1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "AdaptorCommon/ImplicitArgs.hpp"
#include "Compiler/Optimizer/OpenCLPasses/OpenCLPrintf/OpenCLPrintfResolution.hpp"
#include "Compiler/Optimizer/OpenCLPasses/OpenCLPrintf/OpenCLPrintfAnalysis.hpp"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Attributes.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/Alignment.h"
#include <llvm/IR/Module.h>
#include <llvm/IR/Instruction.h>
#include <llvm/IR/Instructions.h>
#include "common/LLVMWarningsPop.hpp"
#include "ShaderTypesEnum.h"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
// Register pass to igc-opt
#define PASS_FLAG "igc-opencl-printf-resolution"
#define PASS_DESCRIPTION "Resolves OpenCL printf calls"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(OpenCLPrintfResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(OpenCLPrintfResolution, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char OpenCLPrintfResolution::ID = 0;
//
// FORMAT OF PRINTF OUTPUT BUFFER:
// ================================
/*
======================================================================
| DWORD bufferSize Size of the buffer in bytes | <-- This value is incremented by atomic_add
|====================================================================|
| DWORD stringIndex_ch_0 Index of format string for channel 0 | \
|--------------------------------------------------------------------| |
| DWORD data0Type Type identifier | |
|--------------------------------------------------------------------| |
| DWORD data0 Data for channel 0 | |
|--------------------------------------------------------------------| | Channel 0 data
| . . . . . . | |
|--------------------------------------------------------------------| |
| DWORD data1Type Type identifier | |
|--------------------------------------------------------------------| |
| DWORD data1 Data for channel 0 | /
|====================================================================|
| DWORD stringIndex_ch_1 Index of format string for channel 1 | \
|--------------------------------------------------------------------| |
| DWORD data0Type Type identifier | |
|--------------------------------------------------------------------| |
| DWORD data0 Data for channel 1 | |
|--------------------------------------------------------------------| | Channel 1 data
| . . . . . . | |
|--------------------------------------------------------------------| |
| DWORD data0Type Type identifier | |
|--------------------------------------------------------------------| |
| DWORD data1 Data for channel 1 | /
|====================================================================|
| . . . . . . |
| . . . . . . |
| . . . . . . |
|====================================================================|
| DWORD stringIndex_ch_N Index of format string for channel N | \
|--------------------------------------------------------------------| |
| DWORD data0Type Type identifier | |
|--------------------------------------------------------------------| |
| DWORD data0 Data for channel N | |
|--------------------------------------------------------------------| | Channel N data
| . . . . . . | |
|--------------------------------------------------------------------| |
| DWORD data0Type Type identifier | |
|--------------------------------------------------------------------| |
| DWORD data1 Data for channel N | /
|--------------------------------------------------------------------|
*/
// For vector arguments, 2 type identifiers are used: 1st is IGC::SHADER_PRINTF_VECTOR_* and 2nd is the vector length.
// These 2 type identifiers are followed by the elements of the vector.
// Example: float4
//
// |------------------------------|
// | IGC::SHADER_PRINTF_VECTOR_FLOAT |
// |------------------------------|
// | 0x4 |
// |------------------------------|
// | < vec_element_0 > |
// |------------------------------|
// | < vec_element_1 > |
// |------------------------------|
// | < vec_element_2 > |
// |------------------------------|
// | < vec_element_3 > |
// |------------------------------|
OpenCLPrintfResolution::OpenCLPrintfResolution() : FunctionPass(ID), m_atomicAddFunc(nullptr) {
initializeOpenCLPrintfResolutionPass(*PassRegistry::getPassRegistry());
}
bool IGC::OpenCLPrintfResolution::doInitialization(Module &M) {
m_module = (IGCLLVM::Module *)&M;
m_context = &M.getContext();
m_CGContext = nullptr;
m_stringIndex = 0;
m_ptrSizeIntType = M.getDataLayout().getIntPtrType(*m_context, ADDRESS_SPACE_GLOBAL);
m_int32Type = Type::getInt32Ty(*m_context);
return FunctionPass::doInitialization(M);
}
bool OpenCLPrintfResolution::runOnFunction(Function &F) {
if (m_CGContext == nullptr) {
m_CGContext = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
m_fp64Supported = !m_CGContext->platform.hasNoFP64Inst();
}
// Gather all found printf calls into the m_printfCalls vector.
visit(F);
bool changed = !m_printfCalls.empty();
// Put strings found in the printf calls into metadata.
