysis which results in pointing out redundancies
/// among synchronization instructions appearing in the analyzed function.
bool BarrierControlFlowOptimization::ProcessFunction() {
const CodeGenContext *const pContext = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
bool isDisabled =
IsStage1FastestCompile(pContext->m_CgFlag, pContext->m_StagingCtx) || IGC_GET_FLAG_VALUE(ForceFastestSIMD);
if (isDisabled) {
return false;
}
CollectFenceBarrierInstructions();
bool bModified = OptimizeBarrierControlFlow();
// if optimized, then erase old instructions
if (bModified) {
EraseOldInstructions();
}
return bModified;
}
////////////////////////////////////////////////////////////////////////
void BarrierControlFlowOptimization::getAnalysisUsage(llvm::AnalysisUsage &AU) const {
AU.addRequired<CodeGenContextWrapper>();
}
////////////////////////////////////////////////////////////////////////
void BarrierControlFlowOptimization::InvalidateMembers() {
m_ThreadGroupBarriers.clear();
m_LscMemoryFences.clear();
m_OrderedFenceBarrierInstructions.clear();
m_OrderedFenceBarrierInstructionsBlock.clear();
}
//////////////////////////////////////////////////////////////////////////
template <class... Ts> struct overloaded : Ts... {
template <typename T> overloaded<Ts...> &operator=(const T &lambda) {
((static_cast<Ts &>(*this) = lambda), ...);
return *this;
}
using Ts::operator()...;
};
template <class... Ts> overloaded(Ts...) -> overloaded<Ts...>;
//////////////////////////////////////////////////////////////////////////
using ForwardIterationCallbackT =
std::function<void(llvm::BasicBlock::const_iterator, llvm::BasicBlock::const_iterator)>;
//////////////////////////////////////////////////////////////////////////
using BackwardIterationCallbackT =
std::function<void(llvm::BasicBlock::const_reverse_iterator, llvm::BasicBlock::const_reverse_iterator)>;
//////////////////////////////////////////////////////////////////////////
using IterationCallbackT = overloaded<ForwardIterationCallbackT, BackwardIterationCallbackT>;
//////////////////////////////////////////////////////////////////////////
using ForwardBoundaryCallbackT =
std::function<llvm::BasicBlock::const_iterator(llvm::BasicBlock::const_iterator, llvm::BasicBlock::const_iterator)>;
//////////////////////////////////////////////////////////////////////////
using BackwardBoundaryCallbackT = std::function<llvm::BasicBlock::const_reverse_iterator(
llvm::BasicBlock::const_reverse_iterator, llvm::BasicBlock::const_reverse_iterator)>;
//////////////////////////////////////////////////////////////////////////
using BoundaryCallbackT = overloaded<ForwardBoundaryCallbackT, BackwardBoundaryCallbackT>;
//////////////////////////////////////////////////////////////////////////
using ForwardProcessCallbackT = std::function<bool(llvm::BasicBlock::const_iterator, llvm::BasicBlock::const_iterator)>;
//////////////////////////////////////////////////////////////////////////
using BackwardProcessCallbackT =
std::function<bool(llvm::BasicBlock::const_reverse_iterator, llvm::BasicBlock::const_reverse_iterator)>;
//////////////////////////////////////////////////////////////////////////
using ProcessCallbackT = overloaded<ForwardProcessCallbackT, BackwardProcessCallbackT>;
////////////////////////////////////////////////////////////////////////
/// @brief Scan over basic blocks using a custom function which
/// analyzes instructions between the beginning and ending iterator
/// and decides if the scan should be continued. The direction of the
/// scanning process is defined by the kind of used iterators.
