1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2018-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/Optimizer/OpenCLPasses/ErrorCheckPass/ErrorCheckPass.h"
#include "Compiler/Optimizer/OpenCLPasses/KernelArgs/KernelArgs.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/OpenCLKernelCodeGen.hpp"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Pass.h>
#include <llvm/IR/InstVisitor.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
char ErrorCheck::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG "igc-error-check"
#define PASS_DESCRIPTION "Check for input errors"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ErrorCheck, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(ErrorCheck, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
ErrorCheck::ErrorCheck(void) : FunctionPass(ID) { initializeErrorCheckPass(*PassRegistry::getPassRegistry()); }
bool ErrorCheck::runOnFunction(Function &F) {
// add more checks as needed later
visit(F);
if (isEntryFunc(getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils(), &F)) {
checkArgsSize(F);
}
return m_hasError;
}
void ErrorCheck::checkArgsSize(Function &F) {
auto Ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
auto MdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
auto ModMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
auto DL = F.getParent()->getDataLayout();
KernelArgs KernelArgs(F, &DL, MdUtils, ModMD, Ctx->platform.getGRFSize());
auto MaxParamSize = Ctx->platform.getMaxOCLParameteSize();
uint64_t TotalSize = 0;
if (KernelArgs.empty()) {
return;
}
for (auto &KernelArg : KernelArgs) {
auto Arg = KernelArg.getArg();
Type *ArgType = Arg->getType();
ArgType = Arg->hasByValAttr() ? Arg->getParamByValType() : ArgType;
if (!KernelArg.isImplicitArg()) {
TotalSize += DL.getTypeAllocSize(ArgType);
}
}
if (TotalSize > MaxParamSize) {
std::string ErrorMsg =
"Total size of kernel arguments exceeds limit! Total arguments size: " + std::to_string(TotalSize) +
", limit: " + std::to_string(MaxParamSize);
Ctx->EmitError(ErrorMsg.c_str(), &F);
m_hasError = true;
}
}
static bool isFP64Operation(llvm::Instruction *I) {
if (I->getType()->isDoubleTy())
return true;
for (int i = 0, numOpnd = (int)I->getNumOperands(); i < numOpnd; ++i)
if (I->getOperand(i)->getType()->isDoubleTy())
return true;
return false;
}
static bool isFP64ArithmeticOperation(llvm::Instruction *I) {
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::fabs:
case Intrinsic::fma:
case Intrinsic::sqrt:
return true;
default:
return false;
}
} else if (auto *GII = dyn_cast<GenIntrinsicInst>(I)) {
switch (GII->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_fma_rtn:
case GenISAIntrinsic::GenISA_fma_rtp:
case GenISAIntrinsic::GenISA_fma_rtz:
return true;
default:
return false;
}
} else {
switch (I->getOpcode()) {
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
return true;
default:
return false;
}
}
}
static bool isValidFP64InstructionForDPConvEmu(llvm::Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
case Instruction::Store:
case Instruction::FPToSI:
case Instruction::FPToUI:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ExtractValue:
case Instruction::InsertValue:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Select:
case Instruction::FCmp:
// By default, we assume that Call instruction is valid for DPConvEmu,
// because it can call e.g. other func or kernel.
// Call instruction can be invalid for DPConvEmu when it calls intrinsic
// which is arithmetic operation, but this case is handled in isFP64ArithmeticOperation()
case Instruction::Call:
return true;
default:
return false;
}
}
// This function handles FP64 emulation mode. It investigates the following cases:
// if (ctx->m_hasDPConvEmu && !ctx->m_hasDPEmu
// where AO == ArithmeticOperation, VI == ValidInstructionForDPConvEmu
// 1. poison=1 AO=1 => attr + warning
// 2. poison=1 AO=0 VI=0 => attr
// 3. poison=0 AO=1 => err msg
// 4. poison=0 AO=0 => emu
// if (!ctx->m_hasDPConvEmu && ctx->m_hasDPEmu)
// 1. poison=1 => emu
// 2. poison=0 => emu
// if (ctx->m_hasDPConvEmu && ctx->m_hasDPEmu)
// 1. poison=1 => emu
// 2. poison=0 => emu
// if (!ctx->m_hasDPConvEmu && !ctx->m_hasDPEmu)
// 1. poison=1 => attr
// 2. poison=0 => err msg
void ErrorCheck::handleFP64EmulationMode(llvm::Instruction &I) {
auto ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
// This is the condition that double emulation is used.