// Replace the printf calls with sequences of instructions that
// writes data into printf output buffer.
for (CallInst *printfCall : m_printfCalls) {
m_DL = printfCall->getDebugLoc();
expandPrintfCall(*printfCall, F);
}
m_printfCalls.clear();
return changed;
}
void OpenCLPrintfResolution::visitCallInst(CallInst &callInst) {
if (!callInst.getCalledFunction()) {
return;
}
StringRef funcName = callInst.getCalledFunction()->getName();
if (funcName == OpenCLPrintfAnalysis::OPENCL_PRINTF_FUNCTION_NAME ||
funcName == OpenCLPrintfAnalysis::BUILTIN_PRINTF_FUNCTION_NAME) {
m_printfCalls.push_back(&callInst);
}
}
Value *OpenCLPrintfResolution::processPrintfString(Value *arg, Function &F) {
GlobalVariable *formatString = nullptr;
if (isa<GlobalVariable>(arg)) {
formatString = dyn_cast_or_null<GlobalVariable>(arg);
if ((nullptr == formatString) || !formatString->hasInitializer()) {
IGC_ASSERT_MESSAGE(0, "Unexpected printf argument (expected string literal)");
return ConstantInt::get(m_int32Type, -1);
}
return arg;
} else if (CastInst *castInst = dyn_cast<CastInst>(arg)) {
return processPrintfString(castInst->getOperand(0), F);
} else if (GetElementPtrInst *getElemPtrInst = dyn_cast<GetElementPtrInst>(arg)) {
IGC_ASSERT_MESSAGE(getElemPtrInst->hasAllZeroIndices(), "Only All Zero indices GEP supported");
return processPrintfString(getElemPtrInst->getPointerOperand(), F);
} else if (SelectInst *selectInst = dyn_cast<SelectInst>(arg)) {
SelectInst *selectInst2 =
SelectInst::Create(selectInst->getOperand(0), processPrintfString(selectInst->getOperand(1), F),
processPrintfString(selectInst->getOperand(2), F), "", selectInst);
// TODO: Clean up the original select within the current pass
return selectInst2;
} else if (PHINode *phiNode = dyn_cast<PHINode>(arg)) {
unsigned inNum = phiNode->getNumIncomingValues();
PHINode *newPhi = nullptr;
for (unsigned i = 0; i < inNum; ++i) {
Value *newIV = processPrintfString(phiNode->getIncomingValue(i), F);
if (!newPhi)
newPhi = PHINode::Create(newIV->getType(), inNum, "", phiNode);
newPhi->addIncoming(newIV, phiNode->getIncomingBlock(i));
}
// TODO: Clean up the original PHI node within the current pass
return newPhi;
} else {
IGC_ASSERT_MESSAGE(0, "Unsupported Instruction!");
}
return ConstantInt::get(m_int32Type, -1);
}
// Checks pathes to global variables and returns true if all paths lead to constant strings.
// Only these instructions acepted in pathes:
// * a CastInst
// * a GEP with all-zero indices
// * a SelectInst
// * a PHINode
// It is expected that the paths are not looped.
bool OpenCLPrintfResolution::argIsString(Value *arg) {
if (isa<GlobalVariable>(arg)) {
GlobalVariable *formatString = dyn_cast_or_null<GlobalVariable>(arg);
if (nullptr == formatString || !formatString->hasInitializer()) {
return false;
}
Constant *initializer = formatString->getInitializer();
if (initializer->isZeroValue() && initializer->getType()->isArrayTy()) {
// Is zeroinitializer; can't be casted to ConstantDataArray.