/// @param workList holds a collection with the beginning points of searching
/// @param visitedBasicBlocks holds a collection of fully visited basic blocks
/// @param ProcessInstructions holds a function returning information
/// based on the beginning and ending iterators of the currently scanned
/// basic blocks if adjacent basic blocks also should be scanned
/// @tparam BasicBlockterator a basic block iterator type indicating the scan direction
template <typename BasicBlockterator>
static void SearchInstructions(std::list<BasicBlockterator> &workList,
llvm::DenseSet<const llvm::BasicBlock *> &visitedBasicBlocks,
std::function<bool(BasicBlockterator, BasicBlockterator)> &ProcessInstructions) {
auto GetBeginIt = [](const llvm::BasicBlock *pBasicBlock) -> BasicBlockterator {
constexpr bool isForwardDirection = std::is_same_v<BasicBlockterator, llvm::BasicBlock::const_iterator>;
if constexpr (isForwardDirection) {
return pBasicBlock->begin();
} else {
return pBasicBlock->rbegin();
}
};
auto GetEndIt = [](const llvm::BasicBlock *pBasicBlock) -> BasicBlockterator {
constexpr bool isForwardDirection = std::is_same_v<BasicBlockterator, llvm::BasicBlock::const_iterator>;
if constexpr (isForwardDirection) {
return pBasicBlock->end();
} else {
return pBasicBlock->rend();
}
};
auto GetSuccessors = [](const llvm::BasicBlock *pBasicBlock) {
constexpr bool isForwardDirection = std::is_same_v<BasicBlockterator, llvm::BasicBlock::const_iterator>;
if constexpr (isForwardDirection) {
return llvm::successors(pBasicBlock);
} else {
return llvm::predecessors(pBasicBlock);
}
};
for (const auto &it : workList) {
const llvm::BasicBlock *pCurrentBasicBlock = it->getParent();
// use the iterator only if it wasn't visited or restricted
auto bbIt = visitedBasicBlocks.find(pCurrentBasicBlock);
if (bbIt != visitedBasicBlocks.end()) {
continue;
} else if (GetBeginIt(pCurrentBasicBlock) == it) {
visitedBasicBlocks.insert(pCurrentBasicBlock);
}
BasicBlockterator end = GetEndIt(pCurrentBasicBlock);
if (ProcessInstructions(it, end)) {
for (const llvm::BasicBlock *pSuccessor : GetSuccessors(pCurrentBasicBlock)) {
if (visitedBasicBlocks.find(pSuccessor) == visitedBasicBlocks.end()) {
workList.push_back(GetBeginIt(pSuccessor));
}
}
}
}
}
////////////////////////////////////////////////////////////////////////
/// @brief Scan over basic blocks using custom functions which
/// one of them analyzes instructions between the beginning and ending iterator
/// and second of them decides if the scan should be continued. The direction of the
/// scanning process is defined by the kind of used iterators.
/// @param workList holds a collection with the beginning points of searching
/// @param visitedBasicBlocks holds a collection of fully visited basic blocks
/// @param IterateOverMemoryInsts holds a function analyzing the content
/// between the beginning iterator and the boundary iterator.
/// @param GetBoundaryInst holds a function returning information
/// about the boundary of scanning if it is present in the analyzed basic
/// block, otherwise, it returns the ending iterator and it means the
/// scan process is proceeded.
/// based on the beginning and ending iterators of the currently scanned
/// basic blocks if adjacent basic blocks also should be scanned
/// @tparam BasicBlockterator a basic block iterator type indicating the scan direction
template <typename BasicBlockterator>
static void
SearchInstructions(std::list<BasicBlockterator> &workList, llvm::DenseSet<const llvm::BasicBlock *> &visitedBasicBlocks,
std::function<void(BasicBlockterator, BasicBlockterator)> &IterateOverMemoryInsts,
std::function<BasicBlockterator(BasicBlockterator, BasicBlockterator)> &GetBoundaryInst) {
std::function<bool(BasicBlockterator, BasicBlockterator)> ProcessInstructions{};
ProcessInstructions = [&GetBoundaryInst, &IterateOverMemoryInsts](auto it, auto end) {
auto beg = it;
it = GetBoundaryInst(beg, end);
IterateOverMemoryInsts(beg, it);
return it == end;
};
SearchInstructions(workList, visitedBasicBlocks, ProcessInstructions);
}
////////////////////////////////////////////////////////////////////////////////
static inline bool IsLscFenceOperation(const Instruction *pInst) {
const GenIntrinsicInst *pIntr = dyn_cast<GenIntrinsicInst>(pInst);
if (pIntr && pIntr->isGenIntrinsic(GenISAIntrinsic::GenISA_LSCFence)) {
return true;
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
static inline LSC_SFID GetLscMem(const Instruction *pInst) {
IGC_ASSERT(IsLscFenceOperation(pInst));
return getImmValueEnum<LSC_SFID>(pInst->getOperand(0));
}
////////////////////////////////////////////////////////////////////////////////
static inline LSC_SCOPE GetLscScope(const Instruction *pInst) {
IGC_ASSERT(IsLscFenceOperation(pInst));
return getImmValueEnum<LSC_SCOPE>(pInst->getOperand(1));
}
////////////////////////////////////////////////////////////////////////////////
static inline LSC_FENCE_OP GetLscFenceOp(const Instruction *pInst) {
IGC_ASSERT(IsLscFenceOperation(pInst));
return getImmValueEnum<LSC_FENCE_OP>(pInst->getOperand(2));
}
////////////////////////////////////////////////////////////////////////
llvm::Pass *createBarrierControlFlowOptimization() { return new BarrierControlFlowOptimization(); }
} // namespace IGC
using namespace llvm;
using namespace IGC;
#define PASS_FLAG "igc-barrier-control-flow-optimization"
#define PASS_DESCRIPTION "BarrierControlFlowOptimization"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(BarrierControlFlowOptimization, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(BarrierControlFlowOptimization, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
|