ctx->checkDPEmulationEnabled();
bool poisonFP64KernelsEnabled = false;
if (ctx->type == ShaderType::OPENCL_SHADER) {
OpenCLProgramContext *OCLContext = static_cast<OpenCLProgramContext *>(ctx);
poisonFP64KernelsEnabled = OCLContext->m_Options.EnableUnsupportedFP64Poisoning;
}
// check that has HW DP support and DP emu is disabled
if (!ctx->platform.hasNoFP64Inst() && !ctx->m_hasDPEmu)
return;
// check that input does not use double
const bool usesDouble = isFP64Operation(&I);
if (!usesDouble)
return;
// emit error msg when platform don't support DP operations and poisonFP64Kernels is disabled
if (!poisonFP64KernelsEnabled && !ctx->m_hasDPEmu && !ctx->m_hasDPConvEmu) {
ctx->EmitError("Double type is not supported on this platform.", &I);
m_hasError = true;
return;
}
// emit error msg when platform can emulate DP conversion operations, but in the kernel are used DP arithmetic
// operations (poisonFP64Kernels is disabled)
if (!poisonFP64KernelsEnabled && !ctx->m_hasDPEmu && ctx->m_hasDPConvEmu && isFP64ArithmeticOperation(&I)) {
ctx->EmitError("Double arithmetic operation is not supported on this platform with FP64 conversion emulation mode "
"(poison FP64 kernels is disabled).",
&I);
m_hasError = true;
return;
}
// emit error msg when platform can emulate DP conversion operations, but in the kernel are used instructions that are
// not valid for DPConvEmu (poisonFP64Kernels is disabled)
if (!poisonFP64KernelsEnabled && !ctx->m_hasDPEmu && ctx->m_hasDPConvEmu && !isValidFP64InstructionForDPConvEmu(&I)) {
ctx->EmitError("Instruction is not valid on this platform with FP64 conversion emulation mode (poison FP64 kernels "
"is disabled).",
&I);
m_hasError = true;
return;
}
// emit warning when platform can emulate DP conversion operations, but in the kernel are used DP arithmetic
// operations and poisonFP64Kernels is enabled we can add "uses-fp64-math" attr for functions here, because
// poisonFP64Kernels is enabled and we may encounter Call instruction to intrinsic which is arithmetic operation
if (poisonFP64KernelsEnabled && !ctx->m_hasDPEmu && ctx->m_hasDPConvEmu && isFP64ArithmeticOperation(&I)) {
Function *F = I.getParent()->getParent();
F->addFnAttr("uses-fp64-math");
ctx->EmitWarning("Double arithmetic operation is not supported on this platform with FP64 conversion emulation "
"mode (poison FP64 kernels is enabled).");
}
// emit warning when used two options: for FP64 conv emu and for FP64 full emu,
// the FP64 conversion emu flag will be ignored by the compiler, because is a subset of FP64 full emu.
if (ctx->m_hasDPEmu && ctx->m_hasDPConvEmu) {
ctx->EmitWarning(
"Used two options for FP64 emulation: for FP64 conversion emu (-cl/-ze-fp64-gen-conv-emu) and FP64 full emu "
"(-cl/-ze-fp64-gen-emu). The FP64 conversion emu flag will be ignored by the compiler.");
}
// Add "uses-fp64-math" attr for functions when poison fp64 kernels is required
// on platform and DP emulation is disabled
// When investigated instruction is valid for DPConvEmu, we don't need to add the attribute
if ((poisonFP64KernelsEnabled && !ctx->m_hasDPEmu && !ctx->m_hasDPConvEmu) ||
(poisonFP64KernelsEnabled && !ctx->m_hasDPEmu && ctx->m_hasDPConvEmu &&
!isValidFP64InstructionForDPConvEmu(&I))) {
Function *F = I.getParent()->getParent();
F->addFnAttr("uses-fp64-math");
}
}
void ErrorCheck::visitInstruction(llvm::Instruction &I) { handleFP64EmulationMode(I); }
void ErrorCheck::visitCallInst(CallInst &CI) {
if (auto *GII = dyn_cast<GenIntrinsicInst>(&CI)) {
switch (GII->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_dp4a_ss:
case GenISAIntrinsic::GenISA_dp4a_su:
case GenISAIntrinsic::GenISA_dp4a_us:
case GenISAIntrinsic::GenISA_dp4a_uu: {
CodeGenContext *Ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
if (!Ctx->platform.hasHWDp4AddSupport()) {
std::string Msg = "Unsupported call to ";
Msg += CI.getCalledFunction() ? CI.getCalledFunction()->getName() : "indirect function";
Ctx->EmitError(Msg.c_str(), &CI);
m_hasError = true;
}
break;
}
default:
// Intrinsic supported.
break;
}
}
handleFP64EmulationMode(CI);
}
|