// This caused zeroinitializers to be treated as non-strings,
// which caused assertion errors.
return true;
}
ConstantDataArray *formatStringConst = dyn_cast<ConstantDataArray>(initializer);
if (!formatStringConst || !formatStringConst->isCString()) {
return false;
}
return true;
} else if (CastInst *castInst = dyn_cast<CastInst>(arg)) {
return argIsString(castInst->getOperand(0));
}
if (GetElementPtrInst *getElemPtrInst = dyn_cast<GetElementPtrInst>(arg)) {
return getElemPtrInst->hasAllZeroIndices() && argIsString(getElemPtrInst->getPointerOperand());
} else if (SelectInst *selectInst = dyn_cast<SelectInst>(arg)) {
return argIsString(selectInst->getOperand(1)) && argIsString(selectInst->getOperand(2));
} else if (PHINode *phiNode = dyn_cast<PHINode>(arg)) {
for (unsigned i = 0; i < phiNode->getNumIncomingValues(); i++) {
if (!argIsString(phiNode->getIncomingValue(i)))
return false;
}
return true;
}
return false;
}
std::string OpenCLPrintfResolution::getPrintfStringsMDNodeName(Function &F) { return "printf.strings"; }
static StoreInst *genStoreInternal(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd, const DebugLoc &DL,
bool isNontemporal) {
bool isVolatile = false;
unsigned Align = 4;
auto SI = new llvm::StoreInst(Val, Ptr, isVolatile, IGCLLVM::getCorrectAlign(Align), InsertAtEnd);
SI->setDebugLoc(DL);
if (isNontemporal) {
Constant *One = ConstantInt::get(Type::getInt32Ty(SI->getContext()), 1);
MDNode *Node = MDNode::get(SI->getContext(), ConstantAsMetadata::get(One));
SI->setMetadata(LLVMContext::MD_nontemporal, Node);
}
return SI;
}
void OpenCLPrintfResolution::removeExcessArgs() {
SPrintfArgDescriptor *formatStringArgDesc = &m_argDescriptors[0];
Value *formatString = formatStringArgDesc->value;
IGC::SHADER_PRINTF_TYPE dataType = formatStringArgDesc->argType;
IGC_ASSERT(dataType == SHADER_PRINTF_STRING_LITERAL);
if (auto GV = dyn_cast<GlobalVariable>(formatString)) {
IGC_ASSERT(GV->hasInitializer());
unsigned int numFormatSpecifiers = 0;
Constant *initializer = GV->getInitializer();
if (initializer->isZeroValue() && initializer->getType()->isArrayTy())
// The string literal is empty, can't be casted to ConstantDataArray
// and there is no way it contains any format specifiers.
numFormatSpecifiers = 0;
else
numFormatSpecifiers = getNumFormatSpecifiers(cast<ConstantDataArray>(GV->getInitializer()));
if (m_argDescriptors.size() > numFormatSpecifiers + 1)
m_argDescriptors.erase(m_argDescriptors.begin() + numFormatSpecifiers + 1, m_argDescriptors.end());
}
}
void OpenCLPrintfResolution::expandPrintfCall(CallInst &printfCall, Function &F) {
/* Replace a printf call with IR instructions that fill the printf
output buffer created by the Runtime:
--------------------------------------------------------------------------
bufferPtr - pointer to the printf output buffer. This pointer
is an implicit kernel argument. It is loaded into
GRF as part of thread payload.
bufferSize - size of the printf output buffer. By agreement with
Runtime, it is 4 Mb.
dataSize - size of printf data for current thread.
Note: we use STATELESS mode for printf buffer access.
---------------------------------------------------------------------------
writeOffset = atomic_add(bufferPtr, dataSize);
writePtr = bufferPtr + writeOffset;
endOffset = writeOffset + dataSize;
if (endOffset < bufferSize) { \
// Write the format string index |
*writePtr = stringIndex; |
writePtr += 4; |
|
// Write the argument type |
*writePtr = argument[1].dataType; |
writePtr += 4; |
// Write the argument value |
*writePtr = argument[1].value; |
writePtr += 4; | bblockTrue
. . . |
. . . |
// Write the argument type |
*writePtr = argument[N].dataType; |
writePtr += 4; |
// Write the argument value |
*writePtr = argument[N].value; |
writePtr += 4; |
|
// printf returns 0 if successful |
return_val = 0; /
}
else { \
// Check if the remaining output |
// buffer space is enough for writing |
//invalid string index. |
endOffset = writeOffset + 4; |
if (endOffset < bufferSize) { \ | bblockFalse
// Write the invalid string index. | bblockErrorString |
*writePtr = -1; | |
} / |
// printf returns -1 if failed |
return_val = -1; /
}
We also support printf to any provided buffer.
This is done with special builtin with following signature:
int __builtin_IB_printf_to_buffer(global char* buf, global char* currentOffset, int bufSize, ...);
buf - pointer to the begging of the buffer.
currentOffset - pointer to the location with the current offset that will be atomically incremented.
In the case of regular printf this offset is on the first DWORD of printfBuffer.
E.g. in assert buffer it is on the third DWORD.
bufSize - total size of the buffer.
Note: in the case of builtin printf, all the stores will be nontemporal.
----------------------------------------------------------------------
*/
MetaDataUtils *MdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
ImplicitArgs implicitArgs(F, MdUtils);
bool isPrintfBuiltin = OpenCLPrintfAnalysis::isBuiltinPrintf(printfCall.getCalledFunction());
BasicBlock *currentBBlock = printfCall.getParent();
// Put all printf argument into m_argDescriptors vector.
// Scalarize vector arguments and substitute string arguments by their indices.
preprocessPrintfArgs(printfCall);
removeExcessArgs();
// writeOffset = atomic_add(bufferPtr, dataSize)
Value *basebufferPtr = isPrintfBuiltin ? printfCall.getArgOperand(0)
: implicitArgs.getImplicitArgValue(F, ImplicitArg::PRINTF_BUFFER, MdUtils);
Value *dataSizeVal = ConstantInt::get(m_int32Type, getTotalDataSize());
Value *currentOffsetPtr = isPrintfBuiltin ? printfCall.getArgOperand(1) : basebufferPtr;
Instruction *writeOffsetStart = genAtomicAdd(currentOffsetPtr, dataSizeVal, printfCall, "write_offset");
writeOffsetStart->setDebugLoc(m_DL);
Instruction *writeOffset = writeOffsetStart;
Instruction *writeOffsetPtr = nullptr;
// end_offset = write_offset + data_size
Instruction *endOffset = BinaryOperator::CreateAdd(writeOffset, dataSizeVal, "end_offset", &printfCall);
endOffset->setDebugLoc(m_DL);
Value *bufferMaxSize = isPrintfBuiltin
? printfCall.getArgOperand(2)
: ConstantInt::get(m_int32Type, m_CGContext->m_DriverInfo.getPrintfBufferSize());
// write_ptr = buffer_ptr + write_offset;
if (m_ptrSizeIntType != writeOffset->getType()) {
writeOffset =
CastInst::Create(Instruction::CastOps::ZExt, writeOffset, m_ptrSizeIntType, "write_offset", &printfCall);
writeOffset->setDebugLoc(m_DL);
}
Instruction *bufferPtr =
CastInst::Create(Instruction::CastOps::PtrToInt, basebufferPtr, m_ptrSizeIntType, "buffer_ptr", &printfCall);
bufferPtr->setDebugLoc(m_DL);
Instruction *writeOffsetAdd = BinaryOperator::CreateAdd(bufferPtr, writeOffset, "write_offset", &printfCall);
writeOffsetAdd->setDebugLoc(m_DL);
writeOffset = writeOffsetAdd;
// if (end_offset < output_buffer_size))
Instruction *cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE, endOffset, bufferMaxSize, "", &printfCall);
cmp1->setDebugLoc(m_DL);
// Since we need to insert a branch here, the current basic block should be
// splitted into two parts.
BasicBlock *bblockJoin = currentBBlock->splitBasicBlock(BasicBlock::iterator(printfCall), "bblockJoin");
// Create "true" and "false" branches.
BasicBlock *bblockTrue = BasicBlock::Create(*m_context, "write_offset_true", &F, bblockJoin);
BasicBlock *bblockFalse = BasicBlock::Create(*m_context, "write_offset_false", &F, bblockJoin);
currentBBlock->getTerminator()->eraseFromParent();
BranchInst *brInst = BranchInst::Create(bblockTrue, bblockFalse, cmp1, currentBBlock);
brInst->setDebugLoc(m_DL);
// ----------- Fill "true" block ----------------
// write_offset += 4;
Value *constVal4 = ConstantInt::get(m_ptrSizeIntType, 4);
for (size_t i = 0, size = m_argDescriptors.size(); i < size; ++i) {
SPrintfArgDescriptor *argDesc = &m_argDescriptors[i];
Value *printfArg = argDesc->value;
IGC::SHADER_PRINTF_TYPE dataType = argDesc->argType;
// We don't store the dataType for format string (which is the first entry in m_argDescriptors).
if (i != 0) {
// *write_offset = argument[i].dataType
Value *argTypeVal = ConstantInt::get(m_int32Type, (unsigned int)dataType);
writeOffsetPtr =
CastInst::Create(Instruction::CastOps::IntToPtr, writeOffset, m_int32Type->getPointerTo(ADDRESS_SPACE_GLOBAL),
"write_offset_ptr", bblockTrue);
writeOffsetPtr->setDebugLoc(m_DL);
genStoreInternal(argTypeVal, writeOffsetPtr, bblockTrue, m_DL, isPrintfBuiltin);
// write_offset += 4
writeOffset = BinaryOperator::CreateAdd(writeOffset, constVal4, "write_offset", bblockTrue);
writeOffset->setDebugLoc(m_DL);
// For vector arguments, add vector size after type ID.
if (argDesc->vecSize > 0) {
Value *vecSizeVal = ConstantInt::get(m_int32Type, argDesc->vecSize);
writeOffsetPtr =
CastInst::Create(Instruction::CastOps::IntToPtr, writeOffset,
m_int32Type->getPointerTo(ADDRESS_SPACE_GLOBAL), "write_offset_ptr", bblockTrue);
writeOffsetPtr->setDebugLoc(m_DL);
genStoreInternal(vecSizeVal, writeOffsetPtr, bblockTrue, m_DL, isPrintfBuiltin);
// write_offset += 4
writeOffset = BinaryOperator::CreateAdd(writeOffset, constVal4, "write_offset", bblockTrue);
writeOffset->setDebugLoc(m_DL);
}
}
writeOffsetPtr = generateCastToPtr(argDesc, writeOffset, bblockTrue);
writeOffsetPtr->setDebugLoc(m_DL);
if (dataType == SHADER_PRINTF_STRING_LITERAL) {
printfArg = CastInst::Create(Instruction::CastOps::PtrToInt, argDesc->value, Type::getInt64Ty(*m_context), "",
bblockTrue);
}
// *write_offset = argument[i].value
genStoreInternal(printfArg, writeOffsetPtr, bblockTrue, m_DL, isPrintfBuiltin);
// write_offset += argument[i].size
Value *offsetInc = ConstantInt::get(m_ptrSizeIntType, getArgTypeSize(dataType, argDesc->vecSize));
writeOffset = BinaryOperator::CreateAdd(writeOffset, offsetInc, "write_offset", bblockTrue);
writeOffset->setDebugLoc(m_DL);
} // for (SPrintfArgDescriptor *argDesc : m_argDescriptors)
brInst = BranchInst::Create(bblockJoin, bblockTrue);
brInst->setDebugLoc(m_DL);
// ----------- Fill "false" block ----------------
// end_offset = write_offset + 4
Value *constVal4_32 = ConstantInt::get(m_int32Type, 4);
endOffset = BinaryOperator::CreateAdd(writeOffsetStart, constVal4_32, "end_offset", bblockFalse);
endOffset->setDebugLoc(m_DL);
// if (end_offset < output_buffer_size)
Instruction *cmp2 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE, endOffset, bufferMaxSize, "", bblockFalse);
cmp2->setDebugLoc(m_DL);
// Here, we generate code that checks if the error string index can be
// written into the output buffer.
BasicBlock *bblockErrorString = BasicBlock::Create(*m_context, "write_error_string", &F, bblockJoin);
BasicBlock *bblockFalseJoin = BasicBlock::Create(*m_context, "bblockFalseJoin", &F, bblockJoin);
brInst = BranchInst::Create(bblockErrorString, bblockFalseJoin, cmp2, bblockFalse);
brInst->setDebugLoc(m_DL);
// *writeOffset = -1;
Value *constValErrStringIdx = ConstantInt::get(m_int32Type, -1);
writeOffsetPtr =
CastInst::Create(Instruction::CastOps::IntToPtr, writeOffsetAdd, m_int32Type->getPointerTo(ADDRESS_SPACE_GLOBAL),
"write_offset_ptr", bblockErrorString);
writeOffsetPtr->setDebugLoc(m_DL);
genStoreInternal(constValErrStringIdx, writeOffsetPtr, bblockErrorString, m_DL, isPrintfBuiltin);
brInst = BranchInst::Create(bblockFalseJoin, bblockErrorString);
brInst->setDebugLoc(m_DL);
// bblockFalseJoin is an empty basic block,
// it is needed to assure bblockJoin have only 2 predecessors.
brInst = BranchInst::Create(bblockJoin, bblockFalseJoin);
brInst->setDebugLoc(m_DL);
// return_val = select cmp1, 0, -1
Value *constVal0 = ConstantInt::get(m_int32Type, 0);
Value *constValm1 = ConstantInt::get(m_int32Type, -1);
Instruction *returnVal = SelectInst::Create(cmp1, constVal0, constValm1, "printf_ret_val", &printfCall);
returnVal->setDebugLoc(m_DL);
printfCall.replaceAllUsesWith(returnVal);
printfCall.eraseFromParent();
m_argDescriptors.clear();
}
Value *OpenCLPrintfResolution::fixupPrintfArg(CallInst &printfCall, Value *arg, IGC::SHADER_PRINTF_TYPE &argDataType) {
// For string argument, add the string to the metadata and put the string index
// into the vector of arguments.
switch (argDataType) {
case IGC::SHADER_PRINTF_STRING_LITERAL: {
Function *F = printfCall.getParent()->getParent();
return processPrintfString(arg, *F);
} break;
case IGC::SHADER_PRINTF_POINTER: {
Instruction *tmp = CastInst::Create(Instruction::CastOps::PtrToInt, arg, m_ptrSizeIntType, "", &printfCall);
tmp->setDebugLoc(m_DL);
return tmp;
} break;
case IGC::SHADER_PRINTF_FLOAT:
case IGC::SHADER_PRINTF_VECTOR_FLOAT:
case IGC::SHADER_PRINTF_DOUBLE:
case IGC::SHADER_PRINTF_VECTOR_DOUBLE:
// Cast halfs back to float. Cast doubles to floats if the platform does not support double fp type.
if (arg->getType()->getScalarType()->isHalfTy() ||
(!m_fp64Supported && arg->getType()->getScalarType()->isDoubleTy())) {
if (argDataType == IGC::SHADER_PRINTF_DOUBLE)
argDataType = IGC::SHADER_PRINTF_FLOAT;
if (argDataType == IGC::SHADER_PRINTF_VECTOR_DOUBLE)
argDataType = IGC::SHADER_PRINTF_VECTOR_FLOAT;
if (ConstantFP *constVal = dyn_cast<ConstantFP>(arg)) {
// If this is a constant, just replace it.
bool ignored;
APFloat FV = constVal->getValueAPF();
FV.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
return ConstantFP::get(arg->getContext(), FV);
} else if (CastInst *fpCastVal = dyn_cast<CastInst>(arg)) {
// If this is a fpcast, use the origin value.
Type *srcType = fpCastVal->getSrcTy();
if (srcType->isFloatTy() ||
(srcType->isVectorTy() && cast<VectorType>(srcType)->getElementType()->isFloatTy())) {
return fpCastVal->getOperand(0);
}
}
Type *newType = Type::getFloatTy(arg->getContext());
if (auto argVT = dyn_cast<IGCLLVM::FixedVectorType>(arg->getType())) {
newType = IGCLLVM::FixedVectorType::get(newType, (unsigned)argVT->getNumElements());
}
Instruction *tmp = CastInst::CreateFPCast(arg, newType, "to_float", &printfCall);
tmp->setDebugLoc(m_DL);
return tmp;
}
break;
default:
break;
}
return arg;
}
unsigned OpenCLPrintfResolution::getNumFormatSpecifiers(const ConstantDataArray *dataArray) {
unsigned int count = 0;
StringRef formatString = dataArray->getRawDataValues();
const size_t length = formatString.size();
for (size_t i = 0; i < length; i++) {
if (formatString[i] == '%') {
if (i + 1 < length && formatString[i + 1] == '%') {
i++;
continue;
}
count++;
}
}
return count;
}
void OpenCLPrintfResolution::preprocessPrintfArgs(CallInst &printfCall) {
int i = 0;
if (OpenCLPrintfAnalysis::isBuiltinPrintf(printfCall.getCalledFunction())) {
// printf builtin function has buffer pointer, current offset pointer and buffer size as first three arguments.
// Skip them here, as we want to collect the arguments starting from format string.
i = 3;
}
for (int numArgs = IGCLLVM::getNumArgOperands(&printfCall); i < numArgs; ++i) {
Value *arg = printfCall.getOperand(i);
Type *argType = arg->getType();
IGC::SHADER_PRINTF_TYPE argDataType = getPrintfArgDataType(arg);
arg = fixupPrintfArg(printfCall, arg, argDataType);
uint vecSize = 0;
if (auto argVType = dyn_cast<IGCLLVM::FixedVectorType>(argType)) {
vecSize = (uint)argVType->getNumElements();
}
m_argDescriptors.push_back(SPrintfArgDescriptor(argDataType, arg, vecSize));
}
}
CallInst *OpenCLPrintfResolution::genAtomicAdd(Value *outputBufferPtr, Value *dataSize, CallInst &printfCall,
StringRef name) {
// outputBufferPtr->getType() could be "i8 addrspace(1)*", and the atomic prototype
// requires "i32 addrspace(1)*":
//
// %writeOffset = call i32 @__builtin_IB_atomic_add_global_i32(i32 addrspace(1)* <outputBufferPtr>,
// i32 <dataSize>)
//
Type *bufPtrType = Type::getInt32PtrTy(*m_context, ADDRESS_SPACE_GLOBAL);
if (outputBufferPtr->getType() != bufPtrType) {
outputBufferPtr =
CastInst::Create(Instruction::CastOps::BitCast, outputBufferPtr, bufPtrType, "ptrBC", &printfCall);
}
if (m_atomicAddFunc == nullptr) {
Type *argTypes[] = {outputBufferPtr->getType(), dataSize->getType()};
FunctionType *atomicFuncType = FunctionType::get(dataSize->getType(), argTypes, false);
m_atomicAddFunc = cast<Function>(
m_module->getOrInsertFunction("__builtin_IB_atomic_add_global_i32", atomicFuncType, AttributeList()));
}
std::vector<Value *> args;
args.push_back(outputBufferPtr);
args.push_back(dataSize);
return CallInst::Create(m_atomicAddFunc, args, name, &printfCall);
}
unsigned int OpenCLPrintfResolution::getArgTypeSize(IGC::SHADER_PRINTF_TYPE argType, uint vecSize) {
switch (argType) {
case IGC::SHADER_PRINTF_LONG:
case IGC::SHADER_PRINTF_DOUBLE:
case IGC::SHADER_PRINTF_POINTER: // Runtime expects 64 bit value for pointer regardless of its actual size.
return 8;
case IGC::SHADER_PRINTF_VECTOR_LONG:
case IGC::SHADER_PRINTF_VECTOR_DOUBLE:
return vecSize * 8;
case IGC::SHADER_PRINTF_STRING_LITERAL: {
// The size of the format string address
return 8;
}
default:
if (vecSize > 0) {
return vecSize * 4;
} else {
return 4;
}
}
}
unsigned int OpenCLPrintfResolution::getTotalDataSize() {
IGC_ASSERT_MESSAGE(m_argDescriptors.size() > 0, "Empty printf arguments list.");
unsigned int dataSize = 0;
SPrintfArgDescriptor *argDesc = &m_argDescriptors[0];
// Add the size that represents a format string.
dataSize += getArgTypeSize(argDesc->argType, argDesc->vecSize);
// Skip 0-th operand (format string) and count total size of
// the remaining arguments.
for (size_t i = 1, size = m_argDescriptors.size(); i < size; ++i) {
argDesc = &m_argDescriptors[i];
// Add size of the data type identifier.
dataSize += 4;
// Vector arguments require additional type identifier - number of elements.
if (argDesc->vecSize > 0) {
dataSize += 4;
}
// Add size of the data itself.
dataSize += getArgTypeSize(argDesc->argType, argDesc->vecSize);
}
return dataSize;
}
IGC::SHADER_PRINTF_TYPE OpenCLPrintfResolution::getPrintfArgDataType(Value *printfArg) {
Type *argType = printfArg->getType();
if (auto argVType = dyn_cast<VectorType>(argType)) {
Type *elemType = argVType->getElementType();
if (elemType->isFloatingPointTy()) {
if (elemType->isDoubleTy())
return IGC::SHADER_PRINTF_VECTOR_DOUBLE;
else
return IGC::SHADER_PRINTF_VECTOR_FLOAT;
} else if (elemType->isIntegerTy()) {
unsigned int typeSize = elemType->getScalarSizeInBits();
switch (typeSize) {
case 8:
return IGC::SHADER_PRINTF_VECTOR_BYTE;
case 16:
return IGC::SHADER_PRINTF_VECTOR_SHORT;
case 32:
return IGC::SHADER_PRINTF_VECTOR_INT;
case 64:
return IGC::SHADER_PRINTF_VECTOR_LONG;
}
}
} else if (argType->isFloatingPointTy()) {
if (argType->isDoubleTy())
return IGC::SHADER_PRINTF_DOUBLE;
else
return IGC::SHADER_PRINTF_FLOAT;
} else if (argType->isIntegerTy()) {
unsigned int typeSize = argType->getScalarSizeInBits();
switch (typeSize) {
case 8:
return IGC::SHADER_PRINTF_BYTE;
case 16:
return IGC::SHADER_PRINTF_SHORT;
case 32:
return IGC::SHADER_PRINTF_INT;
case 64:
return IGC::SHADER_PRINTF_LONG;
}
} else if (argIsString(printfArg)) {
return IGC::SHADER_PRINTF_STRING_LITERAL;
} else if (argType->isPointerTy()) {
return IGC::SHADER_PRINTF_POINTER;
}
return IGC::SHADER_PRINTF_INVALID;
}
Instruction *OpenCLPrintfResolution::generateCastToPtr(SPrintfArgDescriptor *argDesc, Value *writeOffset,
BasicBlock *bblock) {
Type *castedType = nullptr;
switch (argDesc->argType) {
case IGC::SHADER_PRINTF_BYTE:
case IGC::SHADER_PRINTF_SHORT:
case IGC::SHADER_PRINTF_INT:
case IGC::SHADER_PRINTF_LONG:
case IGC::SHADER_PRINTF_FLOAT:
case IGC::SHADER_PRINTF_DOUBLE:
case IGC::SHADER_PRINTF_VECTOR_BYTE:
case IGC::SHADER_PRINTF_VECTOR_SHORT:
case IGC::SHADER_PRINTF_VECTOR_INT:
case IGC::SHADER_PRINTF_VECTOR_LONG:
case IGC::SHADER_PRINTF_VECTOR_FLOAT:
case IGC::SHADER_PRINTF_VECTOR_DOUBLE: {
Type *origType = argDesc->value->getType();
castedType = origType->getPointerTo(ADDRESS_SPACE_GLOBAL);
break;
}
case IGC::SHADER_PRINTF_STRING_LITERAL: {
castedType = Type::getInt64PtrTy(*m_context, ADDRESS_SPACE_GLOBAL);
break;
}
case IGC::SHADER_PRINTF_POINTER:
castedType = m_ptrSizeIntType->getPointerTo(ADDRESS_SPACE_GLOBAL);
break;
default:
IGC_ASSERT_MESSAGE(0, "Unexpected printf argument type");
break;
}
return CastInst::Create(Instruction::CastOps::IntToPtr, writeOffset, castedType, "write_offset_ptr", bblock);
}
|